Температура горения металлов таблица

Обновлено: 21.01.2025

Алюминий и его сплавы являются наиболее распространенными среди цветных металлов материалами и находят все более широкое применение в транспорте, строительстве, упаковке, электротехнике и производстве предметов быта. Благодаря уникальному комплексу свойств они успешно выдерживают конкуренцию со стороны других конструкционных материалов, таких как сталь, бетон, дерево, пластмассы, стекло и др.

К сожалению, в России – одном из крупнейших мировых производителей первичного алюминия – использование алюминия для этих целей существенно отстает от уровня развитых стран. Из произведенного в прошлом году 3,76 млн. т алюминия только немногим более 600 тыс. т было использовано в виде изделий для внутреннего потребления в стране. Причин этому несколько. В первую очередь низкий спрос на алюминиевую продукцию в России обусловлен значительным спадом промышленного производства. Однако немаловажную роль сыграло имевшее в советское время подчинение потребления нуждам военно-промышленного комплекса и, как следствие, недостаточная до настоящего времени осведомленность производителей и потребителей гражданской промышленной продукции о свойствах алюминия, его сплавов и их преимуществах перед другими материалами. Отсюда и ошибочные представления у многих, например, о токсичности или излишне высокой стоимости алюминия, невысокой коррозионной стойкости или недостаточной механической прочности его сплавов и др. А эти стереотипы создают препятствие применению алюминия в изделиях, сооружениях и машинах.

С очередным мифом мы столкнулись, знакомясь с материалами «круглого стола» по проблеме «Вентилируемые фасады: «за» или «против» [1]. В ходе дискуссии там были высказаны опасения в части применения для этих целей алюминия: мол «…алюминиево-магниевые сплавы горят… и специалисты-материаловеды, работающие в авиации, это прекрасно знают…». Наш почти сорокалетний опыт работы в авиационной промышленности, связанный с плавлением, литьем и горячей обработкой давлением практически всех марок алюминиевых деформируемых сплавов позволяет судить об ошибочности этого утверждения. Известно, что горение – это высокотемпературное окисление, характеризующееся высокой скоростью процесса и выделением значительного количества тепла. Поэтому представления о горючести алюминия и его сплавов прежде всего связаны с большим сродством алюминия к кислороду. Из рис. 1 [2]следует, что алюминий отличается от меди и железа значительно более высокой теплотой окисления. Его окисел очень стабилен и плохо восстанавливается. Это свойство широко используется в металлургии, где алюминий применяют в качестве раскислителя.

Отметим, что разница в сродстве к кислороду предопределила хронологию применения этих металлов человечеством. В бронзовом веке сначала использовали самородную медь, а затем стали получать ее сплавы с оловом, раздувая горн легкими через трубки. Для получения железа потребовалось уже восстановление руды древесным углем в сыродутных печах. И только с появлением электричества стало возможным разорвать прочную связь кислорода и алюминия и начать производство этого легкого металла.

Известно, что при нагреве мелко раздробленного алюминия он энергично сгорает на воздухе

При этом выделяется 31 кДж энергии на 1 г окислившегося алюминия, это чуть меньше тепла, образуемого при сгорании 1 л природного газа. Чем дисперснее частицы алюминия, тем меньшая необходима температура нагрева. Так, алюминиевый порошок, смешанный с выделяющими кислород веществами, начинает интенсивно гореть при температуре воспламенения 250-300 0С. Это широко используется в пиротехнике и производстве ракетного топлива. Распыленный же в воздухе алюминиевый порошок с размерами частиц менее 100 мкм способен образовывать взрывчатую смесь при комнатной температуре.

При проведении алюмотермической реакции алюминиевая дробь, смешанная с окисью железа (кузнечной окалиной), для воспламенения требует доведение локальной температуры до 1 100 0С. Затем реакция Fe2O3 + 2Al = 2Fe + Al2O3 продолжается самопроизвольно с образованием жидкого шлака из окиси алюминия и жидкого железа. При этом температура в зоне реакции достигает 2 400 0С. Следует отметить, что в 50-х гг. прошлого столетия в горнорудной промышленности ряда стран имели место случаи возгорания и взрывов при ударе алюминия ржавым железом или сталью в присутствии горючей окружающей среды. Природа явления также связана с алюмотермической реакцией, вызванной передачей кислорода между глубоко смешанными частицами алюминия и ржавчины. В нормальных атмосферных условиях таких случаев не наблюдалось. Поэтому в присутствии горючей окружающей среды алюминиевые детали, находящиеся в прямом контакте с ржавым железом или сталью, обязательно окрашивают и поддерживают покрытие в хорошем состоянии.

Химические свойства

Гидроксид алюминия
При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

  • с кислородом: 4Al + 3O2 = 2Al2O3
  • с галогенами: 2Al + 3Br2 = 2AlBr3
  • с другими неметаллами реагирует при нагревании: с серой, образуя сульфид алюминия: 2Al + 3S = Al2S3
  • с азотом, образуя нитрид алюминия: 2Al + N2 = 2AlN
  • с углеродом, образуя карбид алюминия: 4Al + 3С = Al4С3

Сульфид и карбид алюминия полностью гидролизуются:

Al2S3 + 6H2O = 2Al(OH)3 + 3H2S­ Al4C3 + 12H2O = 4Al(OH)3+ 3CH4­

Со сложными веществами:

  • с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи): 2Al + 6H2O = 2Al(OH)3 + 3H2­
  • со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов): 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­ 2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2
  • Легко растворяется в соляной и разбавленной серной кислотах: 2Al + 6HCl = 2AlCl3 + 3H2­ 2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2
  • При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия: 2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O Al + 6HNO3(конц) = Al(NO3)3 + 3NO2­ + 3H2O
  • восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe3O4 = 4Al2O3 + 9Fe 2Al + Cr2O3 = Al2O3 + 2Cr

Еще один пример возгорания дисперсного алюминия

горение капель алюминиевого расплава в шлаке, снятом с зеркала ванны печи. Исследования [3] показывают, что в этом случае сгорают капли размером 1 мм и менее. Их доля достигает в шлаке 20-25%. Для сокращения потерь металла используют или быстрое охлаждение шлака до температуры 450 0С в среде инертного газа или прессование горячего шлака с применением установок ALTEK PRESS (а также их аналогов) для выжимания 10-20% алюминия и коагулирования капель в более крупные образования.

Горению алюминия в дисперсной форме способствуют следующие факторы. Поверхность дисперсных частиц обладает повышенной реакционной способностью, обусловленной увеличенной долей несовершенств из-за дефектов решетки и примесей. Большое значение имеет также огромное выделение энергии вследствие большой удельной поверхности контакта металла с кислородом и невозможность ее отвода вглубь металла из-за малости размера частиц. В результате подъема температуры ослабляются защитные свойства окисной пленки.

В компактной же форме алюминий и алюминиево-магниевые сплавы ни в твердом, ни в расплавленном состояниях в атмосферных условиях не горят, не поддерживают горения и не способствуют распространению пламени. Это свойство алюминиевых сплавов позволяет успешно плавить их в пламенных отражательных печах, подвергая непосредственному окислительному воздействию пламени горелок. Алюминиевая поверхность под действием огня нагревается и при достижении температуры плавления начинает оплавляться, но не горит. Такое поведение металла при взаимодействии с кислородом обусловлено достаточно высокими защитными свойствами образующейся на поверхности окисной пленки и возможностью отвода тепла из зоны реакции вглубь металла вследствие высокой теплопроводности алюминия.

Известно, что свежевскрытая поверхность алюминия даже при комнатной температуре довольно быстро покрывается окисной пленкой, толщина которой в первые часы окисления достигает 1,7-2,1 нм. При дальнейшей выдержке на воздухе толщина оксидного слоя медленно в течение 70-80 дней увеличивается до 3 нм и затем рост пленки практически прекращается. С повышением температуры толщина окисной пленки на поверхности алюминия растет и при температурах, близких к точке плавления, достигает 100 нм. На чистом алюминии до температур 700-1 000 0Сона состоит из г-Al2O3, параметр кубической решетки которой (0,791 нм) почти точно соответствует удвоенному параметру г.ц.к. решетки алюминия (0,808 нм). Поэтому г-окись алюминия как бы является простым продолжением решетки алюминия. Это обес-печивает ее хорошую адгезию на металле, сплошность и отсутствие пор и трещин. Единственный способ проникновения кислорода к алюминию – диффузия ионов через окисную пленку – процесс достаточно медленный даже при высокой температуре нагрева. Вот почему несмотря на высокое сродство алюминия с кислородом и экзотермический характер реакции окисления процесс горения алюминия в результате этой реакции развития не получает.

Продукты горения (сгорания)

Продукты горения – это вещества (газообразные, жидкие или твердые вещества) и соединения, образующиеся в результате сложного физико-химического процесса горения веществ (материалов).
Под продуктами горения чаще всего понимают дым, токсичные продукты горения, сажу и другие.

Продукты горения сухой травы

Знание свойств и количества продуктов горения необходимо для расчета теплоты сгорания , температуры горения и других показателей, используемых для оценки пожаровзрывоопасности веществ (материалов), объектов с наличием этих веществ (материалов).

В сплавах алюминия с магнием

ведущую роль в окислении играет магний, поскольку является поверхностно активным элементом и обладает большим, чем алюминий, сродством к кислороду. Поэтому в алюминиево-магниевых сплавах, содержащих до 1,0% магния, окисная пленка состоит в основном из шпинели MgAl2O4 и при более высоких содержаниях магния – только из MgO.

Защитные свойства поверхностных окисных пленок оценивают в соответствии с известным правилом Пиллинга и Бедворта [5] с помощью коэффициента изменения объема в, который представляет собой отношение объема эквивалента полученного окисла Мок/сок (Мок – масса в грамм-эквивалентах, сок – плотность) к соответствующему объему металла М/с. Если коэффициент в 1, что наблюдается для алюминия и железа, то на поверхности металла образуется плотная защитная пленка окисла. Пленка на алюминиево-магниевом сплаве из MgO хуже защищает от окисления и потерь магния, чем г-Al2O3 или б-Al2O3 на алюминии, но и она не допускает возгорания металла при нагреве в кислородосодержащей атмосфере.

Приведенные в табл. 1 [5] данные свидетельствуют о том, что сплавы на основе железа и алюминиевые сплавы в отношении горения должны быть равнозначными. Это согласуется с результатами испытаний на горючесть алюминия марки 8112 и алюминиевых сплавов систем Al-Mn (3003, 3004, 3105), Al-Mg (5005), Al-Mg-Si (6061, 6063) в вертикальной трубчатой печи, проведенных фирмой et Laboratories в США по заказу компании Kaiser Aluminium в период с 1968 по 1972 гг. Как отмечается в материалах [6] Американской алюминиевой ассоциации, все указанные сплавы в ходе этих испытаний вели себя одинаково и были полностью негорючими, как стальные материалы.


Алюминий и его сплавы от стальных материалов отличает более низкая температура плавления, данные по которой для сплавов, используемых в производстве строительных конструкций, приведены в таблице 2 [7]. В результате алюминиевые сплавы уступают сталям в части огнестойкости.

Большинство алюминиевых сплавов начинают заметно снижать прочность при температурах 200-250 0С и поэтому имеют более низкий максимум рабочей температуры по сравнению со сталью. В качестве примера на рисунке 2 [8] приведены данные по изменению механических свойств прутков и листов из сплава АД31, широко используемого в отечественных алюминиевых строительных конструкциях.


Эта особенность алюминиевых сплавов должна учитываться при проектировании строительных конструкций. Необходимо предусматривать защиту структурной целостности конструкций от воздействия огня в течение требуемых периодов времени с помощью техники огнестойкой отделки или вспенивающихся защитных покрытий, использовать комбинированные профили со специальными термоизолирующими элементами, позволяющими увеличить время прогрева каркаса и уменьшить температурные деформации при нагреве, применять водяные завесы, создаваемые спринклерными системами пожаротушения, а также другие известные строителям приемы.

В 1962 г. американская компания Alcoa опробовала защиту от пожара алюминиевых конструкций зданий покрытиями из легкого бетона на основе вермикулита. Было доказано, что толщина покрытия, необходимая для предотвращения увеличения температуры алюминиевых колонн сверх 190 0С и 260 0С в течение периода до 4 часов, лишь на немного больше, чем для стали. Для стальных колонн, в соответствии с требованиями Американского общества по испытанию материалов, такие покрытия требуются для предохранения от нагрева выше 540 0С. Использование легкого бетона было признано эффективным способом защиты алюминиевых строений.

Приведем несколько примеров. Немецкая компания Schьco предлагает ряд системных решений для защиты зданий от огня за счет применения огнестойких алюминиевых дверей, фасадов и стекла, а также компонентов огнестойкой конструкции (фурнитуры, уплотнителей, крепежа и пр.), которые прошли тестирование в Технологическом центре в Билефельде – одном из крупнейших в мире испытательных центров. Ею разработаны системы Firestop для дверей и перегородок с огнестойкостью 30, 60 и 90 минут [9].

Большие успехи в создании огнестойких алюминиевых конструкций достигнуты российской . Применяя профили с термоизолирующими элементами «АГРИСОВГАЗ» и «ТАТПРОФ», а также многослойные композиционные стекла со вспенивающимся при температурах 150-300 0Си образующим теплозащитный коксовый слой клеевым составом, она освоила серийный выпуск фасадов и перегородок с огнестойкостью EI-60 и EI-90. На сертификационных испытаниях огнестойкая конструкция из системы AGS-150 противостояла открытому пламени 120 минут, показав реальное соответствие уровню EI-120 (I класс огнестойкости).

Классификация

Большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным ознакомить вас со следующим термином:

Классификация опасности веществ по степени воздействия на организм – это установление (ранжирование) уровней опасности веществ по их поражающему и повреждающему воздействию на организм человека и (или) животного. Более подробно о данной классификации читайте в материале по ссылке >>

Также ознакомьтесь с познавательным материалом по теме:

И, наконец, отличная способность алюминия

к отражению лучистой энергии обес-печивает лучшую защиту конструкции от перегрева при пожаре. При этом, чем больше длина волны света, тем интенсивнее (особенно в инфракрасной части спектра) она отражается алюминием. В реальных условиях поверхностная окисная пленка на алюминиевых сплавах уменьшает на 10-15% отражательную способность. Однако и в этом случае она значительно превышает 5% коэффициент отражения для окрашенной стали и 25% для нержавеющей стали. Это придает алюминиевым конструкциям дополнительные преимущества.

Таким образом, алюминий и его сплавы в компактной форме в атмосферных условиях не горят и не поддерживают горения. При проектировании конструкций необходимо учитывать весь комплекс свойств этих сплавов, как способствующих повышению огнестойкости, так и ее снижающих, а также применять способы защиты структурной целостности конструкции от воздействия огня. В мире накоплен огромный опыт успешного применения алюминия и его сплавов (в том числе и алюминиево-магниевых композиций) в конструкциях, требующих высокого сопротивления возгоранию и распространению пламени, включая суда, нефтяные платформы, грузовики с жидкими огнеопасными веществами, общественные здания (типа павильонов, торговых центров, арен) и др. сооружения. Поэтому есть все основания для широкого использования алюминиевых сплавов и в российской строительной практике.

Литература

1. «Вентилируемые фасады: «за» и «против»».//«Технологии строительства», № 1 (42), 2006, с. 6-18.

2. Уикс К. Е., Блок Ф. Е. «Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов». – М.: «Металлургия», 1965.

3. Zeng D., Pankov E. The best recycling technology and equipment for today’s Russian market with case study at VMC, Russia.//Труды 3-й международной конференции «Рециклинг алюминия». Москва, 29-31 марта 2006 г.

4. Добаткин В. И., Габидуллин Р. М., Кола-чев Б. А., Макаров Г. С. «Газы и окислы в алюминиевых деформируемых сплавах». – М.: «Металлургия», 1976.

5. «Окисление металлов» (под ред. Ж. Бенара). Т. 1. – М.: «Металлургия», 1968.

6. Fire Resistance and Flame Spread Performance of Aluminum and Aluminum Alloys. Second Edition. The Aluminum Association, Inc. July 2002. P. 21.

7. «Алюминиевые сплавы (свойства, обработка, применение)». – М.: «Металлургия», 1979.

8. Микляев П. Г. «Механические свойства легких сплавов при температурах и скоростях обработки давлением». Справочник. – М.: «Металлургия», 1994.

9. «Алюминиевые огнестойкие системы Schьco».//«Окна, двери, фасады». Выпуск 17. 2006, с. 134-137.

Химический справочник Цвет пламени при горении соединений, содержащих металлы

Цвет пламени при горении соединений, содержащих металлы

Металл, входящий в соединениеЦвет пламени
СтронцийТемно-красный
ЛитийМалиновый
КальцийКирпично-красный
НатрийЖелтый
МолибденЖелто-зеленоватый
БарийЖелтовато-зеленый
МедьЯрко-зеленый
БорБледно-зеленый
ТеллурЗеленый
ТаллийИзумрудный
СеленГолубой
МышьякБледно-синий
ИндийСине-фиолетовый
ЦезийРозово-фиолетовый
РубидийКрасно-фиолетовый
КалийФиолетовый

× Источник: Коленко Е. А. Технология лабораторного эксперимента: Справочник. -СПб.: Политехника, 1994. С. 736.

Горение металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие. Летучие металлы обладают относительно низкимитемпературами фазового перехода, температура их плавления менее1000 К, температура кипения < 1500 К. К этой группе относятся щелочные металлы (литий, натрий, калий) и ще­лочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше Тплав > 1000 К, а Ткип > 2500 К. Механизм горения металлов во мно­гом определяется состоянием их оксидов. Температура плавления летучих металлов зна­чительно ниже температуры плавления их оксидов. При этом оксиды представ­ляют собой достаточно пористые соединения.

При воздействии ИЗ на поверхность металла проис­ходит его испарение и окисление. При достижении НКПРП происходит их воспламенение. Зона диффузион­ного горения устанавливается у поверхности. Образующиеся пары, свободно диффундируют через пористую оксидную пленку и поступают в зону горения. Кипение металла вызы­вает периодическое разрушения оксидной пленки, что ин­тенсифицирует горние. Продукты горения, окислы металлов диффундируют не только к поверхности металла, способст­вуя образованию корки окисла (оксида), но и в окружающее про­странство, где, конденсируясь, образуются твердые частички в виде белого дыма. Белый плотный дым – признак горения летучих металлов.

У нелетучих металлов при горении на поверхности образуется более плотная окисная пленка, она хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку затруднена и поэтому крупные частицы алюминия, бериллия гореть не способны. Как правило, нелетучие металлы горят в виде стружки, порошка аэрозолей. Их горение проходит без об­разования плотного дыма. При горении металлических пылей следует знать особенности, отличающие их от горения органических пылей:

1) при приближении состава горючей смеси (металл-
воздух) к стехиометрической (a = 1) скорость распространения
пламени возрастает;

2) скорость горения металлических пылей одного порядка с горением смесей предельных углеводородов;

3) горение металлов возможно не только в окислительной среде, но и в продуктах горения органических веществ, в этом случае горение протекает за счет экзотермической реакции воспламенения воды до водорода.

4) аэрогель металлов повышает свои пожароопасные свойства при увлажнении. Склонен к самовозгоранию. И при воспламенении развивает температуру, в десятки раз превышающую горение сухой аэровзвеси. Так, испытания, проведенные ФГУ ВНИИПО МЧС России, показали следующиерезультаты:

· для испытаний были приготовлены две 40-литровые фляги с порошком циркония. Порошок в одном случае был сухой, в другом увлажненный. При воспламенении сухого циркония горение продолжалось 30 мин, Тпл = 1200 0 С, температура воздуха на расстоянии 40 м от фляги составила 300 0 С;

· при воспламенении увлажненного порошка циркония процесс горения не превысил 5 минут, столб пламени имел высоту около 30 м, температура воздуха на расстоянии 40 м от очага горения составила 1300 0 С.

Вопросы для самоконтроля

1. Как классифицируются органические, неорганические ТГМ?

2. Какие соединения относятся к комплексным ТГМ?

3. Как ведут себя при нагревании каучуки, термопласты?

4. Как ведут себя при нагревании древесина, реактопласты?

5. Какие ТГМ горят по гетерогенному механизму?

6. В чем состоит принцип действия огнезащиты ТГМ?

7. Какие способы теплопередачи участвуют в распространении горения по ТГМ?

8. От каких факторов зависит скорость горения ТГМ?

9. В чем сходство в горении жидкостей и ТГМ?

10. Что происходит при воспламенении древесины?

11. Как протекает процесс термического разложения (пиролиза) древесины?

12. При какой температуре происходит прекращение выхода летучих соединений и начало горения углеродистого остатка древесины?

Особенности горения и тушения металлов и гидридов металлов

По характеру горения металлов их делят на две группы: ле­тучие и нелетучие. Летучие металлы обладают относительно низкими температурами фазового перехода — температура плав­ления менее 1000 К, температура кипения не превышает 1500 К. К этой группе относятся щелочные металлы (литии, натрий, ка­лий и др.) и щелочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше. Тем­пература плавления, как правило, выше 1000 К. а температура кипения — больше 2500 К (табл. 1).
Механизм горения металлов во многом определяется состоянием их окисла. Температура плавления летучих металлов зна­чительно ниже температуры плавления их окислов. При этом по­следние представляют собой достаточно пористые образования.

При поднесении источника зажигания к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу, про­исходит их воспламенение. Зона диффузионного горения устанав­ливается у поверхности, большая доля тепла перелается металлу, и он нагревается до температуры кипения. Образующиеся пары, свободно диффундируя через пористую окисную пленку, посту­пают в зону горения. Кипение металла вызывает периодическое разрушение окисной пленки, что интенсифицирует горение. Про­дукты горения (окислы металлов) диффундируют не только к по­верхности металла, способствуя образованию корки окисла, но и в окружающее пространство, где, конденсируясь, образуют твер­дые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весь­ма плотная окисная пленка, которая хорошо сцепляется с по­верхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, на­пример, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плот­ной окисной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно часто наблюдается при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под окисной пленкой с последую­щим внезапным ее разрывом. Это, естественно, приводит к рез­кой интенсификации горения.

Основными параметрами их горения являются время воспламе­нения и сгорания. Из теории диффузионного горения следует, что время сгорания частицы металла tг пропорционально квадрату ее диаметра do. Экспериментальные данные показывают, что фактическая зависимость несколько отличается от теоретической. Так, для алюминия tг

Повышение концентрации кислорода в атмосфере интенсифицирует горение металла. Частички алюминия диаметром (53 ÷ 66) 10 -3 мм в атмосфере, содержащей 23% кис­лорода, сгорают за 12,7·10 -3 с, а при повышении концентрации окислителя до 60% — за 4,5·10 -3 с.

Однако для пожарно-технических расчетов большой интерес представляет не время сгорания частицы металла, а скорость рас­пространения пламени по потоку взвеси частиц металла в окис­лителе. В табл.2 приведены экспериментальные данные по скорости распространения пламени и массовой скорости выгора­ния взвеси частиц диаметрами менее 10 -2 мм и 3·10 -2 мм алю­миния в воздухе при различном коэффициенте избытка воздуха.

Особенности резки

К каждой металлической заготовке нужен свой подход. Остановимся на особенностях резки листов, поковок и труб.

Резка листов

Ручная техника применяется для обработки листов. В качестве горючего газа в этом случае часто используют ацетилен, пропан-бутан и природный газ. Первый вариант предпочтительнее, поскольку при его применении время разогрева заготовки минимально.

Листы толщиной 3–300 мм рассекаются резаками Р2А-01 или РЗП-01. Для материала толщиной до 800 мм необходимы специализированные инструменты типа РЗР-2.

При резке стали малой толщины возможны перегревы, коробление металла и оплавление кромок. Чтобы не допустить этого, лучше применять резку с последовательным расположением пламени и кислорода. Мощность пламени должна быть минимальная, а скорость работы — максимальная.

При использовании ручной кислородной резки актуальны следующие технологические приемы:

  • безгратовая резка (позволяет получить срезы без грата (заусенцев, избыточного выдавленного металла) на кромках, подразумевает использование сопла с расширением на выходе и кислорода чистотой более 99,5 %);
  • пакетная резка (позволяет получать качественные срезы тонких листов, подразумевает стягивание в одну пачку заготовок толщиной 1,5–2 мм).

Рисунок 3 — Резка листового металла

Горение – алюминий

Массовая скорость испарения пггф материала в режиме кипения определяется скоростью поступления тепла из зоны горения, которая пропорциональна разности температур горения Тг и кипения Тк. Поскольку Тт в рассматриваемой области давлений почти не изменяется, а Тк увеличивается с увеличением давления, то разность Тг-Тк уменьшается с ростом давления и вместе с этим уменьшается скорость газификации ( испарения) металла тгф а ( Тг-ТК) / ЬИСЯ. Таким образом, при увеличении давления происходит приближение зоны горения к поверхности металла и парофазное горение может прекратиться. Следовательно, при горении алюминия существует область давлений, в которой механизм горения алюминия контролируется скоростью его испарения, и в этой области происходит постепенный переход от парофазного горения при наличии кипения к горению в отсутствие кипения, при котором могут преобладать реакции на поверхности металла. [31]

Близкая к этому значению температура горения алюминия приводится в работах [ 11, с. Температуре 3533 К по формуле (1.15), описывающей кривую кипения, соответствует давление р 3 22 МПа. Отсюда ясно, что при давлениях, больших 3 22 МПа. [33]

Оборудование для кислородной резки

Поскольку для работы часто используют ацетилен, то в качестве оборудования нередко берут установки для ацетиленовой сварки. Вместо сварочных горелок там применяются газовые резаки. Наиболее распространенный вариант — резак инжекторного типа.

По своей конструкции резаки существенно отличаются от горелок. Они имеют дополнительные трубки, через которые подается режущий кислород, и наконечники с мелкими отверстиями для смеси газов. Центральное отверстие предусмотрено для подачи режущего кислорода.

Рисунок 4 — Схема установки для кислородной резки

Принцип работы машины для кислородной резки:

  1. заготовка располагается горизонтально, вентили резака закрыты;
  2. открывается кислородный вентиль, а после — вентиль горючего газа;
  3. смесь воспламеняется и регулируется по мощности;
  4. металл нагревается по площади реза;
  5. открывается вентиль с режущим кислородом, активирующим горение при достижении разогретого металла;
  6. в процессе появляются окислы, они удаляются струей кислорода;
  7. при окончании работы сначала закрывают вентиль режущего кислорода, потом горючего газа, в завершении — горелки.

Основной инструмент комплекта кислородной резки — резак. Существуют классификации этих элементов:

  • по виду горючего газа (резаки для жидких горючих смесей, ацетилена, газов-заменителей);
  • степени автоматизации (ручные, машинные);
  • назначению (специальные и универсальные);
  • смешиванию газов (безинжекторные и инжекторные);
  • мощности пламени (большая, средняя, малая).

Пожары класса D: горят ли металлы?

Фраза «горение металлов» у многих вызывает недоумение. Люди далекие от вопросов пожарной безопасности уверены, что металлы не горят. Однако это не совсем так. Некоторые металлы способны не просто гореть, но даже самовоспламеняться.

Основные опасности, которые несут в себе разные металлы:

  • Алюминий – легкий электропроводный металл с довольно низкой температурой плавления (660°С), в связи с чем при пожаре может произойти разрушение алюминиевых конструкций. Но самым опасным является алюминиевый порошок, который несет в себе угрозу взрыва и может гореть.
  • Кадмий и многие другие металлы под воздействием высоких температур выделяют токсичные пары. Поэтому тушение горящих металлов следует производить в защитных масках.
  • Щелочные металлы (натрий, калий, литий) вступают в реакцию с водой, образуя при этом водород и количество теплоты, необходимой для его воспламенения.
  • Чугун в виде порошка при воздействии высоких температур или огня может взорваться. Искры от чугуна могут спровоцировать возгорание горючих материалов, находящихся вблизи.
  • Сталь, которая не считается горючим металлом, также может загореться, если она находится в порошкообразном состоянии или в виде опилок.
  • Титан – прочный металл, основной элемент стальных сплавов. Плавится он при высоких температурах (2000°С) и в больших конструкциях или изделиях не горит. Но маленькие детали из титана вполне могут воспламениться.
  • Магний – один из главных элементов в легких сплавах, придающий им пластичность и прочность. Гореть могут хлопья и порошок магния. Твердый магний также может воспламениться, но только если его нагреть до температуры выше 650°С.

Как видно, гореть способны в основном измельченные металлы в виде порошка, стружки, опилок. Помимо указанных опасностей, металлы могут также стать причиной травм, ожогов и увечий людей.

Тушение пожаров класса D

Горение класса D происходит на поверхности металла при очень высокой температуре и сильным искрообразованием.

Вода как огнетушащее вещество совершенно не подходит для металлических изделий и порошков, так как многие из них вступают в реакцию с ней, вследствие чего пожар может только усилиться. Также попадание воды на горящий металл может способствовать разбрызгиванию его на людей и окружающие предметы.

Песком также нельзя тушить горящие металлы. Его применение может привести к взаимодействию этих двух материалов и усилить горение.

Для тушения металлов чаще всего используют специальные сухие порошки. Причем для каждого метала необходимо подбирать свой состав.

Горение магния и сплавов на его основе подавляется посредством сухих молотых флюсов, применяемых при их плавке. Флюсы способствуют отделению очага возгорания от воздуха с помощью образующейся жидкой пленки.

Литература:

  1. Чибисов А.Л., Соина Е.А., Габриэлян С.Г., Смирнова Т.М., Габриэлян Г.С. Предельные условия и особенности воспламенения, горения и тушения различных металлов// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VII международной конференции.-Украина, Ялта, 2001.-С.416.
  2. Чибисов А.Л., Смирнова Т.М., Громов А.Д., Акинин Н. И. Определение безопасной удельной скорости выделения водорода в технологическом процессе// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VIII международной конференции.-Украина, Ялта, 2003. С.356-357.
  3. Габриэлян С. Г., Габриэлян Г. С. Рекомендации по тушению жидкого натрия и пирофорных алюмоорганических катализаторов М.: Изд. ВНИИПО, 2000, 19 с.

Другие статьи по теме:

  • Основные неисправности подвески и рулевого управления — часть 1
  • Техника безопасности и основные требования ТБ во время разборки
  • Заточка и правка режущих инструментов
  • Основные неисправности подвески и рулевого управления — часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 1
  • Техника безопасности при эксплуатации моечного оборудования и применении моющих средств
  • Рабочее место. Особенности организации и ТБ
  • Техника безопасности при применении бензола и антифриза
  • Техника безопасности при работе на линии

Преимущества кислородной резки

Технология кислородной и кислородно-флюсовой резки имеет массу преимуществ. Среди них:

  1. большие толщины рассекаемого металла (до 500 мм), ограниченные лишь конструктивными особенностями установок кислородно-флюсовой резки;
  2. низкая себестоимость;
  3. высокое качество (современные машины позволяют достичь приемлемой ширины реза, отсутствия конусности реза, чистых кромок, не требующих обработки);
  4. возможность использования многорезаковых схем.

Качественную кислородную резку осуществляют специалисты «МетиСтр», в арсенале которых — высокоточные станки и богатый опыт.

Температура кипения и плавления металлов. Температура плавления стали

Температура плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Температура плавления металлов таблица

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Рабочая температура нержавеющей стали, температура применения жаропрочных сталей и сплавов

Рабочая температура нержавеющей стали, температура применения жаропрочных сталей и сплавов

Представлены таблицы значений максимальной рабочей температуры стали (нержавеющей, жаропрочной и жаростойкой) распространенных марок при различных сроках эксплуатации. Указана также температура, при которой сталь начинает интенсивно окисляться на воздухе.

Таблицы позволяют подобрать необходимую марку нержавеющей стали или сплава на железоникелевой основе под определенные условия эксплуатации и заданный срок службы.

В первой таблице приведена рабочая температура (максимальная температура применения) нержавеющих сталей и сплавов на железоникелевой и никелевой основах, предназначенных для работы в окислительной среде от 50 до 100 тысяч часов.

По данным таблицы видно, что при сверхдлительной эксплуатации максимальная рабочая температура рассмотренных марок стали не превышает 850°С (нержавеющая сталь 05ХН32Т), а «запас» до температуры интенсивного окалинообразования составляет от 200 до 500 градусов.

Температура применения стали при сверхдлительной эксплуатации (до 100 тыс. часов)
Марка стали или сплава Максимальная температура применения, °С Температура начала интенсивного окалинообразования на воздухе, °С
05ХН32Т (ЭП670) 850 1000
08Х15Н24В4ТР (ЭП164) 700 900
08Х16Н13М2Б (ЭИ680) 600 850
09X16Н4Б (ЭП56) 650 850
09Х14Н19В2БР (ЭИ695Р) 700 850
09Х14Н19В2БР1 (ЭИ726) 700 850
09Х16Н15М3Б (ЭИ847) 350 850
12X13 550 750
12Х18Н10Т 600 850
12Х18Н12Т 600 850
12Х18Н9Т 600 850
12ХН35ВТ (ЭИ612) 650 850…900
13Х14Н3В2ФР (ЭИ736) 550 750
15Х11МФ 580 750
16X11Н2В2МФ (ЭИ962А) 500 750
18Х11МНФБ (ЭП291) 600 750
18Х12ВМБФР (ЭИ993) 500 750
20Х12ВНМФ (ЭП428) 600 750
20Х13 500 750
31Х19Н9МВБТ (ЭИ572) 600 800
55Х20Г9АН4 (ЭП303) 600 750
ХН65ВМТЮ (ЭИ893) 800 1000
ХН70ВМЮТ (ЭИ765) 750 1000
ХН80ТБЮ (ЭИ607) 700 1050

Во второй таблице представлена максимальная рабочая температура стали при длительной эксплуатации длительностью до 10 тысяч часов. По значениям температуры в таблице видно, что при менее длительном применении стали возможно увеличение ее рабочей температуры. При этом «запас» до температуры интенсивного окалинообразования уменьшается.

Например, максимальная рабочая температура нержавеющей стали 12Х18Н9Т при длительной эксплуатации на 200 градусов выше, чем при сверхдлительной. Эта сталь может применяться при температуре до 800°С в течении 10 тысяч часов.

Максимальная рабочая температура из приведенных в таблице марок соответствует стали 10ХН45Ю — она может использоваться при 1250…1300°С.

Температура применения стали при длительной эксплуатации (до 10 тыс. часов)
Марка стали или сплава Максимальная температура применения, °С Температура начала интенсивного окалинообразования на воздухе, °С
03X21Н32М3Б (ЧС33) 550…750
03X21Н32М3БУ (ЧС33У) 550…750
05Х12Н2М 550
07Х15Н30В5М2 (ЧС81) 850
08Х16Н11М3 600
08X18Н10 800 850
08Х18Н10Т (ЭИ914) 800 850
09X18Н9 550
10Х18Н9 550
10Х23Н18 1000 1050
10ХН45Ю (ЭП747) 1250…1300
11Х11Н2В2МФ (ЭИ962) 600 750
12Х18Н9 800 850
12Х18Н9Т 800 850
12Х18Н10Т 800 850
12Х18Н12Т 800 850
12Х25Н16Г7АР (ЭИ835) 1050 1100
12ХН38ВТ (ЭИ703) 1000 1050
13Х11Н2В2МФ (ЭИ961) 600 750
14Х17Н2 (ЭИ268) 400 800
15Х12ВНМФ (ЭИ802) 780 950
16X11Н2В2МФ (ЭИ962А) 600 750
20Х23Н13 (ЭИ319) 1000 1050
20Х23Н18 (ЭИ417) 1000 1050
20Х25Н20С2 (ЭИ283) 1050 1100
36Х18Н25С2 1000 1100
37Х12Н8Г8МФБ (ЭИ481) 630 750
40Х9С2 650 850
40X10С2М (ЭИ107) 650 850
45Х14Н14В2М (ЭИ69) 650 850
45Х22Н4М3 (ЭП48) 850 950
ХН33КВЮ (ВЖ145, ЭК102) 1100
ХН45МВТЮБР (ВЖ105, ЭП718) 700
ХН54К15МБЮВТ (ВЖ175) 750
ХН55К15МБЮВТ (ЭК151) 750
ХН55МВЦ (ЧС57) 950
ХН55МВЦУ (ЧС57У) 950
ХН56К16МБВЮТ (ВЖ172) 900
ХН56КМЮБВТ (ЭК79) 750
ХН58МБЮ (ВЖ159, ЭК171) 1000
ХН59КВЮМБТ (ЭП975) 850
ХН60ВТ (ЭИ868, ВЖ98) 1000 1100
ХН60Ю (ЭИ559А) 1200 1250
ХН62БМКТЮ (ЭП742) 750
ХН62ВМЮТ (ЭП708) 900
ХН62МВКЮ (ЭИ867) 800 1080
ХН67МВТЮ (ЭП202) 800 1000
ХН68ВМТЮК (ЭП693) 950
ХН69МБЮТВР (ВЖ136, ЭК100) 650
ХН70ВМТЮ (ЭИ617) 850 1000
ХН70ВМТЮФ (ЭИ826) 850 1050
ХН70Ю (ЭИ652) 1100 1250
ХН73МБТЮ (ЭИ698) 700 1000
ХН75ВМЮ (ЭИ827) 800 1080
ХН75МБТЮ (ЭИ602) 1050 1100
ХН78Т (ЭИ435) 1100 1150

В третьей таблице указана максимальная рабочая температура нержавеющей стали при кратковременной эксплуатации (до 1000 часов). При таких сроках эксплуатации сталь и жаропрочные сплавы могут иметь рабочую температуру на 50…100 градусов выше, чем при длительной работе (до 10 тыс. часов).

Например, жаропрочный сплав ХН62МВКЮ при кратковременной эксплуатации может применяться при температурах до 900°С, а при длительной эксплуатации — только до 800°С.

Читайте также: