Добавить в массив числа с клавиатуры
Вы можете сделать так -
кроме того, вы можете использовать списки - преимущество со списками, вам не нужно знать размер массива при создании экземпляра списка.
этот фрагмент кода предполагает, что у вас есть директива using для системы.Linq в верхней части вашего файла.
обратите внимание, однако, что вы не можете просто добавить 401st элемент, установив термины[400] в значение. Вместо этого вам нужно вызвать Add (), например:
здесь приведены ответы о том, как это сделать с помощью массива.
коллекции-это причудливые альтернативы использованию массива, хотя многие из них используют массив внутри.
С помощью LinqС функция concat делает это просто
сначала вы должны выделить массив:
использование списка в качестве посредника-самый простой способ, как описывали другие, но поскольку ваш вход является массивом, и вы не просто хотите сохранить данные в списке, я предполагаю, что вас может беспокоить производительность.
наиболее эффективным методом, вероятно, является выделение нового массива,а затем использование массива.Копировать или массив.Метод CopyTo. Это не сложно, если вы просто хотите, чтобы добавить элемент в конец списка:
в зависимости от ответа на Thracx (я не имею достаточно очков, чтобы ответить):
Это позволяет добавить более одного элемента в массив или просто передать массив в качестве параметра для объединения двух массивов.
вот как я бы его закодировал.
обратите внимание, что этот массив представляет собой плотный массив, непрерывный блок 400 байт, где вы можете оставить вещи. Если вам нужен массив динамического размера, используйте List .
/*выход:
значение в индексе 0: 400
значение в индексе 1: 400
значение в индексе 2: 400
значение в индексе 3: 400
значение в индексе 4: 400
значение в индексе 5: 400
значение в индексе 6: 400
значение в индексе 7: 400
значение в индексе 8: 400
значение в индексе 9: 400
*/
вы не можете просто добавить элемент в массив легко. Вы можете установить элемент в заданной позиции как fallen888 изложено, но я рекомендую использовать List<int> или Collection<int> вместо этого и используйте ToArray() Если вам нужно, чтобы он был преобразован в массив.
Если вам действительно нужен массив, возможно, самое простое:
если вы не знаете размер массива или уже имеете существующий массив, к которому вы добавляете. Вы можете сделать это двумя способами. Первый использует generic List<T> : Для этого вам нужно преобразовать массив var termsList = terms.ToList(); и используйте метод Add. Затем, когда закончите использовать var terms = termsList.ToArray(); метод для преобразования обратно в массив.
второй способ-изменение размера текущего массива:
оба этих позволит сделать это динамически. Если вы будете добавлять много элементов, то просто используйте List<T> . Если это всего лишь несколько элементов, то он будет иметь лучшую производительность при изменении размера массива. Это потому, что вы берете больше хита для создания
Массивы в JavaScript представляют собой объектный тип данных, служащий для хранения и обработки множества значений (чаще всего одного типа данных). Использование массивов в некоторых сценариях позволяет сделать код более компактным, в первую очередь благодаря сокращению количества объявляемых переменных. Массивы создаются при помощи оператора new. Существует три варианта вызова конструктора Array():
Элементы массива хранятся последовательно, причем, каждый элемент имеет свой индекс (номер по порядку). Нумерация элементов массивов в JavaScript начинается с нуля. Для доступа к элементу массива используют имя массива и индекс элемента, записанный после имени в квадратных скобках:
Работа с массивами
Ввод массива с клавиатуры
Для ввода массива с клавиатуры чаще всего используют цикл. Если количество элементов массива известно заранее, используют цикл for. В противном случае подойдет цикл с постусловием do…while. Приведем пример:
В приведенном фрагменте кода массив выводится в виде строки, где элементы массива разделяются символами ", ". Если массив необходимо вывести поэлементно, то можно будет снова использовать цикл for, так как длина массива нам известна и возвращается свойством length объекта Array().
Добавление элементов в массив
Для добавления элементов в массив можно воспользоваться методами push() и unshift(). Метод push() добавляет элементы в конец массива, а метод unshift() - в начало. Рассмотрим пример применения этих методов:
Эти методы не позволяют добавить массив в массив. Для этих целей используйте метод concat()
Удаление элементов из массива
Для удаления элементов из массива используйте методы pop() и shift(). Метод pop() удаляет последний элемент массива, а метод shift() - первый. Рассмотрим пример применения этих методов:
Для удаления элемента располагающегося не в начале или в конце массива можно использовать метод splice() со следующими параметрами: splice(index, 1), где index - номер удаляемого элемента. Следующий пример демонстрирует удаление элемента с индексом "2":
Применение метода sort()
Метод sort(), как упоминалось выше, позволяет выполнить сортировку, т.е. упорядочивание, элементов массива по заданному критерию. По умолчанию метод sort() рассматривает элементы как строки и критерием считается порядок символов строки в соответствии с таблицей ASCII . Для реализации других критериев сортировки элементов вы должны будете написать функцию, которая определяет порядок сортировки и строится следующим образом:
функция должна принимать два параметра (назовем их a1 и a2) в случае, если a1 > a2, функция должна вернуть положительное значение в случае, если a1 < a2, функция должна вернуть отрицательное значение в случае, если a1 == a2, функция должна вернуть 0. Рассмотрим вышесказанное на практике: необходимо ввести массив целых чисел и отсортировать его по возрастанию и убыванию значений элементов.
На самом деле, функцию для обратной сортировки массива можно было не писать. Достаточно отсортировать массив по возрастанию значений, а, затем, вызвать метод reverse() для получения обратного порядка следования элементов.Работа со свойством prototype
Свойство prototype позволяет добавить в готовый объект новое свойство или метод. Для того, чтобы лучше понять принципы работы с этим замечательным свойством рассмотрим пример реализации метода max() (поиск максимального элемента) в массиве:
В примере сначала описывается функция array_max(), определяющая максимум текущего массива, обращаясь к его свойствам и элементам посредством указателя this. Затем, строка Array.prototype.max = array_max; добавляет метод max() в массив. Вызов метода max() осуществляется традиционным образом.
Многомерные массивы
К сожалению, в JavaScript отсутствует стандартная реализация многомерных массивов (даже 2-мерных). Однако, этот печальный недостаток можно обойти, создав массив массивов. Для этого необходимо создать массив, а, затем, каждый элемент этого массива так же сделать массивом. Выглядит это примерно так:
В приведенном примере создается и заполняется двумерный массив. Таким же образом можно создать и массивы большей размерности (3,4,5 и т.д). Для перебора элементов многомерных массивов используются вложенные циклы. Количество вложенных циклов, как правило, определяется количеством измерений создаваемого массива. На практике редко применяются даже двумерные массивы, не говоря уже о массивах большей размерности.
Кое что об индексах.
До сих пор говорилось, о том, что индекс элемента в массиве - целое число, определяющее порядковый номер элемента. На самом деле, индексом элемента в массиве может быть и уникальный в рамках одного массива строковый идентификатор (то есть строка!). Возникает вполне резонный вопрос - зачем это нужно? Если вдуматься, то использование строк в качестве идентификаторов элемента массива в ряде случаев оказывается полезным. Можно, например, хранить в массиве пароли пользователей, а индексами элементов считать имена пользователей:
С точки зрения клиентского сценария данный пример не представляет практического интереса. Любой желающий может просмотреть код скрипта, увидеть в нем логин и пароль и воспользоваться ими для входа на страницу. Однако, не стоит забывать, что JavaScript используется для написания не только клиентских, но и серверных сценариев, код которых не посылается пользователю, а выполняется на сервере. В этом случае приведенный механизм защиты становится не таким уж и плохим.
Методы высшего порядка (forEach, filter etc)
У массивов есть несколько полезных методов высшего порядка – forEach, чтобы сделать что-то с каждым элементом, filter – чтобы построить новый массив, где некоторые значения отфильтрованы, map – чтобы построить новый массив, каждый элемент которого пропущен через функцию, reduce – для комбинации всех элементов массива в одно значение.
В современном мире ежесекундно происходит обработка огромного числа данных с помощью компьютера. Если необходимо обрабатывать данные одного типа — числа, символы, строки и др., то для их хранения можно воспользоваться типом данных, который называется массив.
Массив — упорядоченная последовательность данных, состоящая из конечного числа элементов, имеющих один и тот же тип, и обозначаемая одним именем.
Массив является структурированным (составным) типом данных. Это означает, что величина, описанная как массив, состоит из конечного числа других величин. Так, например, можно создать массивы из 10 целых или 100 вещественных чисел. Тип элементов массива называют базовым типом. Все элементы массива упорядочены по индексам (номерам элементов), определяющим местоположение элемента в массиве. В языке С++ элементы массива всегда нумеруются с нуля.
Массиву присваивается имя, посредством которого можно ссылаться на него как на единое целое. Элементы, образующие массив, упорядочены так, что каждому элементу соответствует номер (индекс), определяющий его место в общей последовательности (примеры 11.1—11.3). Индексы могут быть выражением, значение которого принадлежит любому простому типу, кроме вещественного. Индексы должны быть неотрицательными. Доступ к каждому отдельному элементу осуществляется обращением к имени массива с указанием индекса нужного элемента, индекс элемента записывается после имени в квадратных скобках (пример 11.4).
Впервые тип данных массив появился в языке Фортран (создан в период с 1954 по 1957 г. в корпорации IBM). Уже первые версии языка поддерживали трехмерные массивы (в 1980 г. максимальная размерность массива была увеличена до 7). Массивы были необходимы для создания математических библиотек, в частности содержащих процедуры решения систем линейных уравнений.
Пример 11.1. В 10 А классе 25 учащихся. Известен рост каждого в сантиметрах. Для хранения значений роста можно использовать массив А, состоящий из 25 целых чисел.
Индекс каждого элемента — порядковый номер учащегося из списка в классном журнале. Поскольку элементы массива нумеруются от нуля, то запись а[5] — рост ученика, который в журнале записан под номером 6.
Пример 11.2. Каждый день в декабре измеряли температуру воздуха. Для хранения значений температуры можно использовать массив t , состоящий из 31 вещественного числа.
Индекс элемента — номер дня в декабре со сдвигом на 1. Запись t[15] — температура воздуха 16 декабря.
Пример 11.3. В 10 Б классе 27 учащихся. В классном журнале указаны фамилия и имя каждого учащегося. Для хранения списка учащихся можно использовать массив s , состоящий из 27 строк.
Индекс каждого элемента — порядковый номер ученика из списка в классном журнале. Тогда запись s[5] — фамилия и имя учащегося под № 6.
Как показала практика, у начинающих кодеров возникает множество вопросов при решении задач по теме «Массивы». В данной статье затронуты вопросы, относящиеся только к массивам в классическом понимании. Работа с контейнерами STL — это отдельная тема.
Как правило, задачи сводятся к следующему: заполнить массив, произвести некие операции с элементами массива, распечатать результат. Уже в постановке задачи угадываются логические блоки её решения. Далее я постараюсь показать типовые «кирпичики», из которых можно сложить решение задачи — т. е. программу.
Организация массива
Память под массив может выделяться автоматически или динамически.
Автоматическое выделение памяти используют, когда размер массива известен на этапе компиляции (т. е. при написании кода).
Динамическое выделение памяти используют, когда размер массива неизвестен на этапе компиляции (допустим, запрашивается у пользователя).
Оба типа массивов могут быть как глобальными (определёнными вне функций), так и локальными (определёнными внутри функции или блока). Здесь для автоматических массивов существует одна тонкость. Память для локального автоматического массива выделяется в стеке. Поэтому размер такого массива должен быть небольшим. В противном случае можно получить переполнение стека и, как следствие, аварийное завершение программы. Переполнение стека также можно получить и при небольших размерах локального автоматического массива, при многократных рекурсивных вызовах функции. Поэтому, когда вы определяете в функции автоматический массив, вы должны точно знать, что делаете.
Глобальные автоматические массивы в плане переполнения стека безопасны. Но они будут видны во всём коде, лексикографически расположенному после объявления массивов, что может спровоцировать их использование напрямую, минуя их передачу в функции через параметры. Это приведёт к возникновению побочных эффектов работы функций, что затрудняет отладку и делает программы менее надёжными. Такого использования глобальных массивов следует избегать.
Для массивов, использующих динамическое выделение памяти, память распределяется из «кучи» (heap). Куча — это память, выделяемая программе операционной системой, для использования этой программой. Размер кучи, как правило, значительно больше размера стека, а для ОС, поддерживающих парадигму виртуальной памяти, размер кучи теоретически может ограничиваться только разрядностью приложения.
Использование автоматических массивов
Автоматические массивы используют, когда размер массива известен на этапе компиляции.
Размер массива в коде настоятельно рекомендуется указывать с помощью именованной константы. Это полезно по нескольким соображениям:
- имя константы должно указывать на область её применения — самодокументирование кода;
- при необходимости изменить в коде размер массива потребуется внести правку только в одном месте;
- размер массива, как правило, используется в циклах прохода по массиву, проверки границы и пр., поэтому использование символического имени избавит от необходимости тщательной проверки и правки всего кода при изменении размера массива.
Тип константного выражения для определения размера (количество элементов) автоматического массива должен быть целочисленный: char , int , unsigned int , long , etc.
Память, отведённая под автоматические массивы, освобождается при выходе из области видимости переменной-массива. Для локальных массивов это функция или блок. Глобальные массивы уничтожаются при выходе из программы.
Пример определения глобального автоматического массива длиной 10 элементов типа int :
Пример определения локального автоматического массива длиной 10 элементов типа int :
Использование массивов с динамическим выделением памяти
Массивы с динамическим выделением памяти используют, когда размер массива не известен на этапе компиляции. Реальный размер массива может вычисляться в программе или вводиться пользователем — неважно.
Память для массива выделяется оператором new в форме new тип[количество_элементов] .
Тип выражения, определяющего размер (количество элементов) массива должен быть целочисленным. Также это выражение может быть и константным.
Когда работа с массивом закончена, память, выделенную под массив необходимо освободить. Это делается с помощью оператора delete в форме delete [] имя_переменной . После того, как память освобождена, работать с массивом нельзя.
Пример использования массива с динамическим выделением памяти:
Заполнение массива значениями
При решении учебных задач, обычно предлагается заполнить массив значениями либо введёнными с клавиатуры, либо случайными значениями из определённого диапазона. Начнём со второго случая, как более простого (Парадокс? Нет, правда жизни).
Заполнение массива случайными числами
Для начала необходим генератор случайных чисел. Ниже приведён код одной из простейших реализаций:
Однако без дополнительных телодвижений стандартная функция rand() будет при каждом запуске программы генерировать одинаковую последовательность случайных чисел (кстати, это очень удобно при отладке!). Для того, что бы при каждом запуске программы получать уникальную последовательность случайных чисел, функцию rand() надо «разогнать» начальным случайным значением. Это делается с помощью функций srand() и time() .
Заполнение массива значениями, естественно, делаем в цикле. Помним, что элементы массива в C/C++ нумеруются с 0. Следовательно последний элемент массива имеет индекс на единицу меньший, чем размер массива.
В примере показано заполнение глобального автоматического массива из 10 элементов типа int случайными значения из диапазона от −100 до 100 включительно:
Обратите внимание на включение заголовочных файлов!
Заполнение массива числами, введёнными пользователем
Как ни странно, это более сложный случай. Дело в том, что во-первых, наличие человека всегда может приводить к некорректному вводу данных (ошибкам), во-вторых, для человека необходимо обеспечить какой-никакой интерфейс, а в-третьих, система потокового ввода-вывода STL имеет свои неприятные особенности.
Оно как бы работает, но если вы попытаетесь в качестве числа (конечно случайно!) ввести 1111111111111111111111111111111111 или 11q, то, в зависимости от компилятора, сможете наблюдать некоторые интересные эффекты работы вашей программы.
Поэтому приходится писать более сложный код:
Подробный разбор данного фрагмента выходит за рамки данной статьи. Но интересующиеся могут его разобрать, вооружившись, например, известной книгой Г. Шилдта.
Вывод на консоль значений из массива
Вывод значений массива на консоль реализуется элементарно. В свете уже вышесказанного даже нечего добавить:
Данный код может быть оптимизирован, но я не стал этого делать, дабы были лучше видны те самые «кирпичики», из которых он собран.
Как видно из комментариев, за поиск минимального значения и его индекса отвечает последний фрагмент программы.
Определяются две переменные, одна из которых будет содержать минимальное значение, а вторая — индекс элемента с минимальным значением. Эти переменные инициализируются первым (нулевым) элементом массива и нулём соответственно. Далее, в цикле каждое следующее значение элемента массива сравнивается с уже найденным наименьшим значением и, если текущее значение меньше запомненного, то запоминается текущее значение и его индекс.
Понятно, что поиск максимального значения производится полностью аналогично, с точностью до знаков «больше»/«меньше», вывода строки пользователю и наименования переменных.
Поиск определённого значения в массиве
Поиск определённого значения в неупорядоченном массиве осуществляется с помощью алгоритма линейного поиска. Этот простейший алгоритм заключается в последовательном переборе элементов массива и сравнением их с искомым значением.
Задачи на поиск в массиве могут быть в двух формах:
- найти первое (последнее) вхождение искомого значения
- найти все вхождения
Поиск первого вхождения:
Поиск последнего вхождения:
Обратите внимание на следующие моменты.
Переменная цикла i описана перед циклом. Таким образом, эта переменная продолжает существовать после окончания цикла, и её значение может быть использовано.
Если искомый элемент найден, то цикл завершается досрочно оператором break : просматривать остальную часть массива не имеет смысла — задача уже выполнена.
Во втором случае переменная i имеет знаковый тип int . Отрицательное значение используется в качестве флага, что весь массив просмотрен, и значение не найдено.
Поиск всех вхождений:
Здесь цикл не прерывается. Массив просматривается полностью.
Сумма/произведение отрицательных элементов массива
Сумма элементов массива с чётными/нечётными индексами
Работа с массивами с применением функций
Практически все фрагменты кода, приведённые выше, можно оформить как функции, а массив передавать через параметры. В качестве примера приведу программу нахождения суммы элементов массива с чётными индексами, в которой используется (ради разнообразия) динамический массив.
Обратите внимание, что выделение памяти под массив и её освобождение происходит в одной функции (в данном случае, в main() ). Выделять память в одной функции, а освобождать в другой — плохая идея, чреватая ошибками.
Заключение
В этой статье рассмотрены только самые элементарные приёмы работы с массивами, которые помогут (надеюсь!) начинающему кодеру понять принципы работы с массивами.
Объявление массива
Переменная массива Java объявляется точно так же, как и переменная нужного типа, за исключением добавления [] после типа. Вот простой пример объявления:
Вы можете использовать массив в качестве поля, статического поля, локальной переменной или параметра, как и любую другую переменную. Ведь это просто вариация типа данных. Вместо того, чтобы быть единственной переменной этого типа, это набор переменных этого типа.
Вот еще несколько примеров объявления:
Первая строка объявляет массив ссылок String. Во второй строке объявляется массив ссылок на объекты класса MyClass, созданного пользователем.
У вас есть выбор места для квадратных скобок []. Первое вы уже видели, второе находится после имени переменной. Следующие объявления равнозначные:
Лучше указывать квадратные скобки [] после типа данных (например, String []), тогда код легче читать.
Создание
Когда вы объявляете переменную массива, вы объявляете только переменную (ссылку) на сам массив, но не создаете его. Процесс создания:
В этом примере создается массив типа int с пространством для 10 переменных int внутри.
Предыдущий пример создал массив int, который является примитивным типом данных. Возможно создать массив ссылок на объекты. Например:
Java позволяет создавать массив ссылок на любой тип объекта (на экземпляры любого класса).
Литералы
Язык программирования Java содержит ярлык для создания экземпляров массивов примитивных типов и строк. Если вы уже знаете, какие значения вставлять в массив, вы можете использовать литерал массива. Вот он как выглядит в коде Java:
Обратите внимание, как значения, которые будут вставлены в массив, перечислены внутри блока . Длина этого списка также определяет длину созданного массива.
Не нужно писать новую часть int [] в последних версиях Java. Достаточно:
Стиль работает для массивов всех примитивных типов, а также массивов строк. Вот пример строкового массива:
Длина не может быть изменена
После создания массива его размер не может быть изменен. В некоторых языках программирования (например, JavaScript) это возможно. Если вам нужна структура данных, похожая на массив, которая может изменить свой размер, вы должны использовать List или создать массив с изменяемым размером. В некоторых случаях допустимо использовать Java RingBuffer, который, кстати, реализован с использованием массива внутри.
Доступ к элементам
Каждая переменная в массиве также называется «элементом». Таким образом, в примере, показанном ранее, был создан массив с пространством для 10 элементов, и каждый элемент является переменной типа int.
Вы можете получить доступ к каждому элементу в массиве через его индекс. Вот пример:
В этом примере сначала устанавливается значение элемента (int) с индексом 0, а во-вторых, он считывает значение элемента с индексом 0 в переменную int.
Вы можете использовать элементы в массиве так же, как если бы они были обычными переменными:
- читать их значения;
- присваивать им значения;
- использовать в вычислениях;
- передавать конкретные элементы в качестве параметров для вызовов методов.
Индексы элементов в массиве всегда начинаются с 0 и продолжаются до номера 1 ниже размера массива. Таким образом, в приведенном выше примере с массивом из 10 элементов индексы идут от 0 до 9.
Как получить длину?
Организация доступа к длине массива через его поле длины:
В этом примере переменная с именем arrayLength будет содержать значение 10 после выполнения второй строки кода.
Итерация
Как перебрать все элементы массива, используя цикл Java for:
- Сначала создается массив ссылок String. Когда впервые создаете массив ссылок на объекты, каждая из ячеек в массиве указывает на ноль, а не на объект.
- Первый из двух циклов for выполняет итерацию по массиву String, создает строку и делает ссылку на ячейку этой строкой.
- Второй из двух циклов for перебирает массив String и печатает все строки, на которые ссылаются ячейки.
Если бы это был массив int (примитивные значения), он мог бы выглядеть так:
Переменная i инициализируется равной 0 и работает до длины массива минус 1. В этом случае i принимает значения от 0 до 9, каждый раз повторяя код внутри цикла for один раз, и для каждой итерации i имеет другое значение.
Как перебрать массив с помощью цикла «for-each» в Java. Вот как это выглядит:
Цикл for-each дает вам доступ к каждому элементу в массиве по одному, но не информацию об индексе каждого элемента. Есть доступ только к значению. Изменить значение элемента в этой позиции невозможно. Если это нужно, используйте обычный цикл for, как показано ранее.
Цикл for-each также работает с массивами объектов. Вот пример, как выполнить итерацию массива объектов String:
Многомерные массивы
Вы создаете многомерный массив в Java, добавляя один набор квадратных скобок ([]) к измерению, которое хотите добавить. Вот пример, который создает двумерный массив:
В этом примере создается двумерный массив элементов int. Он содержит 10 элементов в первом измерении и 20 во втором. Другими словами, массив массивов имеет пространство для 10 массивов int, а каждый массив int имеет пространство для 20 элементов int.
Для получения доступа к элементам в многомерном массиве с одним индексом на измерение нужно использовать два индекса. Вот пример:
Переменная с именем oneInt будет содержать значение 129 после выполнения последней строки кода Java.
Итерация многомерных
При итерации многомерного массива, нужно выполнять итерацию каждого измерения массива отдельно:
Вставка элементов
Как вставить новое значение в массив в Java:
- Создается массив.
- Он определяет индекс вставки и новое значение для вставки.
- Все элементы от индекса вставки и до конца массива сдвигаются на один индекс вниз в массиве.
Обратите внимание, что это сместит последнее значение в массиве из массива(оно будет просто удалено).
Приведенный выше код вставки массива может быть встроен в метод:
Этот метод принимает массив int[] в качестве параметра, а также индекс для вставки нового значения и нового значения. Вставка элементов в массив, вызвав этот метод следующим образом:
Конечно, если метод insertIntoArray() находится в другом классе, нежели приведенный выше код, потребуется объект этого класса, чтобы вызывать метод. Если метод insertIntoArray() был статическим, нужно поместить имя класса и точку перед именем метода.
Удаление элементов
Код для удаления элемента из массива:
В этом примере сначала создается массив int. Затем он устанавливает значение элемента с индексом 10 равным 123. Потом пример удаляет элемент с индексом 10, перемещая все элементы ниже индекса 10 на одну позицию вверх в массиве. После удаления последний элемент в массиве будет существовать дважды. И в последнем, и во втором последнем элементе.
Приведенный выше код может быть встроен в метод. Вот как мог бы выглядеть такой Java-метод удаления массива:
Метод removeFromArray() принимает два параметра: массив для удаления элемента и индекс удаляемого элемента.
Конечно, если метод removeFromArray() находится в другом классе, нежели приведенный выше код, вам потребуется объект этого класса, чтобы вызывать метод. Или, если метод removeFromArray() был статическим, вам нужно поместить имя класса и точку перед именем метода.
Нахождение минимального и максимального значения в массивах
В Java нет встроенных функций для поиска минимального и максимального значения, поэтому нужно сделать это самостоятельно.
Как находить минимальное значение в массиве:
Чтобы использовать java.util.Arrays в ваших классах, вы должны импортировать его:
Копирование
Возможно несколькими способами.
Копирование массива путем итерации массива
Первые два массива int созданы. Во-вторых, исходный массив инициализируется значениями от 0 до 9 (от 0 до длины массива минус 1). В-третьих, каждый элемент в исходном массиве копируется в целевой массив.
Копирование с помощью Arrays.copyOf()
Вот как выглядит копирование массива:
Копирование с использованием Arrays.copyOfRange()
Метод Arrays.copyOfRange() копирует диапазон массива, не обязательно полный массив. Процесс копирования с ним:
Преобразование массивов в строки с помощью Arrays.toString()
Вы можете преобразовать массив примитивных типов в строку:
Первая строка создает массив int с 10 элементами. Цикл for инициализирует массив значениями от 10 до 1. В последней строке выводится значение, возвращаемое из Arrays.toString(). Возвращенная строка (которая печатается) выглядит так:
Сортировка
Вы можете отсортировать элементы массива с помощью метода Arrays.sort() в соответствии с порядком их сортировки:
Первая строка объявляет и создает экземпляр массива int длиной 10. Цикл for перебирает массив и вставляет значения в каждый элемент. Введенные значения будут идти от 10 до 1 в порядке убывания.
После цикла for массив преобразуется в строку с помощью Arrays.toString() и выводится на консоль (командная строка). Выход:
Затем массив сортируется с помощью Arrays.sort(). Элементы теперь будут упорядочены в порядке возрастания.
После сортировки массива он снова преобразуется в строку и выводится на консоль. Вывод:
Сортировка объектов
Показанный ранее пример Arrays.sort() работает только для массивов примитивных типов данных, которые имеют порядок:
- естественный;
- числовой;
- символьный в таблице ASCII (двоичное число, представляющее символ).
Вот первый класс для объектов, которые мы хотим отсортировать:
Вот первый пример сортировки массива объектов Employee по их имени с помощью метода Arrays.sort():
- Сначала объявляется массив.
- Три объекта Employee создаются и вставляются в массив.
- Метод Arrays.sort() вызывается для сортировки массива. В качестве параметра передаем массив employee и реализацию Comparator, которая может определять порядок объектов Employee. Это создает анонимную реализацию интерфейса Comparator.
В примере важно уловить реализацию метода compare() анонимной внутренней реализации интерфейса Comparator. Этот метод возвращает:
После сортировки массива мы перебираем его и выводим имена сотрудников. Вывод:
Обратите внимание, как порядок был изменен по сравнению с порядком, в котором они были первоначально вставлены в массив.
Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:
Обратите внимание, как метод compare() возвращает разницу между идентификаторами сотрудников, вычитая одно из другого. Это самый простой способ определить естественный порядок числовых переменных.
Чтобы сравнить объекты Employee в массиве сначала по их имени, а если оно совпадает, то по их идентификатору сотрудника, реализация compare():
Заполнение Arrays.fill()
Класс Arrays имеет набор методов с именем fill(), которые могут заполнять массив заданным значением. Это проще, чем перебирать массив и вставлять значение самостоятельно. Вот пример использования Arrays.fill() для заполнения массива int:
В этом примере создается массив int и заполняется значение 123 во всех элементах массива. Последняя строка примера преобразует массив в строку и выводит его на консоль:
Существует версия метода Arrays.fill(), которая принимает значения from и to index, поэтому только элементы с индексами в этом интервале заполняются заданным значением:
Этот пример заполняет только те элементы, которые имеют индексы 3 и 4(от 3 до 5 без 5) значением 123. Вывод:
Поиск с помощью Arrays.binarySearch()
Класс Arrays содержит набор методов с именем binarySearch(). Этот метод поможет вам выполнить бинарный поиск в массиве. Сначала массив должен быть отсортирован. Вы можете сделать это самостоятельно или с помощью метода Arrays.sort(), описанного ранее в этом тексте. Вот пример:
Вторая строка этого примера ищет в массиве значение 6. Метод binarySearch() возвращает индекс в массиве, в котором был найден элемент. В приведенном выше примере метод binarySearch() вернет 3.
Если в массиве существует более одного элемента с искомым значением, нет гарантии, какой элемент будет найден.
Если элемент с данным значением не найден, будет возвращено отрицательное число. Отрицательным числом будет индекс, по которому будет вставлен искомый элемент, а затем минус один. Посмотрите на этот пример:
Метод Arrays.binarySearch() для поиска части массива. Вот как это выглядит:
В этом примере выполняется поиск в массиве значения 2, но только между индексами 0 и 4 (без 4).
Эта версия binarySearch() работает так же, как и другая версия, за исключением случаев:
Таким образом, этот пример:
вернет -5, а не -7, как в двоичном поиске (целых, 12).
Проверка, равны ли массивы Arrays.equals()
Класс java.util.Arrays содержит набор методов, называемых equals(), которые можно использовать для проверки, равны ли два массива. Два массива считаются равными, если имеют одинаковую длину, а элементы равны друг другу в порядке их нахождения в массиве. Пример:
В этом примере сравнивается массив ints1 с массивами ints2 и ints3. Первое сравнение приведет к значению true, поскольку ints1 и ints2 содержат одинаковые элементы в одинаковом порядке. Второе сравнение приведет к значению false. Массив ints1 содержит те же элементы, что и ints3, но не в том же порядке. Поэтому два массива не считаются равными.
Читайте также: