Технологический процесс плавки металла
Процесс плавки и рафинирования металлической руды и лома. Придание металлу формы на токарном станке. Общие сведения о технологических процессах, вредные и опасные факторы и их предотвращение. Основные опасные и вредные факторы литейного производства.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | реферат |
Язык | русский |
Дата добавления | 03.01.2014 |
Размер файла | 23,5 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
по дисциплине «Безопасность технологических процессов в металлургии»
на тему «Безопасность технологического процесса выплавки металлов»
1. Выплавка металлов
2. Общие сведения о технологических процессах
3. Вредные и опасные факторы и их предотвращение
4. Загрязнение и защита окружающей среды
Список использованной литературы
В процессе жизнедеятельности человек подвергается воздействию различных опасностей, под которыми обычно понимают явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать различные нежелательные последствия. Человек подвергается воздействию опасностей и в своей трудовой деятельности. Эта деятельность осуществляется в пространстве, называемом производственной средой. В условиях производства на человека в основном действуют техногенные, т.е. связанные с техникой, опасности, которые принято называть опасными и вредными производственными факторами.
Основными опасными и вредными факторами литейного производства являются выделения теплоты, пыли, токсических газов, аэрозолей, движущиеся машины и механизмы, подвижные части производственного оборудования.
1. Выплавка металлов
Металлургическая промышленность перерабатывает руду и металлолом для получения сплавов и чистых металлов. В металлообрабатывающих отраслях производится их обработка с целью производства деталей и компонентов машин, оборудования, приборов и инструментов, в которых нуждаются другие промышленные отрасли и сектора экономики. В качестве исходных материалов металлы и сплавы используются в различных видах, в частности в виде проката (круглого, полосового, тонколистового, трубчатого и т. п.) и холоднотянутых изделий (круглых, трубчатых, проволоки, мелкосортных профилей и т.п.). К основным технологическим методам обработки металла относятся следующие:
· Плавка и рафинирование металлической руды и лома
· Разливка расплавленного металла в профильные формы
· Придание металлу формы для волочения с помощью ковки или штамповки (горячая или холодная ковка под прессом)
· Сварка или резка тонколистового металла
· Агломерация (сжатие и нагрев материалов в порошковой форме из одного или нескольких металлов)
· Придание металлу формы на токарном станке
Разнообразные методы применяются и для отделки и покрытия металлов, в их числе шлифовка и полировка, абразивная струйная очистка, гальваностегия, оцинкование, термическая обработка, анодирование, нанесение защитного покрытия спеканием.
При плавке металлов ценные компоненты отделяются от бесполезного материала посредством физических и химических реакций. Конечным продуктом становится металл, содержащий заданное количество примесей. При первичной плавке металлы получают непосредственно из рудных концентратов, при вторичной - из лома и технологических отходов. К лому относятся пригодные для переработки остатки, обрезки металлических деталей, нестандартные бруски, листы и проволока.
плавка металл опасный вредный
Для производства металлов чаще всего применяются два технологических способа - пирометаллургический и гидрометаллургический. В пирометаллургическом процессе отделение металлов от других материалов происходит за счет теплоты - используется разница между потенциалами оксидирования, точками плавления, давлением паров, плотностью или смешиваемостью рудных компонентов при плавке. Гидрометаллургическая технология характеризуется тем, что металлы отделяются в водных растворах от других материалов с помощью методов, основанных на использовании разной растворимости их структурных составляющих, на различии их электрохимических свойств.
В пирометаллургическом процессе руда после ее обогащения (посредством дробления, измельчения, флотации и сушки) агломерируется или обжигается (кальцинируется) с другими материалами, такими как флюс. Затем концентрат плавится в доменной печи, полученные слитки подвергается третьему пирометаллургическому процессу для рафинирования металла до требуемого уровня чистоты. Каждый раз при нагревании руды или слитка образуются отходы. Вентиляционная пыль и технологические газы могут накапливаться в пылеуловителе с тканевыми фильтрами и удаляются или возвращаются в процесс в зависимости от остаточного содержания металла. Из газа захватывается также сера, и, если ее концентрация превышает 4%, она может быть превращена в серную кислоту. В зависимости от происхождения руды и остаточного содержания основного металла из нее в качестве побочных продуктов могут извлекаться различные металлы, например, такие как золото и серебро.
При плавке сульфидной руды образуется частично оксидированный металлический концентрат (штейн). При плавке ненужный материал, обычно железо, образует с флюсом шлак и превращается в оксид. Ценные металлы обретают кондиции на этапе конвертерного процесса (в конвертерной печи). Этот метод используется при производстве меди и никеля. Железо, феррохром, свинец, магний и железистые соединения получаются посредством перегонки руды с древесным углем и флюсом (известняком) - плавка обычно проводится в электрической печи (см. главу Железо и Сталь). Еще один пример пирометаллургического процесса - электролиз расплавленных солей.
Высокая температура, требуемая для пирометаллургической обработки, достигается с помощью сжигания ископаемого топлива или использованием экзотермической реакции самой руды (например, во взвешенной плавке). Взвешенная плавка может служить примером энергосберегающего пирометаллургического процесса, при котором оксидируются железо и сера рудного концентрата. Экзотермическая реакция в сочетании с системой рекуперации теплоты обеспечивает ощутимую экономию энергии. Высокая рекуперация серы в этом процессе благоприятна также для защиты окружающей среды. Такой процесс используется в большей части недавно построенных меде- и никелеплавильных цехов.
Примерами гидрометаллургического процесса являются выщелачивание, осаждение осадков, электролитическое восстановление, ионообмен, мембранное разделение и экстракция растворителем. Первый этап гидрометаллургического процесса - выщелачивание ценных металлов из менее ценного материала, например, с помощью серной кислоты. Выщелачиванию часто предшествует предварительная обработка (например, сульфатизирующий обжиг). Процесс выщелачивания, как правило, требует высоких давления и температуры, присутствия кислорода. Выщелачивание можно осуществлять и с применением электричества. Искомые металл или его соединения получают из выщелачивающего раствора посредством осаждения или восстановления различными методами. Так, восстановление используется при производстве кобальта и никеля с применением газа.
Электролиз металлов в водных растворах также считается гидрометаллургическим процессом. При электролизе ионы металла преобразуются в металл. Находящийся в слабом кислотном растворе он осаждается на катодах под воздействием электрического тока. Посредством электролиза могут быть рафинированы многие цветные металлы.
Часто, в зависимости от обрабатываемого рудного концентрата и типа рафинируемого металла, металлургический процесс представляет собой сочетание пирометаллургического и гидрометаллургического процессов. Пример - производство никеля.
Предотвращение вредных факторов и травматизма в металлургической промышленности является, главным образом, проблемой обучения и проблемой технической. Медицинский аспект тут вторичен, играют только дополнительную роль. Наибольший эффект в предотвращении вредных факторов дают обмен информацией и сотрудничество между отделами планирования, техники безопасности и профессиональной гигиены, а также компаниями.
Самыми экономичными и результативными становятся меры, которые принимаются на этапе планирования нового процесса или создания новой установки. При планировании производственных мощностей необходимо принимать во внимание, как минимум, следующие аспекты:
· Потенциальные источники загрязняющих атмосферу веществ должны быть закрыты корпусом, изолированы;
· Технологическое оборудование должно быть сконструировано и размещено так, чтобы обеспечивался свободный доступ для его обслуживания;
· Зоны, где возможно непредвиденное возникновение вредных факторов (например, существует угроза поражения электричеством или отравления цианистым водородом), необходимо постоянно контролировать, предусмотрев надежную систему предупреждения об опасности;
· Ядовитые химреагенты должны добавляться так, чтобы контакт человека с ними был технологически исключен;
· Для соблюдения личной профессиональной гигиены необходимо использовать пробоотборники, позволяющие оценивать реальный уровень опасного воздействия вредных факторов. Необходим регулярный фиксируемый контроль загазованности, запыленности, шума;
· При планировании технологического пространства следует учитывать возможные изменения или расширение производства, чтобы не ухудшать стандарты профессиональной гигиены;
· Должна действовать система непрерывной подготовки специалистов, мастеров, бригадиров и рабочих по технике безопасности, санитарии и гигиене. Особое внимание следует уделять разъяснению вопросов, связанных с вредными факторами на конкретных рабочих местах, вновь принятым работникам. Такая специальная подготовка необходима каждый раз при внедрении нового технологического процесса;
· Несоблюдение личной гигиены при приеме пищи, курение в рабочей зоне способны увеличить незащищенность от вредных факторов;
· Руководство предприятия обязано наладить такую систему контроля за техникой безопасности, за уровнем санитарии и гигиены, которая позволяла бы получать надежные данные для принятия технических и экономических решений;
В литейном производстве уровень травматизма выше, чем во многих других отраслях. Разбрызгивание или разлив расплавленного металла и шлака; взрывы газа и при контакте расплава с водой; столкновения (наезд) локомотивов, вагонов, передвижных кранов и другого мобильного оборудования; падение тяжелых предметов и падение с высоты, на скользких полах и переходах - таков далеко не полный перечень источников травматизма.
К мерам предосторожности относятся следующие: надлежащая подготовка работников, соответствующие средства индивидуальной защиты (каска, предохранительная обувь, перчатки и т.п.); безопасное хранение материалов; профилактическое обслуживания оборудования; строгое соблюдение правил движения подвижного оборудования (установленные маршруты, эффективная сигнализации); программа мер предупреждения травм из-за падений.
3.2 Термическое воздействие
Заболевания, связанные с температурным воздействием, такие как стенокардия, вызываются, главным образом, инфракрасным излучением от печей и расплавленного металла. Это - особая проблема при напряженной работе в условиях высоких температур.
Ее решению способствуют размещение перед печами водяной или воздушной завесы, местное охлаждение, будки с кондиционерами, теплоизолирующая защитная одежда, достаточно продолжительная акклиматизация и регулярные перерывы в работе, позволяющие отдохнуть в прохладном месте, надлежащее количество напитков для обеспечения повышенной потребности организма в жидкости.
3.3 Химические вредные факторы
У плавильных печей высока незащищенность от вредных паров, пыли, газов, химических веществ. При дроблении и измельчении руды опасное воздействие оказывают диоксид кремния и токсичная металлическая пыль (содержащая свинец, мышьяк, кадмий и т.п.).
Ограничивать выбросы пыли и газа помогают защитные укрытия рабочей зоны, автоматизация технологического процесса, местная вытяжная вентиляция, смачивание материалов, исключение непосредственных контактов с ними. Если названных мер недостаточно, прибегают к специальной защите органов дыхания.
При плавке из сульфидных руд и моно оксида углерода в процессе сгорания выделяется значительный объем диоксида серы. Снизить опасность помогает разрежающая и местная вытяжная вентиляция.
Как побочный продукт при плавке образуется серная кислота, используемая в электролитическом рафинировании и выщелачивании металлов. Она вредна как в жидком состоянии, так и в виде паров (тумана). От нее следует защищать кожу и глаза, чему во многом способствует местная вытяжная вентиляция.
При получении некоторых металлов возникают особые вредные факторы. К ним следует отнести карбонил никеля (при рафинировании никеля), фториды (при плавке алюминия), мышьяк (при плавке и рафинировании меди и свинца), а также ртуть и цианид (при рафинировании золота). Чтобы предохраниться от них, нужны исключительные меры предосторожности.
3.4 Другие вредные факторы
Яркое видимое и инфракрасное излучение расплавленного металла пагубно для зрения, способно спровоцировать катаракту. Средства предохранения от него - очки и щитки. Интенсивное инфракрасное излучение вызывает ожоги кожи, если не использовать защитную одежду.
Установки для дробления и измельчения руды, газовые воздуходувки, электропечи высокой мощности производят шумы, угнетающие органы слуха. Если невозможна изоляция источника шума, следует прибегать к индивидуальным средствам защиты (например, наушникам). Необходимы регулярные аудиометрические исследования, на основании которых может быть составлена программа специальных мер.
Вредные электрические факторы возникают при электролитических процессах. К мерам предосторожности относятся надлежащее обслуживание электрических систем, наличие блокировки и маркировки; изоляционные перчатки, одежда и инструменты; при необходимости - устройства, предотвращающие замыкание на землю. Контакт с материалами, их подъем чреваты травмами спины и рук. Использование вспомогательных механизмов, в частности подъемных, заметно снижает остроту данной проблемы.
5. Загрязнение и защита окружающей среды
Выбросы таких опасных газов, как диоксид серы, сульфид водорода и хлорид водорода загрязняют воздушную среду, а также могут вызывать коррозию металла и бетона. Стойкость растительности к воздействию диоксида серы различна в зависимости от ее типа и характера почвы (в целом, вечнозеленые деревья менее устойчивы, чем лиственные). В выбросах могут содержаться неспецифические твердые частицы, фториды, свинец, мышьяк, кадмий и многие другие токсичные металлы. Сточные воды несут с собой многообразные опасные вещества, например, серную кислоту. Твердые отходы могут быть загрязнены мышьяком, свинцом, сульфидом железа, диоксидом кремния и т.д.
На плавильном производстве необходимо предусмотреть оценку и регулирование выбросов. Эта работа, имеющая свою специфику, должна выполняться персоналом, тщательно изучившим химические свойства материалов, выбрасываемых при технологических процессах. Их физическое состояние, температура, при которой они покидают процесс, компоненты газового потока, многие иные факторы - все это приходится учитывать при планировании мероприятий, направленных на снижение уровня загрязнения воздушной среды. Целесообразно также предусмотреть регистрацию метеорологических данных и готовность уменьшить количество выбросов при определенных погодных условиях. Необходимы выезды в населенные пункты и сельскохозяйственные районы для регулярного наблюдения за степенью загрязнения воздушной среды.
Источником диоксида серы - одного из главных загрязняющих веществ - является получаемая в значительных количествах серная кислота. Соблюдение стандартов выброса диоксида серы и других вредных газообразных отходов в отдельных случаях обеспечивается путем очистки с помощью тканевых фильтров и электростатических отстойников.
В таком процессе флотации, как концентрация меди, используется значительный объем воды. Большая часть его не сбрасывается, а возвращается в технологический процесс. Хвостовые погоны перекачиваются как шлам в отстойные водоемы; на очистных установках происходит обработка воды.
К твердым отходам относятся шлаки, шлам, образующийся при преобразовании диоксида серы в серную кислоту, отстой в прудах - хранилищах отходов. Некоторые шлаки вновь концентрируют и возвращают в плавильные печи для переработки или извлечения присутствующих в них металлов. Многие отходы вредны и должны храниться с соблюдением правил охраны окружающей среды.
Материаловед
Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.
Производство стали в мартеновских печах
Мартеновский процесс (1864—1865, Франция). Впервые после многочисленных попыток удалось получить на поду пламенной печи жидкую сталь, так как до этого таким путем получали сталь в тестообразном состоянии. Мартен применил для сталеплавильной печи принцип регенерации тепла отходящих печных газов для подогрева топлива и воздуха, подаваемого в печь. В период до семидесятых годов ХХ века являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.
Мартеновская печь (рис. 3) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.
Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11, а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.
Рис. 3. Схема мартеновской печи
Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. Своды выполняют из термостойкого хромомагнезитового кирпича, что позволяет нагревать его до 1800 0 С. Горячий газ подают в печь по центральному каналу, воздух – по двум боковым. Поэтому с обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.
Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.
Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, который предназначен для нагрева воздуха и газов.
Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который, проходя через насадку, нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом. На выходе из головки образуется факел 7, направленный на шихту 6.
Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли, направляются во второй регенератор.
Охлаждённые газы покидают печь через дымовую трубу 8.
После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.
Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.
Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают мало спекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.
В зависимости от состава шихты, используемой при плавке, различают разновидности мартеновского процесса:
– скрап-процесс, при котором шихта состоит из стального лома (скрапа) и 25…45 % чушкового передельного чугуна, процесс применяют на заводах, где нет доменных печей, но много металлолома.
– скрап-рудный процесс, при котором шихта состоит из жидкого чугуна (55…75 %), скрапа и железной руды (15…30 % от массы металлической части шихты). Железную руду добавляют для ускорения окисления примесей чугуна. Процесс применяют на металлургических заводах, имеющих доменные печи.
Футеровка печи может быть основной и кислой. Если в процессе плавки стали в шлаке преобладают основные оксиды, то процесс называют основным мартеновским процессом, а если кислые – кислым.
Наибольшее количество стали производят скрап-рудным процессом в мартеновских печах с основной футеровкой.
В печь загружают железную руду и известняк, а после подогрева подают скрап. Во время загрузки твердых материалов в печь расходуется максимальное количество топлива для обеспечения быстрого прогрева и расплавления шихтовых материалов. После разогрева скрапа в печь заливают жидкий чугун. В период плавления за счет оксидов руды и скрапа интенсивно окисляются примеси чугуна: кремний, фосфор, марганец и частично углерод. Оксиды образуют шлак с высоким содержанием оксидов железа и марганца (железистый шлак). После этого проводят период «кипения» ванны: в печь загружают железную руду и продувают ванну подаваемым по трубам 3 кислородом. В это время отключают подачу в печь топлива и воздуха и удаляют шлак.
Для удаления серы наводят новый шлак, подавая на зеркало металла известь с добавлением боксита для уменьшения вязкости шлака. Содержание CaO в шлаке возрастает, а FeO уменьшается.
В период «кипения» углерод интенсивно окисляется, поэтому шихта должна содержать избыток углерода. На данном этапе металл доводится до заданного химического состава, из него удаляются газы и неметаллические включения.
Затем проводят раскисление металла в два этапа. Сначала раскисление идет путем окисления углерода металла, при одновременной подаче в ванну раскислителей – ферромарганца, ферросилиция, алюминия. Окончательное раскисление алюминием и ферросилицием осуществляется в ковше, при выпуске стали из печи. После отбора контрольных проб сталь выпускают в ковш.
В основных мартеновских печах выплавляют стали углеродистые конструкционные низко- и среднелегированные (марганцовистые, хромистые), кроме высоколегированных сталей и сплавов, которые получают в плавильных электропечах.
В кислых мартеновских печах шлак кислый и не содержит свободной извести. Следовательно, удаления серы и фосфора в такой печи не происходит, поэтому применяют шихту с низким содержанием серы и фосфора. Выплавляют качественные стали и высококачественные легированные стали. Стали содержат меньше водорода и кислорода, неметаллических включений. Следовательно, кислая сталь имеет более высокие механические свойства, особенно ударную вязкость и пластичность, её используют для особо ответственных деталей: коленчатых валов крупных двигателей, роторов мощных турбин, шарикоподшипников.
Основными технико-экономическими показателями производства стали в мартеновских печах являются:
– производительность печи – съём стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ;
– расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.
С укрупнением печей увеличивается их экономическая эффективность.
Посмотрите видеофильм «Выплавка стали в мртеновских печах».
Производство стали в кислородных конвертерах
Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.
Первые опыты в 1933—1934 – Мозговой.
В промышленных масштабах – в 1952—1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.
Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.
Вместимость конвертера – 130…350 т жидкого чугуна. Конвертер крепится в литом стальном кольце, имеющем две цапфы, которыми оно опирается на подшипники двух стоек, поэтому в процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.
Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30 %), известь для наведения шлака, железная руда, а также боксит Al2O3 и плавиковый шпат CaF2 для разжижения шлака.
Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 4.
После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.
Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап (рис. 4, а), заливают чугун при температуре 1250…1400 0 C (рис. 4, б).
Последовательность технологических операций при выплавке стали в кислородном конвертере
Рис. 4. Последовательность технологических операций при выплавке стали в кислородных конвертерах
После этого конвертер поворачивают в рабочее положение (рис. 4, в), внутрь вводят охлаждаемую фурму и через неё подают кислород под давлением 0,9…1,4 МПа. Фурма не доходит до уровня металла на 1200…1400 мм, поэтому кислород подается на поверхность залитого в конвертер металла, а не вдувается под зеркало металла (как воздух в ранее применяемых конвертерах). Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Растворенный кислород окисляет кремний, марганец, углерод в металле, и их содержание падает. Происходит разогрев металла теплотой, выделяющейся при окислении.
Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.
Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).
Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 4, г), где раскисляют осаждающим методом ферромарганцем, ферросилицием и алюминием, затем сливают шлак (рис. 4, д).
Недостатком кислородно-конвертерного способа получения стали является большое пылеобразование, обусловленное обильным окислением и испарением железа.
В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.
Плавка в конвертерах вместимостью 130…300 т заканчивается через 25…30 минут.
Посмотрите учебный видеофильм «Технология выплавки стали в кислородных конвертерах».
Производство стали в электропечах
Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами:
а) легко регулировать тепловой процесс, изменяя параметры тока;
б) можно получать высокую температуру металла,
в) возможность создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет раскислять металл с образованием минимального количества неметаллических включений.
Электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сплавов и сталей.
Различают дуговые и индукционные электропечи.
Дуговая плавильная печь
Схема дуговой печи показана на рис. 5. Дуговая печь питается трёхфазным переменным током. Имеет три цилиндрических электрода 9 из графитизированной массы, закреплённых в электрододержателях 8, к которым подводится электрический ток по кабелям 7. Между электродом и металлической шихтой 3 возникает электрическая дуга. Корпус печи имеет форму цилиндра. Снаружи он заключён в прочный стальной кожух 4, внутри футерован основным или кислым кирпичом 1. Плавильное пространство ограничено стенками 5, подиной 12 и сводом 6. Съёмный свод 6 имеет отверстия для электродов. В стенке корпуса имеется рабочее окно 10 (для слива шлака, загрузки ферросплавов, взятия проб), закрытое при плавке заслонкой. Готовую сталь выпускают через сливное отверстие со сливным желобом 2. Печь опирается на секторы и имеет привод 11 для наклона в сторону рабочего окна для скачивания шлака или желоба для слива стали. Печь загружают при снятом своде.
Вместимость печей составляет 0,5…400 тонн.
Схема дуговой плавильной печи
Рис. 5. Схема дуговой плавильной печи
В металлургических цехах используют электропечи с основной футеровкой, а в литейных – с кислой.
В основной дуговой печи осуществляется плавка двух видов:
а) на шихте из легированных отходов (методом переплава);
б) на углеродистой шихте (с окислением примесей).
Плавку на шихте из легированных отходов ведут без окисления примесей. Шихта для такой плавки должна иметь меньше, чем в выплавляемой стали марганца и кремния, а также пониженное содержание фосфора. После расплавления шихты из металла удаляют серу, наводя основной шлак, при необходимости науглероживают и доводят металл до заданного химического состава. Проводят диффузионное раскисление, подавая на шлак измельченные ферросилиций, алюминий, молотый кокс. Так выплавляют легированные стали из отходов машиностроительных заводов.
Плавку на углеродистой шихте применяют для производства конструкционных углеродистых сталей. Плавка проводится в два периода: окислительный и восстановительный.
В печь загружают шихту: стальной лом, чушковый передельный чугун, электродный бой или кокс для науглероживания металлов и известь. Опускают электроды, включают ток. Шихта под действием электродов плавится, металл накапливается в подине печи. Во время плавления шихты кислородом воздуха, оксидами шихты и окалины активно окисляются железо, кремний, фосфор, марганец, частично, углерод. Оксид кальция из извести и оксид железа образуют основной железистый шлак, способствующий удалению фосфора из металла. После нагрева до 1500…1540 0 C загружают руду и известь, проводят период «кипения» металла, происходит дальнейшее окисление углерода. Кипение металла ускоряет удаление из него газов, неметаллических включений, способствует удалению фосфора. Периодически шлак удаляют и добавляют руду и известь. Когда содержание углерода становится на 0,1 % меньше заданного, кипение прекращают. После прекращения кипения удаляют шлак.
Во время восстановительного периода плавки металл раскисляют белым шлаком (известь, плавиковый шпат, кокс и ферросилиций) и приступают к удалению серы и раскислению металла до заданного химического состава. Раскисление производят осаждением и диффузионным методом. Для определения химического состава металла берут пробы и при необходимости вводят в печь ферросплавы для получения заданного химического состава. Затем выполняют конечное раскисление алюминием и силикокальцием, и выпускают сталь в ковш.
При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов.
В дуговых печах выплавляют высококачественные углеродистые стали – конструкционные, инструментальные, жаростойкие и жаропрочные.
Индукционные тигельные плавильные печи
В индукционных плавильных печах выплавляют наиболее качественные коррозионно-стойкие, жаропрочные и другие стали и сплавы, к которым предъявляются повышенные требования.
Вместимость - от десятков килограммов до 30 тонн.
Индукционные печи могут оснащаться системами для создания вакуума или контролируемых атмосфер.
Так как в индукционных печах тепло возникает в металле, шлак в них нагревается только через металл.
Схема индукционной тигельной печи представлена на рис. 6.
Схема индукционной тигельной печи
Рис. 6. Схема индукционной тигельной печи
Печь состоит из водоохлаждаемого индуктора 3, внутри которого находится тигель 4 (основные или кислые огнеупорные материалы) с металлической шихтой, через индуктор от генератора высокой частоты проходит однофазный переменный ток повышенной частоты (500…2000 Гц).
При пропускании тока через индуктор в металле 1, находящемся в тигле, индуцируются мощные вихревые токи, что обеспечивает нагрев и плавление металла. Для уменьшения потерь тепла печь имеет съёмный свод 2.
Тигель изготавливают из кислых (кварцит) или основных (магнезитовый порошок) огнеупоров. Для выпуска плавки печь наклоняют в сторону сливного жёлоба.
Под действием электромагнитного поля индуктора при плавке происходит интенсивная циркуляция жидкого металла, что способствует ускорению химических реакций, получению однородного по химическому составу металла, быстрому всплыванию неметаллических включений, выравниванию температуры.
Выплавка стали из чугуна в индукционных печах распространения не получила, так как окисление и рафинирование с помощью шлака в них почти невозможно.
В индукционных печах выплавляют сталь и сплавы из легированных отходов методом переплава, или из чистого шихтового железа и скрапа с добавкой ферросплавов методом сплавления.
После расплавления шихты на поверхность металла загружают шлаковую смесь для уменьшения тепловых потерь металла и уменьшения угара легирующих элементов, защиты его от насыщения газами.
При плавке в кислых печах, после расплавления и удаления плавильного шлака наводят шлак из боя стекла (SiO2). Для окончательного раскисления перед выпуском металла в ковш вводят ферросилиций, ферромарганец и алюминий.
В основных печах раскисление проводят смесью из порошкообразной извести, кокса, ферросилиция, ферромарганца и алюминия.
В основных печах выплавляют высококачественные легированные стали с высоким содержанием марганца, титана, никеля, алюминия, а в печах с кислой футеровкой – конструкционные легированные другими элементами стали.
В печах можно получать стали с незначительным содержанием углерода и безуглеродистые сплавы, так как нет науглероживающей среды.
При вакуумной индукционной плавке, индуктор, тигель, дозатор шихты и изложницы помещают в вакуумные камеры. Получают сплавы высокого качества с малым содержанием газов, неметаллических включений и сплавы, легированные любыми элементами.
Посмотрите учебный видеофильм «Оборудование электросталеплавильного цеха».
Варианты технологии электроплавки стали
Объемно-планировочные решения ЭСПЦ в первую очередь определяются заданным сортаментом сталей и выбранной технологией их производства. Из всего многообразия технологических процессов получения электростали можно выделить следующие:
- Переплав легированных отходов с продувкой ванны кислородом. Мартеновский сортамент конструкционных малоуглеродистых и углеродистых сталей выплавляют одношлаковым процессом. Электропечной сортамент – нержавеющие, подшипниковые, электротехнические, быстрорежущие и др. специальные стали – выплавляют, как правило, двухшлаковым процессом,
- Плавка электростали «на свежей шихте» – с использованием рядового стального лома и углеродистых отходов с полным окислением. Электропечной сортамент и легированные конструкционные стали мартеновского сортамента выплавляют двухшлаковым процессом; углеродистые стали – получают одношлаковым процессом.
- Плавка электростали на шихте из металлизованных окатышей и собственных легированных отходов. Этот метод применяется при выплавке высоколегированных марок сталей, к которым предъявляются повышенные требования по примесям цветных металлов. Обычно, это трансформаторные, электротехнические стали, ряд марок малолегированных и углеродистых сталей.
- Технология высшего уровня – получение стали дуплекспроцессом дуговая сталеплавильная печь (ДСП) – агрегат комплексной обработки стали (АКОС).
Первые три технологических варианта довольно подробно изложены в учебной и технической литературе по электроплавке стали. Поэтому мы не будем останавливаться на физико-химических особенностях каждого процесса или его отдельных периодах, а охарактеризуем лишь вкратце технологический регламент, присущий этим трем технологиям.
В общем технология выплавки стали в дуговых электропечах независимо от вида применяемой футеровки, источника питания постоянного или переменного типа, а также марки стали включает периоды плавки, характеризуемые работой печи под током и бестоковой задолженности печи. Если ранее мы оперировали понятием «длительность плавки», то в последнее время возник термин «длительность цикла плавки». Первый термин относится к работе ДСП с полным выпуском всех продуктов после каждой плавки и длительность плавки (Тпл) определяется как сумма длительности всех периодов плавки плюс межплавочные простои.
где: t3 , tзав, tок, tвос, tв, tпр – длительность соответственно заправки, завалки, окислительного, восстановительного периодов, выпуска и простоев в промежутках между концом выпуска и началом заправки. В табл. 11 1 приведены усредненные показатели длительности периодов плавки для печей различной вместимости для массового сортамента сталей при организации двухшлакового процесса.
Заправка печи
После выпуска из печи металла и шлака печь очищают от остатков металла и шлака и производят заправку откосов печи сыпучими материалами в смеси со связкой, в качестве которой чаще всего применяют жидкое стекло. При нарушении футеровки подины производят ее наварку, путем подачи на поврежденные места заправочных огнеупорных материалов. На малых печах заправка ведется вручную, на больших печах, вместимостью 50 т и более, заправку ведут с помощью заправочных машин. В печах с эркерным выпуском стали после каждой плавки ведут заправку верхней части откосов, а после каждого цикла (15-20 плавок) печь опорожняют, подину очищают от остатков металла и шлака и проводят заправку подины обычным способом. Такой режим работы печи позволяет значительно сократить среднее время заправки печи.
Завалка шихты
Период расплавления шихты
После завалки основной металлошихты печь укрывают сводом, опускают электроды и приступают к расплавлению металлолома При этот электроды опускаются вниз, прорезая колодцы в шихте и металл стекает на подину. При достижении электродами расплава горение дуг стабилизируется. Для интенсификации плавления в печь подают кислород для подрезки лома и дополнительного нагрева расплава. В последнее время для выравнивания фронта плавления и повышения скорости плавления в холодных зонах печи устанавливают топливнокислородные горелки. С целью использования максимальной мощности трансформатора при проплавлении основной части металлошихты, когда дуги оголяются и не экранируются, наводят вспененный шлак за счет вдувания в шлак порошкообразных углеродистых материалов. Эти технологические приемы свойственны для технологии высшего уровня и будут рассмотрены более подробно далее. В классической технологии одновременно с металлошихтой в печь дают шлакообразующие, что благоприятствует протеканию процесса дефосфорации еще до окончания полного расплавления шихты, когда температура расплава невысокая. По окончанию периода плавления берут пробу металла и приступают к окислительному периоду.
Окислительный период плавки
В этот период проводят дефосфорацию металла, удаляют газы и неметаллические включения, осуществляют подогрев металла и выравнивают его температуру. Для реализации этих технологических операций наводят окислительный высокоосновной шлак, ведут продувку ванны кислородом с целью окисления углерода с образованием пузырьков моноокиси углерода, что способствует кипению ванны, ускоряя тем самым дефосфорацию и дегазацию металла от водорода и азота, которые удаляются вместе с пузырьками моноокиси углерода. Процесс кипения совмещают с постоянным обновлением шлака за счет присадки шлакообразующих и самопроизвольного схода шлака через порог рабочего окна. Кратность шлака окислительного периода равна 0,02-0,04. Для обеспечения условий дефосфорации и дегазации металла достаточно окислить 0,3-0,5 % С. Для сокращения периода процесс дефосфорации совмещают с концом периода плавления. По окончании окислительного периода берут пробу металла и скачивают практически полностью окислительный шлак.
Восстановительный период плавки
Восстановительный период плавки в основной ДСП начинается с наведения высокоосновного безжелезистого шлака за счет присадки извести, плавикового шпата и боя шамотного кирпича. Для обеспечения необходимых условий десульфурации проводят одновременное удаление кислорода за счет диффузионного, глубинною или комбинированного раскисления металла путем присадки раскислителей-порошков кокса или ферросилиция на шлак и ферромарганца и ферросилиция в кусках в глубину металла. Окончательное раскисление проводят высокоактивными элементами – алюминием, кальцием в чистом виде или в виде сплавов путем ввода кусковых материалов или порошковой проволоки в печь или в ковш на выпуске стали. Доводка до заданного химического состава осуществляется добавкой ферросплавов в печь или в ковш. Продолжительность восстановительного периода определяется маркой выплавляемой стали. Кратность шлака восстановительного периода составляет 0,03-0,06.
При использовании модификаций классической технологии плавки, применяемых в старых цехах с дуговыми печами небольшой вместимости (до 15…30 т) для выплавки легированных и сложнолегированных сталей, плавка ведется двухшлаковым процессом. После окислительного периода проводится восстановительный период, к настоящему времени достаточно интенсифицированный. Перед началом восстановительного периода обязательно и возможно более полно удаляется (скачивается) из печи окислительный шлак, чтобы избежать рефосфорации металла и облегчить получение хорошо раскисленного печного шлака, пригодного для диффузионного (экстракционного) раскисления и десульфурации металла в печи и во время выпуска плавки. Задачами восстановительного периода являются: раскисление, десульфурация и легирование металла; получение шлака с высокой рафинирующей способностью для обработки металла во время выпуска.
Выпуск стали
Способ выпуска стали в ковш определяется, прежде всего, конструкцией ДСП, а также наличием шумозащитного кожуха. При использовании ДСП обычной конструкции выпуск стали через обычный желоб проводится в ковш, подвешенный на крюке крана с дальнейшей внепечной обработкой стали, предусмотренной технологическим регламентом. Выбор способа внепечной обработки определяется маркой стали и технологией ее производства и более детально будет рассмотрен в отдельной главе.
Согласно нормам технологического проектирования основные показатели разрабатываются для двух групп печей: 1 – для печей вместимостью 6-25 т; 2 – для печей вместимостью 50-150 т. Для печей первой группы разрабатывается классический процесс в ДСП с кирпичной футеровкой, работающих только с использованием тепла дуг с применением кислорода для подрезки металлолома и продувки ванны кислородом, с реализацией в ДСП всех необходимых технологических операций двухшлаковым процессом, включающим окислительный и восстановительный периоды и частичной внепечной обработкой.
В табл 11.2 и 11.3 приведена продолжительность классического процесса электроплавки стали и удельный расход материалов и энергии по нормам технологического проектирования для печей первой группы.
Футерованная часть свода печи выполняется из муллитокорундового, термоантрацитового или периклазохромитового кирпича, стены – из периклазоуглеродистого или периклазохромитового кирпича.
Применяются сталеразливочные ковши вместимостью 70, 130 и 175 т с шиберными затворами, футерованные муллитокорундовым (рабочий слой) и периклазографитовым (шлаковый пояс) кирпичом.
Этапы выплавки стали
Для удаления примесей в плавильном агрегате для каждой из них создают определенные условия, проводя выплавку стали в несколько этапов.
Первый этап
На этом этапе идет расплавление шихты и нагрев жидкого металла. Температура металла невысока. Начинается интенсивное окисление железа, так как оно содержится в наибольшем количестве в чугуне и по закону действующих масс окисляется в первую очередь. Одновременно начинает окис-лятся примеси Si, P, Mn. Образующийся оксид железа (FeO) при высоких температурах растворяется в железе и отдает свой кислород более активным элементом (примесям в чугуне), окисляя их. Чем больше оксида железа содержится в жидком металле, тем активнее окисляются примеси. Для ускорения окисления примесей в сталеплавильную печь добавляют железную руду, окалину, содержащие оксиды же-леза.
Скорость окисления примесей зависит не только от их концентрации, но и от температуры металла и подчиняется принципу, в соответствии с которым хи-мические реакции, выделяющие теплоту, протекают интенсивнее при более низких температурах, а реакции поглощающие теплоту, протекают активнее при высоких температурах. Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением теплоты, а углерод интенсивно окисляется только при высокой температуре металла.
Наиболее важной задачей этого этапа является удаление фосфора. Для этого необходимо проведение плавки в основной печи, в которой можно использовать основной шлак, содержащий СаО, применяемый для удаления фосфора. В ходе плавки фосфорный ангидрид Р2О5 образует с оксидом железа нестойкое соединение (FeO)3⋅Р2О5. Оксид кальция СаО более сильное основание, чем оксид железа. Поэтому при невысоких температурах он связывает ангидрид Р2О5 в прочное соединение , (CaO)⋅Р2О5 переводя его в шлак. Для удаления фосфора из металла шлак должен содержать достаточное количество оксида железа FeO. Для повышения содержания FeO в шлаке в сталеплавильную печь в этот период плавки добавляют железную руду, окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак содержание его в шлаке возрастает. В соответствии с законом распределения, когда вещество растворяется в двух несмешивающихся жидкостях, распределение его между этими жидкостями происходит до установления определенного соотношения постоянного для данной температуры. Поэтому удаление фосфора из металла замедляется и для более полного удаления фосфора из металла шлак, содержащий фосфор удаляют, и наводят новый со свежими добавками (CaO).
Второй этап
Этап начинается по мере прогрева металлической ванны до более высоких температур, чем на первом этапе. При повышении температуры более интенсивно протекает реакция окисления углерода, проходящая с поглощением тепла. Для окисления углерода на этом этапе в металл вводят зна-чительное количество руды, окалины или вдувают кислород.
Образующийся в металле оксид железа реагирует с углеродом и пузырьки оксида углерода СО выделяются из жидкого металла, вызывая кипение ванны. При кипении ванны:
- уменьшается содержание углерода в металле;
- выравнивается температура и состав ванны;
- удаляются частично неметаллические включения в шлак.
- Все это способствует повышению качества металла.
В этот же период создаются условия для удаления серы из металла. Сера в ванне находится в виде сульфида железа, растворенного в металле [FeS] и шла-ке (FeS). Чем выше температура, тем большее количество FeS растворяется в шлаке или больше серы переходят из металла в шлак. Сульфид железа, раство-ренный в шлаке, взаимодействует с оксидом кальция СаО, также растворенным в шлаке, образуя соединение CaS, которое растворимо в шлаке, но не растворя-ется в металле. Таким образом сера удаляется в шлак.
Третий этап
Этот этап является завершающим, в котором производится раскисление и, если требуется, легирование стали. Раскисление представляет собой технологическую операцию, при которой растворенный в металле кислород переводится в нерастворимое соединение и удаляется из металла. При плавке повышенное содержание кислорода в металле необходимо для окисления примесей. В готовой же стали кислород является нежелательной примесью, так как понижает механические свойства стали, особенно при высоких температурах.
Для раскисления стали используют элементы-ракислители, обладающие большим сродством к кислороду, чем железо. В качестве раскислителей используют марганец, кремний, алюминий. Существует несколько способов раскисления стали. Наиболее широко применяются:
Осаждающий способ
Раскисление по этому способу осуществляют введением в жидкую сталь раскислителей (ферромарганца, ферросилиция, алю-миния), содержащих Mn, Si, Al. В результате раскисления образуются оксиды MnO, SiO2, Al2O3, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть оксидов не успевает всплыть и удалится из металла, что понижает его свойства. Этот способ называют иногда глубинным, так как рас-кислители вводятся в глубину металла.
Диффузионный способ
По этому способу раскисление осуществляют раскислением шлака. Ферромарганец, ферросилиций и другие раскислители загружают в мелкоизмельченном виде на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. В соответс-твии с законом распределения оксид железа, растворенный в стали, начнет пе-реходить в шлак. Образующиеся при таком способе раскисления оксиды остаю-тся в шлаке, а восстановленное железо переходит в сталь, что уменьшает в ней содержание неметаллических включений повышает ее качество.
Ввиду того, что скорость процесса перемещения кислорода из металла в шлак определяется скоростью его диффузии в металле, этот способ имеет и не-которые недостатки. Из-за малой скорости диффузии кислорода в металле про-цесс удаления кислорода идет медленно, возрастает продолжительность плавки. В зависимости от степени раскисленности различают стали:
- кипящие;
- спокойные;
- полуспокойные.
Кипящая сталь
Это сталь, выплавленная без проведения операции рас-кисления. При разливке такой стали и при ее постепенном охлаждении в излож-нице будет протекать реакция между растворенными в металле кислородом и углеродом
[O]+[C]=COг
Образующиеся при этом пузырьки оксида углерода СО будут выделятся из кристаллизующегося слитка, и металл будет бурлить. Такую сталь называют кипящей. Кипящая сталь практически не содержит неметаллических включений, представляющих продукты раскисления. Поэтому она обладает хорошей пластичностью.
Спокойная сталь
Это сталь, полученная после проведения операции рас-кисления. Такая сталь при застывании в изложнице ведет себя спокойно, из нее не выделяются газы. Такую сталь называют спокойной.
Полуспокойная сталь. Сталь имеет промежуточную раскисленность между спокойной и кипящей. Раскисление ее проводят частично, удаляя из нее не весь кислород. Оставшийся кислород вызывает кратковременное кипение металла в начале его кристаллизации. Такую сталь называют полуспокойной.
Легированные стали
Легированием называют процесс присадки в сталь специальных (легирующих) элементов с целью получить так называемую леги-рованную сталь с особыми физико-химическими или механическими свойствами. Легирование осуществляют введением ферросплавов или чистых металлов в необходимом количестве в сплав. Легирующие элементы, сродство к кислороду которых меньше, чем у же-леза (Ni, Cu, Co, Mo), при плавке и разливке практически не окисляются и по-этому их вводят в печь в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Mn, Al и др.), вводят в металл после или одновременно с раскислением.
Читайте также: