Где используют лазерные мониторы
В то время как OLED который год остается лишь перспективным новичком, технология лазерных телевизоров наконец воплощена в серийной модели!
Перед тем как приступить непосредственно к разговору о лазерной технологии, хотелось бы взглянуть на современную ситуацию на рынке телевизоров. Для этого воспользуемся аналитическим исследованием компании DisplaySearch по результатам в отрасли за второй квартал текущего года.
Итак, что же мы видим? Несмотря на прогнозы многолетней давности по экспансии на рынок SED, OLED, FED, и других перспективных технологий, сегодня ситуация такова. Безоговорочное лидерство принадлежит плоскопанельным жидкокристаллическим дисплеям, более того, их популярность с каждым годом растет высокими темпами. Интересно отметить, что старые добрые ЭЛТ-телевизоры, которым еще несколько лет назад предрекали скорую и быструю смерть, только в конце прошлого года уступили первое место ЖК и до сих пор удерживают довольно сильные позиции - более 40%. RPTV (rear-projection TV, телевизоры с обратной проекцией), на которые возлагали большие надежды в связи с появлением новых инновационных разработок в этой области, по-прежнему плетутся в хвосте. Их доля на рынке во втором квартале составила всего 0,2%, а годовой прирост отрицателен (-85%). По мнению аналитического агентства IDC, проекционные ТВ потерпели неудачу по причине слишком больших габаритов, малых углов обзора, очень дорогих и короткоживущих источников света. Вообще, прошлый год оказался для "проекционников" очень печальным. Об уходе из этого сектора заявили такие влиятельные производители, как Hitachi, Epson, Sony, а аналитики все чаще говорили о закате эры проекционных ТВ. К чему мы подводим? Дело в том, что лазерные телевизоры, по сути, тоже относятся к "проекционникам" (что вы увидите дальше), только в них вместо лампы источником света выступает лазер. Так вот, напрашивается вопрос, сможет ли лазерная технология сдвинуть рынок проекционных телевизионных систем с мертвой точки и вообще, есть ли у нее шансы составить серьезную конкуренцию "плазме", которая становится все доступнее потребителям?
На пути к лазерной эре
Идея использования лазеров в качестве источника света в проекционных системах зародилась еще в 60-х годах прошлого века. Так, в январе далекого 1966 года известная компания Texas Instruments опубликовала доклад с красноречивым названием "Experimental Laser Display for Large Screen Presentation", в котором рассказывалось о возможности замены традиционных ламп лазерами и о преимуществах такого решения. А в 1969 TI уже успела оформить патент, связанный с применением лазеров в проекторах. Казалось, в мире проекционных систем грядет настоящая революция. Действительно, лазеры имеют во много раз более высокую яркость по сравнению с обычными UHP-лампами и светодиодами. Применение лазеров обещает более широкий охват цветового пространства, воспринимаемого человеческим зрением, снижение энергопотребления телевизоров, уменьшение габаритов и веса по сравнению с традиционными "проекционниками". Но на практике все оказалось не так просто. Распространению лазерных проекционных систем препятствовали некоторые специфические технические трудности. Например, разработчики непременно сталкивались с проблемой появления зернистости (так называемым спекл-фоном), являющейся следствием когерентной интерференции, сложности были с модуляцией лазерного пучка. Но самым главным сдерживающим фактором в разработке лазерных ТВ оказалось то, что производство самих лазеров видимого диапазона достаточной мощности и малых габаритов оказалось слишком дорогим и сложным. Поэтому до последнего времени появление лазерных ТВ все откладывалось, а лазерные проекторы сегодня мало распространены по причине заоблачных цен. Новые надежды появились, когда на выставке Consumer Electronics Show 2006 в Лас-Вегасе была представлена полупроводниковая лазерная платформа Necsel и построенные на ее основе твердотельные источники света для использования в проекционных системах. Отметим, Necsel разрабатывалась с 1998 года компанией Novalux, которая в январе этого года была поглощена крупным австралийским производителем оптических и беспроводных решений Arasor, занимающимся разработкой оптоэлектронного чипа для лазерных ТВ.
Лазер на базе платформы Necsel с 15-ю излучающими диодами и габаритами 1х5 мм.
На CES 2006 Arasor совместно с Novalux продемонстрировала два прототипа лазерных телевизоров с обратной проекцией, а также прототип лазерного пико-проектора. Все эти разработки, ставшие одними из наиболее интересных и захватывающих экспонатов на выставке, были спроектированы на базе платформы Necsel и микросхемы Arasor. Разработчики отметили, что их изобретение дает зеленый свет лазерным проекционным системам, так как является относительно дешевым решением, обладает миниатюрными габаритами, малым энергопотреблением и достаточно высокой светоотдачей.
Сравнение лазерного (слева) и плазменного (справа) телевизоров.
Конечно, Necsel не могла остаться без внимания отраслевых гигантов. Уже 15 февраля 2006 года на конференции в Амагасаки (крупный промышленный город и порт Японии) президент Mitsubishi Electric Тамоцу Номакучи (Tamotsu Nomakuchi) заявил, что его компании удалось разработать прототип проекционного телевизора, использующего в качестве источника света лазеры Novalux. Примерно через месяц, в марте того же года о сотрудничестве с Novalux заговорила компания Seiko Epson Corporation. Кроме того, из уст вице-президента по маркетингу компании Novalux Грега Нивена (Greg Niven) прозвучало заявление о планах Samsung Electronics также вступить в "лазерную" гонку. На CES 2007 прототип лазерного ТВ продемонстрировала также компания Sony. Ее проекционный дисплей был спроектирован на основе технологии SXRD (собственная реализация LCOS). Модель имела диагональ экрана 55 дюймов, толщину всего 27,3 см и отличалась разрешением Full HD 1080p (1920х1080 пикселей).
Самой активной и напористой в продвижении лазерных телевизоров оказалась компания Mitsubishi. В январе 2008 года на выставке Consumer Electronics Show она представила "первый в мире коммерческий лазерный телевизор" - 65-дюймовый Mitsubishi LaserVue TV. Это событие активно обсуждали на форумах и в профессиональных кругах, но постепенно ажиотаж спал, ведь реального устройства в продаже все не было, а Mitsubishi лишь время от времени демонстрировала свое творение на разнообразных выставках.
Прототип 65-дюймового лазерного телевизора от Mitsubishi.
Но в начале октября свершилось долгожданное событие - Mitsubishi начала продажи первых серийных экземпляров LaserVue. Официального пресс-релиза о запуске в розничные каналы лазерного ТВ на сайте Mitsubishi нет, но подтверждение этой информации нам удалось получить от PR-менеджера Mitsubishi Electric Марка Скотта (Mark Scott) и сотрудника пресс-службы компании Трейси Реннера (Traci Renner). Несмотря на то, что Sony и Epson решили оставить разработку лазерных телевизоров, Arasor/Novalux и Mitsubishi, похоже, без конкурентов не останутся. В августе этого года компания QPC Lasers заявила о начале поставок лазеров ODM-производителю Asia Optical Co. Inc. (AOCI), который также планирует заняться выпуском лазерных ТВ. Кроме того, компания AOCI уже продемонстрировала прототип 60-дюймового лазерного RPTV. Но существенное преимущество Mitsubishi в том, что ее продукт уже готов к завоеванию рынка, а вот дата релиза первого лазерного ТВ от AOCI пока еще под большим вопросом.
Как это работает?
Как мы уже отмечали выше, лазерный телевизор фактически является обратной проекционной системой. Поэтому, если вы когда-нибудь интересовались устройством проекционного телевизора, большая часть информации этой главы может показаться вам очень знакомой. В проекционном телевизоре RPTV изображение выводится на просветном экране. Принципиальные отличия фронтальной и обратной проекции можно видеть на упрощенных схематических рисунках ниже.
Как видите, неотъемлемой частью проекционного телевизора является встроенный проектор. А сами проекторы сегодня выпускаются по следующим основным технологиям: на базе электронно-лучевых трубок, на базе жидкокристаллических матриц, на базе механических микрозеркал DMD (DLP Technology), на базе ЖК на кремниевой подложке (LCOS). Соответственно, в литературе и статьях встречаются такие названия проекционных телевизоров в зависимости от используемой технологии: CRT RPTV, LCD RPTV, DLP RPTV и LCOS RPTV. Реализация лазерных ТВ в зависимости от используемой технологии также может быть разной. Например, уже упоминаемый выше прототип компании Sony был спроектирован на базе SXRD (LCOS), а Mitsubishi применила в своем лазерном телевизоре DLP-технологию. Демонстрируемые компаниями Novalux и Arasor прототипы лазерных телевизоров использовали как LCD-технологию, так и DLP. Итак, какие преимущества дает использование лазеров вместо ламп в проекционных системах? Рассмотрим на примере DLP-технологии. В традиционной одночиповой DLP-системе свет от UHP-лампы проходит сквозь вращающийся диск с цветными светофильтрами, далее он должен пройти через световой тоннель для гомогенизации светового потока (гомогенный - однородный, равномерный) и только после этого попадает на матрицу микрозеркал.
Лазер же позволяет существенно упростить эту схему, позволяя обойтись без цветового колеса, светового тоннеля, фильтров ультрафиолетового и инфракрасного излучения, а также дополнительной оптики. Источник света Necsel представляет собой комбинацию красного, зеленого и синего лазеров, которые проецируют мощные световые пучки непосредственно на микрозеркала.
Аналогичная ситуация с 3LCD-технологией. Напомним, 3LCD-система включает блок дихроических зеркал, которые гомогенизируют и разделяют белый световой поток от UHP-лампы на три составляющие (красный, зеленый и синий цвета), которые потом попадают на три HTPS-панели.
Лазерные пучки можно непосредственно проецировать на панели, что исключает необходимость в поляризаторах, цветовых фильтрах, вращающихся зеркалах, фильтрах ультрафиолетового и инфракрасного излучения, фасеточных объективах, а также некоторых полевых линзах.
Таким образом, убивается сразу несколько зайцев. Уменьшается стоимость системы за счет исключения ряда компонент, существенно уменьшаются масса и габариты конечных продуктов, а также потребляемая мощность. Кроме того, по словам разработчиков, лазеры позволяют получить более яркую картинку с гораздо большим цветовым охватом. Теперь копнем немного глубже, а именно - рассмотрим структуру самой лазерной платформы Necsel. Состоит она из трех основных частей: микросхемы Necsel (Necsel chip), удвоителя частоты (Frequency doubler), а также специальной зеркальной пластинки (Output coupler, выходное зеркало лазера).
Микросхема является индий-галлий-арсенидным (InGaAs) полупроводниковым прибором, который представляет собой массив лазерных вертикально-излучающих диодов инфракрасного диапазона. Удвоитель частоты основан на нелинейном PPLN-кристалле (periodically poled lithium niobate) и позволяет конвертировать инфракрасное излучение в свет видимого диапазона. Кристалл удваивает частоту ИР-излучения, соответственно уменьшая длину волны вдвое. Плоское зеркало проецирует мощный выходной поток видимого излучения прямо на микрозеркала (в DLP-технологии) или ЖК-матрицу. Лазеры Necsel производятся на ее собственной фабрике в Кремниевой долине в виде 4-дюймовых полупроводниковых пластин. Одна такая пластина включает тысячи микросхем. Как отмечается, компания способна производить несколько миллионов лазерных чипов в год. Мощность видимого света и длина излучаемой волны лазеров Necsel могут иметь стабильные значения на протяжении более 20 тыс. часов при максимальной нагрузке. Их КПД превышает 15%, а световой поток составляет более 1000 люмен.
Было бы несправедливо обойти вниманием также достижения компании QPC Lasers, но, к сожалению, подробной информации о ее лазерах видимого диапазона в открытых источниках практически нет. Известно, что они основаны на собственной технологии BrightLase. Также отмечаются такие общие характеристики, как малая себестоимость, малое энергопотребление, сверхкомпактный дизайн, высокая светоотдача - в общем, никакой конкретики.
Первый серийный лазерный ТВ
Заключение
О достоинствах лазерных телевизоров мы вроде как поговорили достаточно, но неужели все так хорошо? Ведь у любой даже самой продвинутой технологии есть как позитивные стороны, так и минусы. И лазерные ТВ, конечно, исключением не являются. Еще полтора-два года назад разработчики нас уверяли, что стоимость лазеров для телевизоров будет сравнима с ценами UHP-ламп, а упрощение конструкции телевизионной системы позволит существенно снизить себестоимость готового продукта. Интересно взглянуть на слайд одной из презентаций, проводившейся в декабре 2006 года.
Что же имеем на самом деле? Пока лазерный ТВ готовился к выходу на рынок, другие разработчики тоже не сидели сложа руки. В результате, цены плазменных телевизоров за это время существенно упали. 65-дюймовый плазменный ТВ в зарубежных магазинах сегодня можно найти за $4500-5500, а не $9999, и, что самое главное, цены продолжают снижаться. А вот рекомендованная розничная цена первого лазерного телевизора - $6999. Надеемся, что такой серьезный минус, как высокая цена, с увеличением объемов производства отпадет сам собой. Но пока платить 7 тыс. долларов (как минимум), в то время когда на рынке присутствуют такие же по размеру экрана (или даже больше), но более дешевые плазменные панели и намного более тонкие LCD-телевизоры, захочет далеко не каждый. И маркетологам Mitsubishi еще придется много работать, чтобы переубедить покупателей, что им нужен именно лазерный ТВ. Кроме того, о широкой доступности лазерных телевизоров говорить пока не приходится. На сегодняшний день продажами занимаются только несколько избранных партнеров Mitsubishi Electric в США, а несколько недель назад в Сети появилась информация, что в ближайшее время компания не планирует представлять LaserVue в Европе. Директор по дисплейным технологиям аналитической компании DisplaySearch Стив Джуричич (Steve Jurichich) отметил, что лазерные телевизоры в какой-то мере даже опередили время. Дело в том, что широкий цветовой охват далеко не во всех случаях может быть серьезным преимуществом, поскольку для создания видеоконтента соответствующего качества выбор оборудования невелик, да и телекомпании пока не готовы к вещанию такого уровня. Также господин Джуричич считает, что лазерные ТВ вполне способны составить серьезную конкуренцию современным "проекционникам" (меньшие толщина и вес, большие углы обзора, нет проблем с дорогостоящими лампами), но вот с плазменными дисплеями им тягаться будет сложно, в первую очередь, из-за цены. Но никакие трудности Mitsubishi не пугают. Она готовится чуть позже в этом году вывести на рынок еще одну модель лазерного телевизора с диагональю 73 дюйма. Цена этой новинки пока не объявлена.
Не верьте пессимистам, утверждающим, что проекционная технология телевидения навсегда ушла в небытие. Конечно, сегодня наблюдается некоторое снижение интереса к габаритным крупнодиагональным моноблочным системам с задней проекцией. Однако число людей, желающих приобрести лазерный телевизор, а его можно смело отнести к приборам проекционного типа, в мире никак не уменьшилось. Действительно, ныне трудно найти технологию, способную обеспечить подобные характеристики изображения на сверхкрупных диагоналях экрана.
Само словосочетание «лазерное телевидение» звучит современно и технологично, однако мало кто знает, что разработки таких TV-приемников велись еще с 60-х годов прошлого столетия. Впрочем, с тех пор проект был заморожен из-за высокой стоимости созданных образцов и невозможностью их коммерческого использования.
Второе дыхание технология обрела в конце нулевых годов нынешнего тысячелетия, когда американская компания Novalux представила на выставке CES-2006 в Лас-Вегасе свою миниатюрную лазерную платформу Necsel, специально созданную для проекционных телевизоров. Эта новаторская разработка позволила удешевить процесс создания лазерных проекционных систем настолько, что их могли приобретать не только долларовые миллионеры.
Основные принципы создания изображения в лазерном телевизоре
Следует сразу же отметить, что лазерные TV-системы строятся практически на одних и тех же технологиях «на жидких кристаллах ( LCD )» и «с интеллектуальным управлением светом ( DLP )», что и проекционные телевизоры. В отличие от традиционных проекционных телевизоров с лампами подсветки UHP, белый свет которых затем следует оптически разложить на три основных цвета RGB, лазерные системы изначально используют лучи красного, зеленого и синего цветов. Благодаря этой оптимизации, отпадает необходимость в применении различных поляризаторов, цветовых колес, световых тоннелей и прочих громоздких и хрупких оптических систем разложения и сведения цвета.
В LCD-системах цветные лазерные лучи непосредственно облучают закрепленные за ними три миниатюрные ЖК-панели, изображения с которых затем сводятся воедино, усиливаются и проецируется на большой экран. Таким же образом, в DLP-телевизорах лазерные цветные лучи направляются непосредственно на свои микрозеркальные чипы, которые перенаправляют их в нужное место экрана или же в оптическую ловушку. Такое решение не только повышает надежность телевизора, уменьшает его вес и размеры, но и существенно снижает общую стоимость устройства.
Как и телевизоры проекционного типа, лазерные модели могут быть выполнены в двух форм-факторах:
- С обратной проекцией (RPTV);
- С фронтальной проекцией(FPTV).
На сегодняшний день на рынке все еще продаются различные модификации 75-дюймовых (почти 2-метра) моделей лазерных телевизоров Mitsubishi L753D серии LaserVue с обратной проекцией, хотя они уже и сняты с производства. Эти телевизоры оснащены современным функционалом и технологиями, но весят более 80 кг при толщине корпуса 38 см. Стоят они около $7 000 (без доставки). Найти RPTV-телевизоры можно на интернет-площадках Amazon, eBay и подобных им. А можно обратиться за помощью в специализированные отечественные торговые компании, занимающиеся доставкой телевизоров из-за рубежа.
Более ходовым является лазерный телевизор с фронтальной проекцией FPTV, органично входящий в систему домашнего кинотеатра. На самом деле он представляет собой проектор со встроенным телевизионным цифровым тюнером. Благодаря этому, вы можете смотреть свои любимые телепередачи или футбольные матчи в высоком разрешении на огромном экране.
Наиболее интересной на сегодня моделью лазерного FPTV-телевизора является разработка компании LG под названием HECTO Laser TV , которая была анонсирована на выставке CES-2013. В комплект вошел проектор и черный экран с диагональю 100 дюймов (2,5 метра). Купить его можно в торговой сети LG примерно за $8 000.
Чем же так привлекательно и перспективно лазерное телевидение?
Чтобы понять перспективность подобных моделей телевизоров достаточно сравнить их принципиальные характеристики с наиболее популярными сегодня жидкокристаллическими и плазменными панелями близких размеров диагонали экрана.
- Высокая энергоэффективность. Сама технология использования лазера в телевизоре позволяет уменьшить потребление им электроэнергии почти в 5 раз в сравнении с LCD- и PDP-аналогами.
- Широчайший цветовой охват. Благодаря тому, что лазерные лучи основных цветов RGB обладают уникальной чистотой, с их помощью удается создать просто поразительное число цветовых оттенков, превышающее примерно в 1,8 раз возможности традиционных технологий. Специалисты подчитали, что телевидение такого типа может отображать практически полный цветовой спектр (до 90%), различимый человеческим глазом.
- Высокие показатели яркости.Яркостные показатели лазерных экранов превышают возможности традиционных LCD- и PDP-матриц в несколько раз.
- Критические углы обзора.Разработчики утверждают, что это понятие для лазерных моделей не является актуальным, так как качество демонстрируемого изображения практически на меняется даже на самых острых углах обзора. Чего нельзя сказать о традиционных панелях.
- Натуральный черный цвет.Он создается простым отключением лазера. В результате образуется насыщенно черный цвет без каких-либо боковых засветок, послесвечения и оттенков серого.
- Долговечность экранов.Единицы изображений (пиксели) на экранах лазерных телевизоров не выгорают и не деградируют, как это случается у плоскопанельных аналогов.
- Высокое разрешение. Экраны всех телевизионных приемников, созданных по лазерной технологии, изначально рассчитаны на формат Full HD с разрешением 1920х1080 pix.
- Поддержка 3D по умолчанию.Лазерные TV-приемники обладают минимальной реальной частотой обновления кадров 120 Гц. Они легко могут быть использованы для создания трехмерных картинок и эффективного отображения быстро движущихся объектов.
К основным недостаткам лазерных моделей телевизоров можно отнести их пока еще высокую стоимость, сравнительно крупные габариты, а также повышенную утомляемость глаз при длительном просмотре программ. Как говорят офтальмологи, утомляемость глаз связана с тем, что такой телевизор проецирует картинку на предельно возможных уровнях восприятия человеком. Что ж, нам остается только сдерживать себя в стремлении слишком долго наслаждаться запредельным качеством изображения.
Существует 6 видов компьютерных мониторов, которые отличаются типом установленных в них экранов. Последние определяют способ вывода изображения на дисплей, влияют на энергопотребление и безопасность для глаз. Расскажем обо всех видах мониторов, выделим их достоинства и недостатки.
ЭЛТ-мониторы
В этих мониторах используют электронно-лучевые трубки (кинескопы). Технология была запатентована в 1897 году, а в 1906 она помогла впервые вывести изображение на экран. Как это работает:
- Заднюю стенку экрана покрывают люминофором — веществом, начинающим светиться после попадания на него электронов.
- Электроны формируют 3 пушки, установленные в вакуумной колбе, расположенной в основании дисплея.
- Каждая пушка выстреливает определенным цветом: красным, зеленым, синим (RGB). Они проходят через теневую маску, которая не дает одному цвету засветить другой. Направление “выстрелов” корректируют магниты, установленные вокруг пушек.
- Поскольку условный луч один, изображение формируется построчно сверху вниз и слева направо.
ЭЛТ-мониторы с высокой частотой развертки (Гц), ценятся среди геймеров и киноманов за счет минимальной задержки.
Достоинства технологии:
- Скорость отклика.
- Отсутствие битых пикселей.
- Высокое качество картинки под любым углом.
Недостатки:
- Габариты.
- Мерцание, вредное для глаз.
- Повышенное энергопотребление.
Сегодня такие мониторы не производятся, поэтому купить их проблематично.
ЖК-мониторы (LCD)
В основе этой технологии лежат жидкие кристаллы, открытые в 1888 году. Первые попытки с их помощью вывести изображение были приняты в 1960-ых, но получалось добиться только монохромной картины. В 1987 компания Sharp выпустила первый цветной экран с использованием LCD. Об особенностях работы:
- Жидкокристаллические экраны состоят из нескольких слоев, основными из них являются 2 стекла (поляризаторы), между которыми нанесен слой жидких кристаллов.
- В экране размещают люминесцентную лампу, свет от который с помощью световода равномерно распределяется по всей диагонали монитора и направляет лучи в сторону пользователя.
- Свет проходит через первый становясь поляризованным.
- Далее, свет проходит через слой жидких кристаллов, которые направляют его на второй поляризатор. Оттуда он попадает на цветной фильтр красного, зеленого или синего цвета, создавая соответствующее изображение для 1 пикселя.
Положение жидких кристаллов определяют транзисторы, ток на которые подает специальная микросхема — все это для каждого из миллионов пикселей на мониторе. Является основным видом мониторов, но с разными типами матриц.
Достоинства:
- Насыщенные цвета.
- Высокая энергоэффективность.
- Не подвержены выгоранию пикселей.
Недостатки:
- Ограниченный угол обзора, максимальная яркость.
- Из-за подсветки отображение черного цвета ненасыщенное.
- Качество изображения зависит от установленного контроллера кристаллов.
Плазменные-мониторы (PDP)
Внешне, плазменные мониторы не отличаются от жидкокристаллических, но используют совершенно другую технологию воспроизведения картинки:
- Основной модуль экрана состоит из двух стекол, наполненных пикселями.
- Пиксели делятся на 3 субпикселя: красный, зеленый, синий. Все они заполнены газом, которые при подаче на него электрического тока запускают движение свободных электронов, образуя плазму.
- Остывая, плазма возвращается в газообразное состояние. Вместе с ней это делают электроны, которые излишек полученной энергии преобразуют в ультрафиолетовые лучи.
- Ультрафиолетовые лучи возбуждают субпиксели, на стенки которых нанесен специальный раствор. Из-за этого они начинают светиться, образуя изображение.
Достоинства:
- Широкие углы обзора.
- Отсутствует мерцание.
- Высокий уровень яркости и контрастности.
Недостатки:
Технология не получила широкого распространения из-за дороговизны производства, и сегодня купить такие устройства проблематично.
LED-мониторы
Это прямое развитие ЖК-панелей, где вместо люминесцентных ламп используют светодиоды. Источники света могут располагать как по краям панели, так и по всей ее площади, избегая засветов.
Преимущества:
- Меньший вес, по сравнению с LCD.
- Высокий уровень глубины и контрастности цветов.
- Натуральное изображение, без “кислотных” оттенков.
Недостатки:
- Неравномерная подсветка при размещении светодиодов по краям панели.
OLED-мониторы
Технология кардинально отличается от конкурирующей ЖК/LED и имеет больше общего с плазменной панелью. Принцип работы следующий:
- Органическую пленку на углеродной основе вставляют между двумя панелями, проводящими электрический ток.
- При подаче электричества на пиксель, тот источает красное, зеленое или синее свечение.
Главное отличие от других технологий в том, что все пиксели излучают свет независимо друг от друга. Проблемы с такими панелями в неравномерной работе пикселей: один может оказаться ярче второго, третий темнее и подобное. Это заставляет производителей добавлять субпиксели или расставлять пиксели в особом порядке.
Преимущества:
- Высокая яркость.
- Минимальное энергопотребление.
- Насыщенный черный цвет — пиксели просто отключаются.
Недостатки:
- Выгорание пикселей спустя время.
- Высокий уровень вредной для глаз пульсации на низких уровнях яркости.
Технология производства OLED матрицы дорога, поэтому мониторов с ней практически нет.
QLED-мониторы
Это вариация ранее упомянутых LED-мониторов. Все отличие сводится к установке дополнительного слоя — представляет собой металлический нанофильтр на основе квантовых точек. Последние, поглощают излучение светодиодов и транслируют его с четко выверенной длиной волны, которую определяет размер точки, и цвета не смешиваются.
Как итог, пользователи получают более насыщенные и яркие цвета. Относительно названия — его придумала и запатентовала Samsung, хотя у LG есть аналог названный NanoCell.
Преимущества:
- Реалистичная цветопередача.
- Более насыщенные цвета, по сравнению со стандартными LCD и LED.
Недостатки:
Заключение
Из 6 видов мониторов самым популярным считаются ЖК-модели, получившие развитие с изменением типа подсветки (LCD LED) и добавлением нанофильтра (QLED). Самыми дорогим остаются OLED-варианты. Навсегда вышли из производства громоздкие ЭЛТ-мониторы.
Как устроен лазерный проектор и чем он отличается от лампового
В стандартных проекторах источником света служит мощная лампа — это главный элемент, от которого во многом зависит качество изображения. Белый свет лампы преобразуется в три световых пучка — красный, зеленый и синий, из которых формируется картинка. Такая цветовая модель называется RGB — от английских названий цветов: red (красный), green (зеленый), blue (голубой).
Существует два типа ламповых проекторов — LCD и DLP. Изображение в них генерируется по-разному:
В LCD-проекторах белый свет от лампы с помощью зеркал разделяется на три цветных луча, которые затем проходят через LCD-матрицу. Управляющий элемент регулирует прозрачность каждого пикселя матрицы — так формируются три разрозненных изображения. В финале они объединяются, и мы видим на экране единую полноцветную картинку.
В DLP-проекторах за разделение белого света на три луча RGB отвечает вращающийся цветной фильтр. После этого лучи попадают на DLP-чип, матрица которого состоит из тысяч подвижных микрозеркал. Они поворачиваются, создавая светлые или темные пиксели. Из них формируется изображение, которое и отправляется через проекционную линзу на экран.
Устройство лазерного проектора принципиально иное — в нем вообще нет лампы. Источником света служат цветные лазерные лучи, которые формируют изображение с помощью подвижных зеркал DLP-матрицы.
Лазерные проекторы для дома бывают монохромными и полихромными:
В монохромных только один лазерный луч синего цвета. Он разделяется на два, а затем второй луч преобразуется в красный и зеленый.
Полихромные проекторы сразу формируют три луча: синий, красный и зеленый. Это более сложная конструкция, поэтому полихромные проекторы стоят дороже.
Еще одна особенность лазерного проектора для домашнего кинотеатра — отсутствие объектива. Лазерный луч не рассеивается и формирует резкое изображение с разного расстояния: в отличие от лампового проектора, фокусировка не нужна.
Впечатления на максимум: преимущества лазерного проектора
Яркое и контрастное изображение. Большинство ламповых проекторов в силу конструкции не способны отображать глубокие насыщенные цвета. Картинка лазерного проектора выглядит живее, реалистичнее и контрастнее, при этом ее качество гораздо меньше зависит от уровня освещения. Наслаждаться просмотром можно и днем, даже если окна не занавешены шторами.
Источник света не тускнеет весь срок службы. Лампа обычного проектора постепенно теряет мощность, а изображение — насыщенность. Лазерный луч остается неизменно ярким.
Срок службы — увеличен. Лазерный проектор работает до 10 раз дольше лампового: например, у The Premiere ресурс излучателя составляет 20 000 часов против средних 2 000 часов у традиционной лампы.
Проецирует на любую поверхность. Изображение будет четким даже на неровной стене, поэтому вам необязательно покупать специальный экран для качественной картинки.
Можно установить в любом месте. Если ламповым проекторам для корректной работы нужна определенная дистанция до экрана, лазерные модели можно устанавливать на любом расстоянии. Например, The Premiere LSP9T создает изображение диагональю 100 дюймов с расстояния всего 10–11 см: его можно поставить почти вплотную к стене.
Экономичнее и тише. Лазерные проекторы сразу генерируют лучи нужного цвета, в то время как ламповым приходится «отбрасывать» часть света при фильтрации — это требует дополнительной электроэнергии. К тому же лазерные лучи не рассеиваются, а сам проектор не нагревается и не шумит.
Читайте также: