Акустический сенсорный монитор что это
Высокотехнологичные поверхностно-акустические экраны – продуктивный инструмент расширения мультимедийных возможностей. Предлагаем приобрести экраны ПАВ недорого в компании «Сенсорный Мир».
Экраны передовых технологий
Экраны ПАВ – устройства, работающие по принципу поверхностно-акустических волновых колебаний. Поверхностно-акустические экраны визуально выглядят как прозрачные стеклянные накладки. Они оснащены пьезоэлектрическими преобразователями, закрепленными по углам. Принимающие, отражающие элементы размещены по краям.
При касании поверхности панели рукой в любой перчатке, пальцем, либо пористой резиной долю энергии акустических волновых колебаний поглощают и фиксируют приемники. Энергия передается на микроконтроллер, который исчисляет расположение точки касания. Объект, используемый для нажатия, обязательно должен иметь способность поглощать акустические импульсы.
Изделия различаются толщиной (традиционные – 3 мм и упрочненные – 6 мм). Производители предлагают продукцию с тремя способами подключения к устройствам:
- через USB;
- посредством RS232;
- при помощи контроллера Combo, поддерживающем оба способа подключения.
Сфера применения ПАВ экранов обширна: терминалы, справочные системы и пульты оператора. Продукт востребован в финансовых и госучреждениях, торговых павильонах, образовательных учреждениях. Оборудование применяется при изготовлении информационных киосков, игровых автоматов.
Достоинства экранов ПАВ
Уровень поглощения акустических колебаний волн определяет величина давления на экран в месте касания. После нажатия поверхность не прогибается, поэтому сила точечного воздействия не провоцирует качественные изменения в момент считывания контроллером информации о координатах места нажатия. Он фиксирует исключительно область, блокирующую акустические импульсы. В результате панели имеют возможность отслеживать зону, радиус нажатия, координаты точки.
Также поверхностно-акустические экраны имеют ряд достоинств:
- долгий период эксплуатации (выдерживает больше 50 млн. прикосновений на одну точку);
- антибликовое покрытие;
- высокая прозрачность экранов (отсутствие проводящих или резистивных покрытий) и, как следствие, качественная передача изображения от монитора;
- повышенная тактильная чувствительность (без ошибочной активации);
- высокое разрешение.
Накладки устойчивы к механическому воздействию. Так, упрочненное стекло в 6 мм выдерживает сильный удар рукой либо падение полукилограммовой металлической сферы с метровой высоты. Если пользователю удалось поцарапать поверхность стекла, устройство продолжит функционировать.
Несмотря на усложненную конструкцию, панели долговечны, превышают ресурс резистивного 5-проводного экрана, позволяют получать максимально качественную картинку сенсорного монитора.
Компания «Сенсорный Мир» предлагает приобрести экраны ПАВ недорого с учетом требуемого размера и будущего назначения.
Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.
Современные технологии touchscreen
Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.
Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные. В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные. Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.
Резистивные сенсорные экраны
Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.
Резистивный сенсорный экран
Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.
Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.
Применение: сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.
Емкостные сенсорные экраны
Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные. Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.
Поверхностно-емкостной сенсорный экран
При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.
Применение: информационные киоски в охраняемых помещениях, в некоторых банкоматах.
Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.
Проекционно-емкостной сенсорный экран
Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.
Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.
Применение: платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.
Сенсорные экраны ПАВ (поверхностно-акустические волны)
Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.
Сенсорный экран ПАВ
Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.
Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.
Применение: сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.
Инфракрасные сенсорные экраны
Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.
Инфракрасный сенсорный экран
Применение: инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.
Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.
P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.
Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым
Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.
Использование
Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.
Ноутбук с сенсорным экраном
Нельзя не отметить и ноутбуки, некоторые модели которых оснащаются поворотным сенсорным дисплеем, что придает мобильному компьютеру не только более широкую функциональность, но и большую гибкость в управлении им на улице и на весу.
К сожалению, пока подобных моделей ноутбуков, называемых в народе «трансформеры», не так много, но они есть.
В целом, технологию сенсорного экрана можно охарактеризовать как наиболее удобную в случае, когда необходим мгновенный доступ к управлению устройством без предварительной подготовки и с потрясающей интерактивностью: элементы управления могут сменять друг друга в зависимости от активируемой функции. Тот, кто хоть раз работал с сенсорным устройством, сказанное выше прекрасно понимает.
Типы сенсорных экранов
Всего на сегодня известно несколько типов сенсорных панелей. Естественно, что каждая из них обладает своими достоинствами и недостатками. Выделим основные четыре конструкции:
- Резистивные
- Ёмкостные
- Проекционно-ёмкостные
- С определением поверхностно-акустических волн
Кроме указанных экранов, применяются матричные экраны и инфракрасные, но ввиду их низкой точности их область применения крайне ограничена.
Резистивные
Резистивные сенсорные панели относятся к самым простым устройствам. По своей сути, такая панель состоит из проводящей подложки и пластиковой мембраны, обладающих определенным сопротивлением. При нажатии на мембрану происходит её замыкание с подложкой, а управляющая электроника определяет возникающее при этом сопротивление между краями подложки и мембраны, вычисляя координаты точки нажатия.
Преимущество резистивного экрана в его дешевизне и простоте устройства. Они обладают отличной стойкостью к загрязнениям. Основным достоинством резистивной технологии является чувствительность к любым прикосновениям: можно работать рукой (в том числе в перчатках), стилусом (пером) и любым другим твердым тупым предметом (например, верхним концом шариковой ручки или углом пластиковой карты). Однако имеются и достаточно серьезные недостатки: резистивные экраны чувствительны к механическим повреждениям, такой экран легко поцарапать, поэтому зачастую дополнительно приобретается специальная защитная пленка, защищающая экран. Кроме того, резистивные панели не очень хорошо работают при низких температурах, а также обладают невысокой прозрачностью – пропускают не более 85% светового потока дисплея.
Использование пера с сенсорным экраном
- КПК
- Коммуникаторы
- Сотовые телефоны
- POS-терминалы
- Tablet PC
- Промышленность (устройства управления)
- Медицинское оборудование
Ёмкостные
Технология ёмкостного сенсорного экрана основана на принципе того, что предмет большой ёмкости (в данном случае человек) способен проводить электрический ток. Суть работы ёмкостной технологии заключается в нанесении на стекло электропроводного слоя, при этом на каждый из четырех углов экрана подается слабый переменный ток. Если прикоснуться к экрану заземленным предметом большой емкости (пальцем), произойдет утечка тока. Чем ближе точка касания (а значит, и утечки) к электродам в углах экрана, тем больше сила тока утечки, которая и регистрируется управляющей электроникой, вычисляющей координаты точки касания.
Ёмкостные экраны очень надежны и долговечны, их ресурс составляет сотни миллионов нажатий, они отлично противостоят загрязнениям, но только тем, которые не проводят электрический ток. По сравнению с резистивными они более прозрачны. Однако недостатками является все же возможность повреждения электропроводного покрытия и нечувствительность к прикосновениям непроводящими предметами, даже руками в перчатках.
- В охраняемых помещениях
- Информационные киоски
- Некоторые банкоматы
Проекционно-ёмкостные
Проекционно-ёмкостные экраны основаны на измерении ёмкости конденсатора, образующегося между телом человека и прозрачным электродом на поверхности стекла, которое и является в данном случае диэлектриком. Вследствие того, что электроды нанесены на внутренней поверхности экрана, такой экран крайне устойчив к механическим повреждениям, а с учетом возможности применения толстого стекла, проекционно-ёмкостные экраны можно применять в общественных местах и на улице без особых ограничений. К тому же этот тип экрана распознает нажатие пальцем в перчатке.
Данные экраны достаточно чувствительны и отличают нажатия пальцем и проводящим пером, а некоторые модели могут распознавать несколько нажатий (мультитач). Особенностями проекционно-ёмкостного экрана являются высокая прозрачность, долговечность, невосприимчивость к большинству загрязнений. Минусом такого экрана является не очень высокая точность, а также сложность электроники, обрабатывающей координаты нажатия.
- Электронные киоски на улицах
- Платежные терминалы
- Банкоматы
- Тачпэды ноутбуков
- iPhone
С определением поверхностно-акустических волн
Суть работы сенсорной панели с определением поверхностно-акустических волн заключается в наличии ультразвуковых колебаний в толще экрана. При прикосновении к вибрирующему стеклу, волны поглощаются, при этом точка прикосновения регистрируется датчиками экрана. Плюсами технологии можно назвать высокую надежность и распознавание нажатия (в отличие от ёмкостных экранов). Минусы заключаются в слабой защищенности от факторов окружающей среды, поэтому экраны с поверхностно-акустическими волнами нельзя применять на улице, а кроме того, такие экраны боятся любых загрязнений, блокирующих их работу. Применяются редко.
Другие, редкие типы сенсорных экранов
- Оптические экраны. Инфракрасным светом подсвечивают стекло, в результате прикосновения к такому стеклу происходит рассеивание света, которое обнаруживается датчиком.
- Индукционные экраны. Внутри экрана расположена катушка и сетка чувствительных проводов, реагирующих на прикосновение активным пером, питающимся от электромагнитного резонанса. Логично, что такие экраны реагируют на нажатия только специальным пером. Применяются в дорогих графических планшетах.
- Тензометрические – реагируют на деформацию экрана. Такие экраны имеют малую точность, зато очень прочны.
- Сетка инфракрасных лучей – одна из самых первых технологий, позволяющих распознавать прикосновения к экрану. Сетка состоит из множества светоизлучателей и приемников, расположенных по сторонам экрана. Реагирует на блокировку соответствующих лучей предметами, на основании чего и определяет координаты нажатия.
Применение индукционного экрана в ноутбуке
Мультитач (Multi-touch)
Мультитач, о котором все так много говорят и популярность которого только растет, не является типом сенсорного экрана. По своей сути, технология множественного нажатия – что является вольным переводом словосочетания multi-touch – это дополнение к сенсорному экрану (чаще всего построенному по проекционно-ёмкостному принципу), позволяющее экрану распознавать несколько точек прикосновения к нему. В результате мультитач-экран становится способным к распознаванию жестов. Вот лишь некоторые из них:
- Сдвинуть два пальца вместе – уменьшение изображения (текста)
- Раздвинуть два пальца в стороны – увеличение (Zoom)
- Движение несколькими пальцами одновременно – прокрутка текста, страницы в браузере
- Вращение двумя пальцами на экране – поворот изображения (экрана)
О пользе и недостатках сенсорных экранов
В карманных устройствах сенсорные экраны появились давно. Причин этому несколько:
- Возможность делать минимальное количество органов управления
- Простота графического интерфейса
- Легкость управления
- Оперативность доступа к функциям устройства
- Расширение мультимедийных возможностей
Однако и недостатков хоть отбавляй:
- Отсутствие тактильной обратной связи
- Частая необходимость в использовании пера (стилуса)
- Возможность повреждения экрана
- Появление отпечатков пальцев и других загрязнений на экране
- Более высокое потребление энергии
В результате, полностью избавиться от клавиатуры не всегда получается, ведь гораздо удобнее набирать текст с помощью привычных клавиш. Зато сенсорный экран интерактивнее, благодаря более оперативному доступу к элементам меню и настройкам современных гаджетов.
Надеемся, что этот материал поможет вам при выборе устройства с сенсорным экраном.
Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так — первым потребительским устройством с сенсорным дисплеем стал. телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton — родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость — экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.
Резистивный экран
Уже из названия понятно, что лежит в основе таких дисплеем — это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:
На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение — а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:
Это — принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно.
Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране — то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:
Вот этот тип уже более «вандалоустойчив» — даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.
Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема — на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема — такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую.
Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно — у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс — экрану безразлично, чем вы в него тыкаете — с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.
Поверхностно-емкостные экраны
Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное — объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:
Тут и разгадка, почему напряжение переменное — с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет.
Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того — теперь экран не реагирует на руку в перчатке или же стилусы — они в основном не проводят ток.
Единственный плюс такого экрана — он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.
Проекционно-емкостные экраны
Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих — тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:
С таким устройством экрана можно нажимать на него сразу несколькими пальцами — если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные — именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.
Из плюсов такого экрана, кроме поддержки мультитача — возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия.
Это — основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.
Инфракрасные экраны
Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны — толщина такой конструкции оказывается внушительной, а точность позиционирования — достаточно низкой.
Тензометрические экраны
Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.
Индукционные экраны
Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля — с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана — максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.
Оптические экраны
Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.
Экраны на поверхностно-акустических волнах
Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:
Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус — экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.
DST экраны
Их принцип действия основан на пьезоэлектрическом эффекте — при деформации диэлектрика он поляризуется, а значит — возникает разность потенциалов — а ее уже можно посчитать. Из плюсов — очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус — для определения местоположения пальца он должен постоянно двигаться.
Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.
В последнее время стремительно дешевеют и набирают популярность устройства с большими сенсорными экранами (диагональю > 40”) – интерактивные столы, информационные и рекламные киоски, интерактивные дисплеи для бизнеса и образования. В этой статье я бы хотел сделать обзор сенсорных технологий, которые используются в таких устройствах, с их достоинствами и недостатками. Сразу скажу, что мир больших дисплеев в этом плане кардинально отличается от мира смартфонов и планшетов, в котором окончательно победила проекционно-емкостная (Projective-Capacitive Touch) технология. Все факты, приведенные в статье, основаны на реальном опыте работы с сенсорными экранами различных производителей.
Критерии
В первую очередь стоит сказать о критериях сравнения – иначе как мы сможем понять, какая технология лучше и в каких условиях? В этой статье я не буду говорить о методиках измерения этих параметров, так как это обширная и отдельная тема. Просто перечислю:
Разрешение
Разрешение сенсора в идеале не должно быть ниже графического разрешения дисплея. Для некоторых технологий (например, использующих триангуляцию) этот параметр рассчитать довольно сложно, да и зачастую бесполезно. На практике, сенсорное разрешение не так сильно влияет на удобство использования, как точность.
Точность
Точность сенсора определяется разницей между действительной точкой касания и точкой отображения касания на дисплее. На больших дисплеях такая ошибка может достигать нескольких сантиметров, в зависимости от технологии. Особенно важно то, что для некоторых технологий эта ошибка может очень сильно различаться в различных областях экрана. Очень редко имеет смысл добиваться от сенсора ошибки распознавания менее 2-3 мм, так как эту ошибку уже чаще всего поглощает следующий параметр – оптический параллакс.
Оптический параллакс
Проблема оптического параллакса заключается в том, что сенсорные дисплеи всегда покрыты стеклом (чтобы защитить матрицу и обеспечить работу сенсора). И на диагоналях >40” толщину этого стекла технологически очень сложно сделать менее 4 мм, поэтому между собственно матрицей и поверхностью стекла на больших дисплеях может быть расстояние от 5 до 10 мм. На рисунке ниже проиллюстрирована проблема параллакса (оптические преломления не изображены, но идея понятна).
Дистанция срабатывания
Дистанцией срабатывания называется расстояние до поверхности дисплея, на котором происходит срабатывание сенсора. В случае оптических сенсоров этот параметр может варьироваться в пределах 2-10 мм, причем, чем больше диагональ экрана, тем больше дистанция срабатывания. Для приложений, связанных с рисованием, этот параметр является крайне важным. Когда вы быстро пишете или рисуете, вы, как правило, часто отрываете маркер от стекла на очень небольшое расстояние. Если это расстояние меньше, чем дистанция срабатывания, то на экране появляются нежелательные линии. Также проблемы могут возникать с двойным кликом. Ниже на рисунке видно, как влияет дистанция срабатывания на появление лишних линий при быстром письме. На почерк не смотрите, сенсор тут ни при чем — он у меня просто корявый.
Задержка
Задержкой называется временной интервал между собственно прикосновением объекта к дисплею и моментом, когда информация о нем будет доступна операционной системе. Один из наиболее трудных параметров для измерения. Для современных сенсоров задержка составляет от 10 до 30 мс, однако следует помнить, что реальная задержка отклика приложения на действия пользователя будет значительно больше из-за задержки в ОС, приложении и при отрисовке. О том, как задержка влияет на удобство использования, можно посмотреть прекрасное видео от Microsoft Research, которое уже было на хабре.
Частота обновления
Чувствительность к освещению
Все сенсорные дисплеи, основанные на оптических технологиях, в той или иной степени боятся паразитной засветки в ИК диапазоне. На практике это означает, что для дисплеев уличного исполнения оптические сенсоры непригодны. Однако, многие современные оптические сенсоры более чем хорошо работают в помещениях (хотя и не все).
Количество одновременно распознаваемых касаний
Думаю, комментировать этот параметр не нужно. Скажу лишь, что, в общем случае, чем больше касаний распознает сенсорный дисплей, тем хуже прочие его характеристики.
Технологии
Итак, с критериями оценки сенсоров для дисплеев больших диагоналей мы разобрались, теперь перейдем к технологиям. Я буду описывать лишь те технологии, которые действительно используются сегодня в LCD дисплеях больших (>40”) диагоналей. Соответственно, будут опущены резистивная и ПАВ (ПАВ = поверхностно-акустические волны) технологии. Достоинства и недостатки, о которых я буду говорить, тоже характерны именно для больших диагоналей.
Проекционно-емкостная технология (Projective Capacitive Touch)
Принцип работы проекционно-емкостной технологии заключается в следующем. На экран наносится сетка из проводников, пересечения которых можно рассматривать как конденсаторы. На емкость этих конденсаторов влияют поднесенные объекты (например, палец). Специальный контроллер поочередно измеряет емкость на всех пересечениях и по ее изменению вычисляет координаты прикосновений. К сожалению, масштабировать эту прекрасную технологию на большие экраны не так просто. Это связано со следующими проблемами:
Все это вместе делает современные большие PCT дисплеи очень хорошим выбором для информационных киосков, в том числе уличных. Но рисовать на них вряд ли получится, и ожидать от них отзывчивости, как у планшета, явно не стоит. Немаловажным также является тот факт, что большой PCT сенсор недешев, так как технологией его производства владеют совсем немного компаний.
Оптическая технология (Optical Touch).
Данная технология использует камеры с ИК подсветкой для определения положения объекта. Здесь есть определенная проблема с терминологией. Несмотря на то, что другие технологии, о которых будет сказано ниже, тоже так или иначе используют оптические эффекты, среди производителей сенсорных дисплеев принято называть оптической (optical) именно технологию на основе камер в углах экрана.
Принцип работы довольно прост – в двух или четырех углах дисплея установлены камеры с ИК подсветкой. Подсветки камер поочередно зажигаются, и соответствующая камера фиксирует угловое положение объектов, касающихся дисплея. Далее контроллер триангулирует координаты объектов и передает их в компьютер.
Традиционными проблемами данной технологии изначально были большая дистанция срабатывания, а также плохая работа в режиме мультитач. Например, двухкамерный сенсор может работать максимум с двумя касаниями, и то на уровне пригодном только для жестов зума. Четырекамерные сенсоры значительно лучше работают в мультитач режиме, но все равно ошибки распознавания часты, и хотя в спецификации таких сенсоров часто указаны 4 или даже 6 касаний, назвать это настоящим мультитачем язык не поворачивается.
Вместе с тем, современные оптические сенсоры, избавленные от детских болезней, дают сейчас наилучшее сочетание цена-качество для indoor дисплеев. Особенно их отличает низкая задержка и высокая точность при условии хорошей калибровки. Причем задержка двухкамерных сенсоров ниже, чем четырехкамерных, потому что цикл опроса камер в два раза короче.
ИК матрица (IR Matrix Touch или просто IR Touch).
Принцип технологии IR Touch очень прост – на двух смежных сторонах рамки дисплея размещаются линейки ИК светодиодов, а на двух других – линейки фотоэлементов. Объекты, касающиеся экрана, перекрывают ИК лучи в образованной сетке, и по данным с фотоэлементов контроллер определяет их координаты.
Технология, как и оптическая, очень неплохо применима на практике. Относительно невысокая цена и неплохой мультитач (значительно более четкое распознавание 4-6 объектов, чем у Optical Touch) делают эту технологию очень привлекательной для indoor дисплеев. До недавнего времени задержка ИК матриц была довольно высока, но в последних моделях она уже сравнима с задержкой оптического сенсора.
Недостатком ИК матрицы является невысокое разрешение – это легко можно обнаружить в режиме рисования, если провести линию, немного отклоняющуюся от вертикали или горизонтали. Однако и в этом направлении производители ИК матриц постоянно совершенствуются.
Технология, основанная на FTIR эффекте (FTIR Touch).
Это, наверное, самая известная мультитач технология. Именно на ней был основан первый вариант Microsoft Surface (тогда еще интерактивного стола). Смысл заключается в том, что в торцах сенсорного стекла размещаются ИК светодиоды. Пока к стеклу не прикасается объект, ИК излучение остается внутри стекла за счет почти полного внутреннего переотражения. А как только объект приложен, излучение начинает в этой точке рассеиваться, и его может увидеть камера, расположенная за экраном.
Это единственная технология, обеспечивающая на дисплеях большой диагонали настоящий мультитач – более 30 касаний. Большим недостатком MS Surface (как и всех FTIR Touch дисплеев, основанных на обратной проекции) была большая глубина. В случае LCD дисплеев эта проблема решается за счет разнесения LCD модуля и подсветки, а также использования нескольких камер с ультракороткофокусными объективами и перекрывающимся полем зрения.
Конечно, такие дисплеи нельзя сделать тоньше, чем 20-25 см, а сторонней засветки они боятся как огня. Однако эту цену приходится платить, если нужен настоящий мультитач.
Электромагнитная (EM Touch)
В этой технологии за LCD модулем располагается панель с проводниками – по сути, антенна-приемник, а в специальном активном стилусе размещается передатчик. По изменениям электромагнитного поля в антенне контроллер вычисляет положение стилуса. Именно эта технология используется в планшетах Wacom и Galaxy Note S-Pen. В случае с дисплеями больших диагоналей, использование этой технологии – дорогое удовольствие, так как для ее реализации необходимо изготавливать огромные печатные платы. При этом дисплеи, комбинирующие электромагнитную технологию (для стилуса) с IR Touch (для пальца), были бы, возможно, наилучшим выбором, если бы не их цена. Кстати, именно такие дисплеи производила компания Perceptive Pixel, которую не так давно купила Microsoft.
PixelSense
Еще одна технология, о которой я хочу рассказать, реализована только в одном дисплее – Samsung SUR40, он же бывший Microsoft Surface 2, он же нынешний Microsoft PixelSense. Идея настолько гениальна, насколько и сложна в производстве технологически. Суть в том, что фотоэлементы встраиваются непосредственно в LCD матрицу. Благодаря этому, мы получаем настоящий мультитач, а также ряд дополнительных возможностей.
К сожалению, у меня не было возможности разобрать этот дисплей и подвергнуть полноценной серии тестов. Однако опыт работы с ним на выставках разбил все надежды на прекрасную технологию. Дисплей очень плохо распознавал маленькие объекты, показывал огромную задержку (хотя, возможно, это можно списать на ПО и плохой компьютер), а судя по затемнению света над стендами, с засветкой проблемы у него тоже есть. Ну и диагональ только 40”, и перспектив появления других диагоналей нет.
Panasonic TV Touch Pen
И последняя технология в этом обзоре – это технология, встроенная в новые серии плазменных телевизоров Panasonic. Интересным в этой технологии является то, что сам дисплей не имеет сенсора. Сенсор, а точнее фотоэлемент, расположен в специальном электронном стилусе. Идея заключается в том, что каждый пиксель на экране особенным образом модулирован. Когда стилус касается экрана (это определяется простым концевиком), фотоэлемент по параметрам модуляции (не знаю точно каким) вычисляет координаты и передает по радиоканалу в компьютер.
При всей оригинальности технического решения у этой технологии есть очень серьезные недостатки. Во-первых, используемая модуляция видна невооруженным глазом и очень сильно портит изображение, а во-вторых, проблема параллакса сильно осложняется тем, что распознанные координаты зависят еще и от угла наклона стилуса.
Тем не менее, я лично отношусь к этой технологии с большой симпатией, потому что она напоминает мне принцип работы пистолетов Dendy и заставляет ностальгировать по Duck Hunt. Если Panasonic сделает на основе своей технологии пистолет, который можно будет использовать с Dendy (ну или хотя бы с эмулятором) – обязательно куплю их телевизор!
Выводы
Итак, с уверенностью можно сказать о сенсорных технологиях для больших дисплеев следующее – ни одна из них на сегодняшний день не обеспечивает того уровня удобства, к которому мы привыкли на смартфонах. Однако если подходить к выбору технологии с умом, можно добиться решения своих задач на достаточно высоком уровне.
Читайте также: