Ударная вязкость металла это
При производстве любой высокопрочной детали стоит знать, как их важнейшие характеристики проявятся и изменяются на практике многолетнего применения. По этой причине в фокусе внимания ударная вязкость материала, то есть его способность поддаваться деформации пластически под влиянием динамической нагрузки.
По этой причине непременно учитывайте этот параметр во время проектирования объекта из металлоконструкции, в частности сложного, предназначенного для применения в жестком климатическом условии: при пониженной температуре, при постоянно изменяющемся микроклимате, при повышенном механическом давлении, физическом воздействии и многом другом.
«Центр сварочных решений» осуществляет воплощение проектов по выпуску продукции и монтажу металлоконструкций. Лазерная резка металлов, шлифовальные работы, отжиг металла, плазменная резка металла – все это услуги нашей компании.
Что такое ударная вязкость?
Ударная вязкость стали является показателем количества работы, который нужен для хрупкого разрушения сырья. Подсчитывается опытным способом, по итогам многочисленных проведенных тестов способом маятникового копра.
Любую проверку проводят на стандартизованном образце – стержне с квадратным сечением и нанесенным на какую-то его грань искусственный концентратор напряжения. Последний бывает в виде:
- литеры V либо U;
- усталостной трещины.
В результате подсчитывают не просто нужный параметр, но и качество и характер деформаций области, а потом и соотношение частей повреждения. Это бывают либо только визуальный анализ, либо более тщательный, с проведением оценки текстуры и слоев цифровыми и компьютерными технологиями.
При рассмотрении понятия ударной вязкости стали, необходимо понимать, что это сопротивление удару именно конкретно взятого металла или сплава.
Металлы имеют различную хрупкость: почему
При больших нагрузках при воздействии постоянно пониженных температур свое воздействие оказывают такие факторы, как:
- Микроструктура – она бывает крупно- либо мелкозернистая, высокой чистоты либо с сильнозагрязненным посторонним включением.
- Концентраторы критических влияний – не сплошные участки, трещины с разрывами.
- Остаточное напряжение и иные состояния, которые сохранились после того, как провели все необходимые операции на прежних стадиях процесса техпроизводства.
Способы испытания металлов на ударную вязкость
Вначале рассмотрим классификацию, чтобы вы могли понять, почему нужно выбирать тот или иной способ. Доступные на сегодняшний день лабораторные изыскания принято разделять на пару категорий по следующим характеристикам:
- Наличие либо отсутствие концентратора напряжений;
- Тип крепежа;
- Характер влияния.
Особенности отбора образца
Межгосударственная норма, которая относит ударную вязкость металла к ГОСТу 9454, и учитывая с ним подходящие для осуществления испытаний считаются такие виды:
- испытания по шарпи – заготовка 55 мм с квадратным сечением (10 на 10 мм), с U-образным вырезом по центру с радиусом около 1 мм и глубиной пропил 2 мм;
- по Менаже – геометрия с габаритами такие же, как выше, лишь канавка уже в виде перевернутого треугольника;
- Т-образный – их ДхШхВ равны 55х10х11 мм.
Подготовка к проверке и ее проведение
Схема испытаний на ударную вязкость:
Стержень прикрепляется к опорной стойке – таким образом, чтобы место контактирования было напротив концентратора напряжения.
- Маятник приводят в исходное состояние.
- Провоцируют падение, в итого которого боек может слететь, ударяет по образцу и выполняет обратное движение на отдалении h.
- Остановка осуществляется тормозами.
Все положения фиксируют, а затем по разности потенциалов и подсчитывается работа, нужная для хрупкого разрушения.
Рассмотрим, каким образом обозначают ударную вязкость. Она бывает и с 3 индексами, которые обозначают вид применяемого концентратора напряжений. Показатели бывают следующие: KCV (по Менаже), KCT либо kcu ударная вязкость (по Шарпи).
Как сравнивать материалы по ударной вязкости?
Сравнение проводится опытным способом, выполняя тесты своими силами, отмечая полученные результаты и далее. Однако намного быстрее и легче использовать метод Изода. Таким образом можно сэкономить время.
Выше мы рассмотрели способы испытания, подсчета, определение и особенности ударной вязкости. Подробно рассмотрели, какие ударная вязкость единицы измерения имеет.
Мы надежная компания, в основе деятельности которой – правила честной конкуренции и жесткого контроля качества услуг.
Ударная вязкость стали и металлов: что это такое, в чем измеряется и как обозначается
При создании высокопрочных деталей необходимо знать, как их ключевые свойства будут проявляться и изменяться на практике многолетней эксплуатации. Поэтому в фокусе нашего сегодняшнего внимания ударная вязкость материала, то есть его способность деформироваться пластически под воздействием динамических нагрузок.
Другими словами, это также эффективность сопротивления хрупкому типу разрушения – одному из самых опасных видов, при котором трещина очень быстро становится магистральной: мгновенно возникает, а разрастается за доли секунды. Если взять в качестве примера коммуникационную линию, то в ней при появлении такого повреждения меньше чем за минуту порвет сразу несколько труб.
Поэтому просто необходимо учитывать рассматриваемый параметр при проектировании каких-либо объектов из металлоконструкций, особенно сложных, предназначенных для использования в жестких климатических условиях: при низких температурах, при постоянно меняющемся микроклимате, при высоком механическом давлении, физических воздействиях и так далее.
Что называют ударной вязкостью – это
Начнем с определения: это показатель количества работы (энергии), необходимой для хрупкого разрушения материала. Вычисляется опытным путем, по результатам комплексных тестов, проводимых методом маятникового копра.
Все проверки выполняются на стандартизованных образцах – стержнях квадратного сечения с нанесенным на какой-то из его граней искусственным концентратором напряжения. Последний может быть выполнен:
- в виде литеры V или U;
- а также в форме усталостной трещины.
В итоге выявляют не только интересный нам параметр, но также качество и характер деформации поверхности, а затем и соотношение составляющих повреждения. Это может быть или исключительно визуальный анализ, или более глубокий, с оценкой текстуры и слоев при помощи цифровых и компьютерных технологий.
Естественно, данный показатель отличается в зависимости от материала. Потому помните, когда мы рассматриваем, что такое ударная вязкость стали, это эффективность сопротивления именно конкретно взятого металла или сплава и только его, а не всех вообще.
Критическая температура хрупкости
Окружающая среда напрямую влияет на сопротивление детали разрушению. Данная зависимость настолько очевидная, что была выделена в явление – под названием хладноломкость – и объясняется неизбежными деформациями при переходе в хрупкое состояние под воздействием мороза.
Температура, при которой наблюдается изменение и появляется повреждение, и считается критической. В технической литературе ее зачастую сокращают до аббревиатуры Тхр, а также записывают как «порог хладноломкости», который, помимо всего прочего, показывает, что составляющие в заготовке находятся в равных долях.
Данную величину находят опытным путем, проводя испытание материала на ударную вязкость – серию тестов с постепенным понижением терморежима, начиная от +20 градусов по Цельсию и заканчивая на -70 0С. По результатам выстраивают график, отражающий зависимость и показывающий точку перегиба – искомую Тхр. И чем этот показатель больше по своему значению, тем вероятнее, что под воздействием морозов в детали появится трещина (или другой сходный дефект).
Естественно, при прочих равных заготовки или целые функциональные узлы лучше делать из того сырья, порог хладноломкости которого сравнительно ниже, ведь тогда изделия можно будет эксплуатировать и в более жесткой климатической среде.
Почему у металлов различная хрупкость
При значительных нагрузках в условиях действия стабильно низких температур свое влияние оказывают следующие факторы:
- Микроструктура – она может быть крупно- или мелкозернистой, высокой чистоты или достаточно сильнозагрязненной посторонними включениями, с твердыми фазами по границам или без них, с нежелательными примесями или без них.
- Концентраторы критических воздействий – несплошные участки, трещины и разрывы, газовые пузыри и тому подобные дефекты. В одном сырье их больше, в другом – меньше.
- Остаточные напряжения и тому подобные состояния, сохранившиеся после проведения всех необходимых операций на предыдущих стадиях технического процесса производства.
Вот от чего зависит ударная вязкость на практике, и следует помнить, что большинство из перечисленных выше факторов также меняются. Те же повреждения со временем развиваются, становясь серьезнее и нарушая структуру.
Относительная нестабильность свойств – именно та причина, по которой при выпуске деталей требуется выполнять проверки. По результатам тестов можно с высокой степенью точности установить, при какой температуре допустимо стабильно эксплуатировать заготовку. Поэтому необходимо подробно рассмотреть, как их проводить, какие образцы при этом использовать, что за предварительную подготовку осуществить и так далее.
Методы испытаний металлов на ударную вязкость
Сначала – немного классификации, чтобы вы понимали, по каким причинам стоит делать выбор в ту или иную пользу. Существующие сегодня варианты лабораторных изысканий разделяют на несколько групп по следующим критериям:
- наличие/отсутствие концентратора напряжений, то есть надреза определенной формы на одной из граней в зоне нанесения удара;
- вид закрепления – установка на опоры, погружение в холодильную емкость и тому подобное;
- характер воздействия – нагрузка может передаваться за счет молота, гири, маятника или иного твердого тела.
Также есть способы проверки, названные в честь тех, кто их ввел:
- по Гарднеру;
- по Шарпи;
- по Изоду.
При этом любая из вышеперечисленных разновидностей испытаний стали на ударную вязкость (и каких-либо других металлов тоже) сводится к попытке разрушения стандартного образца падающим предметом. Отличие только в специфике тестов, проводимых без надреза или с ним. Первый случай актуален только для листовых прокатных изделий, толщина которых одинакова по всей их площади, и его итоговые значения в несколько раз (до 10) превышают результаты в обычной среде, это нужно учитывать и соответствующим путем коррелировать дальнейшие расчеты.
Поскольку разница в нюансах, а не в принципе, рассмотрим один популярнейший метод, чтобы вы получили понимание о том, как проверки осуществляются в лабораторных условиях и насколько они точны.
Маятниковый копер
Это прибор, созданный специально для проведения испытаний, и его разновидности классифицируют по следующим показателям:
- характер деформации – на кручение, растяжение, изгиб, срез, сжатие;
- число ударов – один-единственный или несколько, совершаемых с определенным интервалом;
- величина нагрузки – обычный (стандартный) поддерживает до 7 м/с, скоростной – уже значительно больше, 100-300 м/с, а в категорию сверхскоростных относят модели, выходящие за пределы 300 м/с;
- условия выполнения тестов – рабочая температура, уровень влажности и так далее.
При этом практически любой копер состоит из опорных стоек, на которых закрепляется проверяемый стержень, и неподвижной оси – на ней на определенной высоте размещается боек с маятниковым эффектом. Простота конструкции делает ее достаточно надежной, а также уменьшает погрешность результатов.
В списке основных рабочих характеристик каждого такого прибора: диапазон измерений, максимальная мощность и скорость движения в момент контакта, наибольший потенциал фиксируемой энергии, габариты (в частности, масса) и расстояние между опорами.
Отбор образцов
Межгосударственный стандарт, говорящий, что такое ударная вязкость металла, это ГОСТ 9454, и в соответствии с ним подходящими для проведения испытаний считаются следующие варианты:
- по Шарпи – заготовки длиной 55 мм, квадратного сечения (10 на 10 мм), с U-образным вырезом посередине, радиус которого 1 мм, а глубина пропила – 2 мм;
- по Менаже – геометрия и габариты аналогичны предыдущему, только канавка (концентратор напряжения) уже в форме перевернутого треугольника (буквы V);
- Т-образные – их ДхШхВ составляет 55 на 10 на 11 мм, и у каждого есть искусственно сделанная усталостная трещина, то есть специальный надрез.
Второй вид является наиболее часто используемым: он применим при отбраковке металлопродукции, эксплуатируемой в составе важных конструкциях, то есть в высокоточных приборах, медицинском или промышленном оборудовании, воздушных и наземных транспортных средствах. Третий ориентирован на еще более ответственные случаи, которых сравнительно немного, поэтому в количественном отношении он не получает такого распространения. Первый предназначен для всех остальных ситуаций.
Подготовка к проверке и ее проведение
В общем случае схема испытания на ударную вязкость выглядит следующим образом:
- Стержень закрепляется на опорных стойках – так, чтобы место контакта было строго напротив концентратора напряжения (с другой его стороны).
- Маятник (масса которого G, а сила L) приводится в исходное положение (верхнее, 1), то есть поднимается на высоту H.
- Провоцируется падение, в результате которого боек слетает, ударяет по образцу и совершает возвратное движение на расстояние h, то есть в позицию 2.
- Для окончательной остановки используется тормоз.
Все занятые положения фиксируются, после чего по разности потенциалов и вычисляется работа, необходимая для хрупкого разрушения. Сейчас посмотрим, как это происходит.
Стандартное обозначение ударной вязкости в расчетах – КС, запаса энергии маятника – GH.
Базовая формула выглядит так:
- К – работа, приведшая к деформации образца;
- F – площадь поперечного сечения стержня на участке с концентратором напряжений (известная величина).
Энергия затрачивается при перемещении маятника из первой позиции во вторую в результате удара, поэтому:
K = G x H – G x h,
или, если преобразовать это соотношение:
также высоту бойка в двух положениях можно выразить через силу и углы, после чего наше уравнение будет выглядеть так:
K = G x L x (cos β – cos α), где:
Все показания и позиции в ходе теста фиксируются в обязательном порядке. Но прежде чем переходить к подстановке значений в формулу и к анализу полученных цифр, еще несколько слов о том, как обозначается ударная вязкость. Дело в том, что записывать ее можно еще и с третьим индексом, обозначающим тип использованного концентратора напряжений, – для большей информативности. В таком случае рассматриваемый нами показатель будет выглядеть в формулах как KCV (по Менаже), KCT или KCU (по Шарпи) соответственно.
Обработка результатов
Взглянем на итоговое уравнение. Какие величины известны? Это масса бойка (G) и длина маятника (L). Также постоянное значение у начального угла α, а конечный – β – находится в ходе теста.
Так что для подсчетов нет препятствий – есть (или появляются) все данные для определения энергии, затрачиваемой на хрупкое разрушение.
Теперь о том, в чем измеряется ударная вязкость, – в Дж/м2 – так как, по сути, она представляет собой работу, проведенную на определенной площади формы.
Также есть интересная особенность: начиная с определенной температуры, КС неуклонно снижается, поэтому, для точности и полноты оценки, ударные тесты необходимо осуществлять не только в нормальных условиях, но и со значительным охлаждением опытного образца – до -40…-80 градусов Цельсия.
С этой целью стержни помещаются в специальные морозильные камеры со спиртом или жидким азотом. Хотя можно отдать предпочтение более простому варианту – емкости, заполненной сухим льдом или керосином, она также позволяет добиться нужного терморежима.
Полезным будет и определение порога хладноломкости, то есть температуры, при которой наблюдается резкое падение КС. Для этого необходимо взять серию опытных образцов (обязательно из одной плавки), провести испытания, тщательно записывая результаты с малым шагом градусов, а потом сравнить цифры и выстроить на их основе диаграмму. По ней будет отчетливо видно, как на каком-то участке сравняется доля вязких и хрупких составляющий – эта точка и станет искомым показателем.
Другое распространенное название порога – «температура полухрупкости», которая, для сокращения, также часто записывается как Т50 – исходя из пропорции в 50 на 50%. Если вычесть ее из реальной эксплуатационной, получите запас вязкости. Чем он больше, тем надежнее считается материал (с оговоркой, что условия его использования останутся неизменными).
Наиболее наглядные результаты дадут литые сплавы магния и алюминия, а также чугун. Почему именно они? Потому что у них сопротивление отрыву характерно видно даже при статических нагрузках, не говоря уже о повышенных – есть на что ориентироваться.
Для достижения нужного уровня охлаждения можно использовать:
- сухую углекислоту – обеспечит -70 0С;
- жидкие газы – азот (даст -195 градусов по Цельсию), воздух (-183) или водород (-252).
Естественно, это довольно опасные вещества, поэтому работы с ними должны проходить только в лабораторных условиях и с соблюдением соответствующих положений техники безопасности.
Сравнение материалов по ударной вязкости
Можно проводить его опытным путем, самостоятельно выполняя тесты, записывая полученные результаты и так далее. Но гораздо быстрее и проще воспользоваться уже найденными в ходе проверок по методу Изода значениями, сведенными в специальную таблицу. Преимущественное место в ней занимают пластики, но и другие виды сырья тоже представлены.
В любом случае, вы сэкономите свое время, ведь останется только вычислить КС и порог хладноломкости для используемого сплава, а потом сравнить их с аналогичными и уже известными цифрами.
Мы постарались дать максимальное представление о способах испытаний, подсчетах, определении, особенностях. Подробно остановились даже на том, в каких единицах измеряется ударная вязкость (размерность ее – Дж/м2, напоминаем). Столько информации – чтобы вы точно понимали важность этого показателя и могли грамотно его учитывать при выборе материала для исполнения деталей.
Дайте определение ударной вязкости (KCV). Опишите методику измерения этой характеристики механических свойств металла
Ликвация (от лат. liquatio – разжижение, плавление) – неоднородность химического состава сплавов, возникающая при их кристаллизации. Особое значение имеет ликвация в стали, впервые обнаруженная русскими металлургами Н. В. Калакуцким и А. С. Лавровым в 1866 году.
Ликвация возникает в результате того, что сплавы, в отличие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. При этом состав кристаллов, образующихся в начале затвердевания, может существенно отличаться от состава последних порций кристаллизующегося маточного раствора. Чем шире температурный интервал кристаллизации сплава, тем большее развитие получает ликвация, причём наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод). Ликвация оказывает, как правило, вредное влияние на качество металла, т. к. приводит к неравномерности его свойств.
Различают дендритную ликвацию, которая проявляется в микрообъёмах сплава, близких к размеру зёрен, и зональную ликвацию, наблюдаемую во всём объёме слитка. Дендритная ликвация выражается в том, что оси дендритных кристаллов отличаются по химическому составу от межосных пространств. Этот вид ликвации может быть в значительной степени устранён при длительном отжиге металла (так называемая гомогенизация) в результате диффузии примесей. Зональная ликвация выражается в наличии в слитке не-скольких зон с различным химическим составом, которые в зависимости от характера отклонений от среднего состава сплава называются зонами положительной или отрицательной ликвации. Различают осевую и внеосевую ликвацию. Для уменьшения зональной ликвации ограничивают размеры слитков, а также применяют специальные металлургические процессы: непрерывную разливку, переплав в водоохлаждаемом кристаллизаторе (электрошлаковый или вакуумный) и т. п.
Дайте определение ударной вязкости (KCV). Опишите методику измерения этой характеристики механических свойств металла.
Способность металла сопротивляться ударному воздействию нагрузки оценивают величиной ударной вязкости, под которой понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора напряжений. Методы определения ударной вязкости при комнатной, пониженной и повышенной температурах регламентированы ГОСТ 9454–78 и соответствуют СТ СЭВ 472–77 и СТ СЭВ 473–77. В соответствии с этими стандартами образец квадратного или прямоугольного сечения с концентраторами вида U, V и Т (рисунок 1) устанавливают на две опоры маятникового копра с максимальной энергией удара 0,5; 1,0; 5,0; 10; 15 или 30 кгс•м (ГОСТ 10708–76).
Рисунок 1 – Образцы для испытаний на ударную вязкость:
а-в – соответственно с концентраторами вида U, V и T (усталостная трещина)
Удар наносят посередине образца со стороны, противоположной надрезу. За окончательный результат испытания принимают работу удара или ударную вязкость для образцов с концентраторами видов U и V и ударную вязкость для образцов с концентратором вида Т (усталостная трещина, получаемая в вершине начального надреза при циклическом изгибе образца в одной плоскости). Работу (KU, KV или КТ) разрушения образца определяют обычно по специальной шкале маятникового копра. После определения работы разрушения образца вычисляют ударную вязкость KCU (KCV, КСТ): КС= = K/S0, где S0 – площадь поперечного сечения образца в месте надреза, см 2 .
Работу удара обозначают двумя буквами (KU, KV или КТ) и цифрами. Первая буква (К) – символ работы удара, вторая буква (U, V или Т) – вид концентратора. Последующие цифры обозначают максимальную энергию удара маятника, глубину концентратора и ширину образца. Цифры не указывают при определении работы удара на копре с максимальной энергией удара маятника 30 кгс•м, при глубине концентратора 2 мм для концентраторов видов U и V и 3 мм для концентратора типа Т и ширине образца 10 мм.
Ударную вязкость также обозначают сочетанием букв и цифр. Первые две буквы КС обозначают символ ударной вязкости, третья буква – вид концентратора; первая цифра – максимальную энергию удара маятника, вторая – глубину концентратора и третья – ширину образца. Цифры не указывают в тех же случаях, что и для работы удара. Применяют 10 типов образцов с надрезом вида U, А – с надрезом вида V и 6 – с надрезом вида Т.
Для определения ударной вязкости хрупких материалов (чугунов, сталей с твердостью HRC 55 и выше) допускается применение призматических образцов с размерами 10х10х55 мм без надреза. Ударную вязкость, полученную при испытании таких образцов, обозначают символом КС без индекса.
Для более точной оценки вязкости материалов иногда ударную вязкость как интегральную характеристику делят на две составляющие – удельную рабоду зарождения а3 и удельную работу развития ар трещины: aH = a3 + aр. При хрупком разрушении работа распространения трещины близка к нулю, а при полухрупком она снижается пропорционально проценту вязкой составляющей в изломе, поэтому целесообразно определять ар только при полностью вязком изломе. Существует несколько методов определения а3 и ар. Наиболее распространены метод Б.А. Дроздовского (предварительное нанесение на образец усталостной трещины) и метод А. П. Гуляева (испытание образцов с разными надрезами и построение зависимости ударной вязкости от радиуса надреза); экстраполяция прямой до нулевого значения радиуса надреза дает возможность получить величину ар.
3.Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,8% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3-> Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Рисунок 2 – Диаграмма железо-цементит
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит+ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный)+ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении Υ-железа в α-железо и аустенита.Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 -> П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727°С имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727°С при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727°С (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращается в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727°С состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727°С состоит из ледебурита превращенного и цементита первичного.
а) б)
Рисунок 3: а)-Диаграмма железо-цементит, б)-Кривая охлаждения для сплава, содержащего 0,8% углерода
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 0,8%С, называется эвтектоидной сталью. Его структура при комнатной температуре перлит.
4.Вычертите диаграмму изотермического превращения аустенита для стали У8, нанесите кривую режима изотермической обработки, обеспечивающей получение твердости 45…50 HRC. Укажите, как этот режим называется, опишите сущность превращения и какая структура получается в данном случае.
Рисунок 4. – Диаграмма изотермического превращения аустенита стали У8
Изотермической обработкой, необходимой для получения твердости 45…50 HRC, является изотермическая закалка. При изотермической закалке сталь У8 нагревают до температуры на 30-50°С выше точки Ас1 (Ас1 = 730°С) и после выдержки охлаждают до температуры 250-350°С, что несколько превышает температуру начала мартенситного превращения. Выдержка деталей в закалочной среде должна быть достаточной для полного превращения аустенита в нижний бейнит, имеющий твердость 45…50 HRC. Нижний бейнит представляет собой структуру, состоящая из α-твердого раствора, претерпевшего мартенситное превращение и несколько пересыщенного углеродом, и частиц карбидов. В качестве охлаждающей среды при изотермической закалке применяют расплавленные соли или расплавленные щелочи.
5.Как изменяется структура и свойства стали 40 и У12 в результате закалки от температуры 750 и 850˚С. Объясните с применением диаграммы состояния железо-цементит. Выберите оптимальный режим нагрева под закалку каждой стали.
Исходная структура среднеуглеродистой конструкционной стали 40 до нагрева под закалку – перлит + феррит.
Критические точки для стали 40: АС1=730ºС, АС3=790ºС.
При нагреве до 700ºС в стали 40 не происходят аллотропические превращения и мы имеем ту же структуру – перлит + феррит, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + феррит с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку. Например, после нормализации: σТ=36 кгс/мм 2 , σВ=61 кгс/мм 2 , δ=16%, ψ=40%, НВ≈180.
Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. При нагреве до температуры 750°С (ниже точки Ас3) структура стали 40 – аустенит + феррит, после охлаждения со скоростью выше критической структура стали – мартенсит + феррит.
Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура нагрева стали под закалку, таким образом, составляет 820-840°С. Структура стали 40 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.
Нагрев и выдержка стали 40 при температуре выше 850ºС приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали.
Исходная структура высокоуглеродистой инструментальной стали У12 до нагрева под закалку – перлит + карбиды.
Критические точки для стали У12: АС1=730ºС, АС3=820ºС.
При нагреве до 700ºС в стали У12 не происходят аллотропические превращения и мы имеем ту же структуру – перлит + карбиды, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + карбиды с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку.
Оптимальный режим нагрева под закалку для заэвтектоидных сталей (%С>0,8%) составляет АС1+(30÷50º), т.е. для У12 – 760–780ºС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали У12.
Нагрев и выдержка стали У12 при температуре 850ºС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки.
Ударная вязкость (сопротивление хрупкому разрушению)
При создании высокотвердых, прочных материалов необходимо учитывать такое их свойство как вязкость или сопротивление хрупкому разрушению, определяющее способность материала пластически деформироваться в условиях динамических нагрузок.
Хрупкий тип разрушения — самый опасный, так как трещина возникает мгновенно, в течение долей секунды, быстро растет, превращаясь в так называемую магистральную трещину. В случае линий трубопровода магистральная трещина может пройти вдоль нескольких труб за считанные секунды.
Особое внимание на возможность сталей сопротивляться хрупкому разрушению уделяют при расчете металлоконструкций, предназначенных для эксплуатации в условиях северных широт, так как низкие температуры способствуют охрупчиванию металла. В ходе инженерных расчетов используют такой критерий, как ударная вязкость, которая количественно описывает сопротивление материала хрупкому разрушению.
Ударная вязкость
Ударная вязкость показывает, сколько нужно энергии (работы) для разрушения образца заданного поперечного сечения. Испытание для определения ударной вязкости относится к динамическим и осуществляется с помощью маятникового копра. Принцип действия заключается в падении бойка с определенной высоты на испытываемый стандартный образец металла. После чего, основываясь на разнице энергий бойка до и после удара, определяется работа, потраченная на разрушение образца. Чтобы полученные на разных образцах значения можно было сравнивать, их приводят к площади сечения испытываемого образца.
Образцы для испытаний стандартизованы и имеют вид стержня с квадратным сечением площадью 1 см2. В середине образца на одной из сторон наносят искусственный концентратор напряжений, имеющий три варианта исполнения:
- в форме буквы U;
- в форме буквы V;
- в виде усталостной трещины.
При испытаниях на ударную вязкость оценивают также поверхность разрушения образца и определяют соотношения доли вязкой и хрупкой составляющей в изломе. Такой анализ выполняется либо визуально, либо с применением цифровых методов текстурного анализа, реализованных в анализаторе изображений Thixomet.
Если металл после испытания на ударную вязкость при нормальных климатических условиях показывает хрупкий излом, то его эксплуатация при пониженных температурах недопустима.
Критическая температура хрупкости
Как уже отмечалось выше, температура окружающей среды и, соответственно, самого металла, оказывает существенное влияние на его сопротивление хрупкому разрушению. Это явление называется хладноломкостью, и обусловлено переходом металла из вязкого состояния в хрупкое при снижении температуры.
Температура момента такого перехода называется критической температурой хрупкости Tхр (порог хладноломкости) и соответствует наличию в изломе образца равных долей вязкой и хрупкой составляющей. Для определения Tхр материала проводят серию испытаний на ударную вязкость при температурах от +20 до -70°С.
На основании полученных результатов строят график зависимости доли вязкой составляющей от температуры. Точка перегиба на получившейся кривой соответствует критической температуре хрупко-вязкого перехода Тхр. Чем выше ее значение, тем выше склонность металла к хрупкому разрушению.
Почему металлы имеют различную хрупкость?
Помимо низких температур и высокой скорости нагружения к хрупкому разрушению могут приводить следующие факторы:
Ударная вязкость стали и других металлов
Компания ООО «Анатомика» осуществляет производственную деятельность в области металлообработки и инжиниринга. Специалисты нашей компании реализуют проекты от разработки модели детали до её полного изготовления. В частности, к видам деятельности относятся разработка 3D моделей, технологических карт, управляющих программ, оснастки и инструмента, токарные и фрезерная обработка, слесарные работы и покраска, гальваническая обработка, шлифование, сверление.
Многие знают, что одни металлы легко деформируются вручную, тогда как другие не деформируются даже при падении с высоты. Для объяснения этого явления используются понятия ударной вязкости и хрупкости, которые противоположны друг другу. Попробуем объяснить, в чем их отличие, почему металлы по-разному реагируют на внешние воздействия и что такое ударная вязкость стали. В практическом смылся это имеет значение: вязкость учитывает токарная обработка металла.
Что называют ударной вязкостью металлов
Для начала разберемся с теоретическим определением понятия. Ударная вязкость металла — это способность материала поглощать кинетическую энергию в процессе деформации и разрушения под действием ударной нагрузки. Как правило, такая энергия способна привести к пластичным и непластичным деформациям.
Лучше понять физическое определение поможет ответ на вопрос, по какой формуле определяется ударная вязкость:
KC=A/F , где A — работа, затраченная на разрушение образца, а F — площадь поперечного сечения материала. Единицы измерения ударной вязкости — Дж/м 2 .
Для вычисления опытным путем ударной вязкости используют метод маятникового копра. В лаборатории заготовки одинаковых размеров, находящихся в одних и тех же условиях, подвергают нагрузкам с постепенным их увеличением. При этом отмечают поведение образцов стали и степень их подверженности к нагрузкам.
Критическая хрупкость металлов
Снова начнем с определения. Критическая температура хрупкости — это температурный предел, при котором характер разрушения материала меняется от хрупкого к вязкому. Многим известно о том, что при нагревании металлы и сплавы переходят в мягкое, а позже — в вязкое состояние, через определенный промежуток времени, индивидуальный для каждого материала. Таким образом, при повышении температуры ударная вязкость увеличивается. А такой показатель, как хрупкость, повышается при снижении температуры.
При проверках эксплуатационных свойств металлических заготовок из стали проводят ряд экспериментов, при котором изменяется температура от очень высоких до очень низких. Критическая хрупкость металла — его разрушение при определенном температурном пороге, который ограничен максимум и минимумом.
Почему хрупкость металлов бывает различной
При постоянных условиях (низкая температура и нормальная влажность) на хрупкость металлов влияет:
- Микроструктура. Играет роль степень зернистости, наличие примесей и посторонних включений.
- Наличие и количество концентраторов критических воздействий. К ним относятся различные искусственные или естественные нарушения структуры материала (трещины, изломы, разрывы, полости).
- Эффект недавних этапов производств (остаточное напряжение и другие).
Для металлов характерна нестабильность свойств. Поэтому при изготовлении деталей необходимо корректно проводить тесты. От этого зависит точность определения подходящих условий эксплуатации для заготовок.
Методы испытаний
Используют несколько вариантов лабораторных испытаний, зависящих от следующих факторов:
- Тип нагрузки. Могут использоваться разные твердые инструменты (маятник, гиря, молот и другие).
- Вид фиксации. Применяют специальные опоры, холодильные контейнеры и иные решения.
- Наличие или отсутствие надреза определенной формы на одной из граней в области нанесения удара, что регулирует концентрацию предполагаемого напряжения.
Для последнего пункта предусматривают особенности прокатных изделий. Надрез делается только для листов с равномерной толщиной по всему периметру.
Все методы основаны на попытке разрушения испытуемого образца ударом падающего твердого предмета. К ним также относятся испытания по Шарпи, по Изоду и по Гарднеру, названные, как видно, в честь испытателей.
Маятниковый копер
Разновидности копра зависят от:
- характера деформации (сжатие, кручение, срез, изгиб или растяжение);
- величины нагрузки (обычные, скоростные и сверхскоростные);
- числа ударов (один или интервально несколько);
- условий проведения эксперимента (влажность, температура).
Копер популярен для проведения испытаний благодаря своей несложной конструкции и точности измерения ударной вязкости.
Понятие того, что такое ударная вязкость прописано в ГОСТ 9454. В соответствии с требованиями этого документа подбираются образцы:
- Наиболее распространенный — заготовка по Менаже. Образец используется для отбраковки деталей, предназначенных для высокоточных приборов. Заготовка квадратного сечения 10×10 мм с двух миллиметровым V-образным концентратором напряжения, пропиленным на глубину 2 мм.
- По Шарпи — образец применяется в случаях, которые не требуют сверхточности. Отличается от первого формой канавки. Здесь она напоминает букву U.
- Т-образные с определенными габаритами (a×b×h=55×10×11 мм). Применяют для самых серьезных исследований.
Важной характеристикой ударной вязкости является концентратор напряжений, он определяет информативность эксперимента и точность полученных данных. Обозначается критерий по-разному:
- KCV — по Менаже;
- KCT или KCU,от которого ударная вязкость зависит в большей степени.
KCU=KCЗ+KCР, где KCЗ — работа зарождения трещины, KCР — работа распространения трещины. В международной системе единиц ударная вязкость выражается в Дж/м 2 .
Определение ударной вязкости — важный этап при производстве металлических и стальных деталей. От него зависит качество и эксплуатационные характеристики готового продукта. Как например, высокоточная металлообработка.
Рассчитайте свой заказ
Отправьте нам чертеж или описание на [email protected] или заполните форму и мы рассчитаем стоимость и сроки выполнения заказа
Анатомика
Оставьте свой номер телефона и наш специалист свяжется с вами в ближайшее время
Читайте также: