Свойство металлов используемое в технике
Металлы применяются во всех отраслях промышленности и хотя современная техника немыслима без использования не металлических материалов, всё равно металлы являются основной составляющей. В обиходе считается, что есть чёрные металлы и цветные. К чёрным относятся железо и его сплавы. Эти продукты являются важнейшими и основными конструкционными материалами в технике и в промышленном производстве. Остальные металлы относят к цветным.
Физические свойства металлов обуславливают применения их в различных технических устройствах и оборудовании. Металлы, обладающие высокой электропроводностью – серебро, медь, алюминий используют в электротехнической промышленности. Лёгкие и прочные металлы незаменимы в самолётостроении и авто строении. Автомобили, самолёты и другая транспортная техника не мыслима без титана и алюминия. Для улучшения потребительских свойств техники разрабатывают и применяют сплавы металлов. В частности, дюралюминий – сплав алюминия с медью, магнием и марганцем. Современные самолёты на 75-80% состоят из дюралюминия. Дюралюминий, обладающий лёгкостью алюминия и, благодаря добавкам, большой прочностью, сделал настоящею революцию в производстве самолётной технике. Строительство самолётов не обходится без других металлов и многие из них также представляют собой сплавы с улучшенными свойствам.
Чёрные металлы применяют в технике, подверженной длительным и тяжёлым нагрузкам. Это в первую очередь железнодорожная и сельскохозяйственная техника. Тяжёлая и постоянная нагрузка в железнодорожном транспорте требует использования самой прочных и недорогих материалов. По этим показателям лучшим считается чугун. Чугун используют при производстве вагонных колёс. Чтобы повысить долговечность работы пары колесо-рельс, соприкасающиеся детали делают из металлов с различными свойствами. Если колесо чугунное, с содержанием углерода не менее 2,14%, то рельсы – стальные с небольшим содержанием углерода, с добавками повышающими пластичность и вязкость металла.
Сельскохозяйственная техника работает не просто в полевых условиях, а в тяжёлых и напряжённых условиях. Металлы, используемые в сельхозтехнике должны быть прочными и долговечными. Здесь, конечно, незаменимы чугун и конструкционная сталь.
В чистом виде металлы, за исключением некоторых, в технике применяются редко. Современная химия и металлургия делают сплавы с улучшенными, чем у основы, свойствами, а главное свойства имеют узконаправленное действие – большую прочность, лучшую защиту от коррозии, более высокую электропроводимость и т.д.
В строительстве, в подавляющем большинстве случаев , используют чёрный металл. Несущий металлопрокат — трубы, швеллер, балки, делают из конструкционной стали. Этот материал применяют во всех сферах строительной индустрии. Особую популярность, в первую очередь при строительстве малоэтажных сооружений, приобрели в последнее время профильные трубы и оцинкованные лёгкие, тонкостенные конструкции.
Лестница из нержавеющей стали
Часто при строительстве даже небольших объектов используют целый спектр различных материалов. К примеру, при сооружении лестницы на металлокаркасе, сам каркас делают из конструкционной стали. Ограждения лестницы – из нержавеющей стали. Стойки, опоры, столбы лестниц, а также элементы холодной ковки делают из чугуна. Крепёжные элементы лестниц защищают цинком. Поручни и декоративные узлы лестниц хромируют и никелируют. Как видно, даже для небольшого строения – лестница, применяют достаточно большую номенклатуру металла.
Вся информация размещенная на сайте носит ознакомительный характер и ни при каких условиях не может считаться публичной офертой!
5 физических свойств металлов, которые используют в технике
Какие физические свойства металлов используют в технике: краткий обзор свойств группы металлов + 5 главных свойств.
Если речь заходит о взаимосвязях между свойствами и применением металлов, то путь лежит к науке «материаловедение». В сегодняшней статье я лишь вкратце расскажу, какие физические свойства металлов используются в технике. Для более глубокого понимания тематики, советую ознакомиться с другими статьями в рамках данного сайта.
Пара слов о группе металлов и ее свойствах
Металлические металлы подразделяются на 2 категории – черные и цветные. К первым относят различные сплавы и чистые вариации с железом, а остальные – это цвет металл. В чистом виде группа металлических элементов имеет низкие показатели механических свойств , из-за чего при 98% случаев в технике и промышленности используются разнообразные сплавы.
Обратите внимание: практическая значимость различных типов металлов сильно варьируется. Наибольшее значение имеет железо. На базе данного материала изготавливается более 88% всей металлургической продукции в мире.
Группа цветных металлов хоть и применяется реже, но ее физические и химические свойства являются более уникальными, и заменить их более доступным аналогом бывает просто невозможно. Среди промышленно значимых цвет металлов наибольшее значение имеет алюминий, медь, магний и титан.
О базовых свойствах металлов расскажу отдельной таблицей.
Категория | Свойство | Описание |
---|---|---|
Механика | Прочность | Потенциал металлического элемента в сопротивлении к разрушительным действиям из вне. |
Твердость | Потенциал сопротивляться прониканию другого металлического элемента под силой тяжести или под внешней нагрузкой. | |
Вязкость | Сопротивление металлического элемента в отношении нагрузок динамического характера. | |
Упругость | Уровень восстановления формы + изначальных физических параметров формы после окончания приложения усилия на элемент из вне. | |
Пластичность | Уровень пиковых изменений формы без существенных разрушений общей структуры металлического элемента. | |
Хрупкость | Разрушение металла в результате воздействия внешних сил при отсутствии деформаций остаточного типа. | |
Технология | Ковкость | Способность металлического материала выдерживать внешнее воздействие (обработку) под давлением не разрушаясь структурно. |
Свариваемость | На сколько качественные швы способен образовывать выбранный металл в процессе сварочных работ. | |
Резка | На сколько хорошо металл обрабатывается инструментами режущего типа (ножницы по металлу и прочее). | |
Химия | Жаростойкость | Потенциал металла в оказании сопротивления окислительным процессам под воздействием газовой среды в комбинации с высоким температурным воздействием. |
Жаропрочность | Потенциал сохранения механических свойств элемента в условия влияния высокого температурного режима. | |
Износостойкость | Предельно допустимые значения сопротивляемости верхнего слоя металла в отношении разрушающего воздействия силы трения. | |
Стойкость к радиации | На сколько хорошо внешняя и внутренняя структура материала способна оказывать сопротивление воздействию ядерного облучения. |
В твердом состоянии подавляющее большинство металлов имеет кристаллическое строение решетки. Форма может быть одной из трех – кубическая объёмно-центрическая, гранецентрическая или гексагональная с плотной упаковкой атомов.
Какие физические свойства металлов используют в технике?
Техническая сторона вопроса в отношении металлов имеет четкий ответ – используются абсолютно все физические свойства . Меняется только степень влияния определенных свойств. В одном направлении делается упор на плотность, а в другом температуру плавления. Далее я детально остановлюсь на каждом из свойств по физике металлов.
1) Плотность
Базовая физическая величина, которая важна в 95% технических вопросов использования. Обращаясь к терминологии, плотность вещества – отношение массы к значению объема металлического тела . Выражается физическое свойство через граммы, деленные на сантиметры кубические. Реже используются килограммы на метры кубические.
Картинка выше, взятая их технической литературы дает возможность узнать плотность большинства популярных марок сталей, чугуна и прочих черных или цветных сплавов. Для измерения значения плотности нестандартных сплавов, которые не указаны в шаблонных таблицах, в 95%+ случаев используется гидростатический метод. В остальных 5% применяется пикнометрический метод.
ГОСТы по гидростатическому методу измерения плотности:
В основе измерений лежат хорошо смачивающие материалы, которые не вступают в реакции с металлом + не улетучиваются в процессе проведения самих измерений. Обычно используется наиболее простой вариант – дистиллированная вода.
Важно: значение плотности является решающим при изготовлении деталей в авиационной и ракетной технике. Получаемые конструкции просто обязаны сочетать в себе прочность и легкость.
Вопрос оптимизации веса и прочности – одна из главных проблем современного конструирования . Именно плотность в данном вопросе несет решающее значение, а потому данный факт ставит физический параметр металлов в топ-3 по важности из всего прилагаемого списка свойств группы элементов.
2) Температура плавления
Большинство металлов располагают рядом оригинальных свойств, присущих исключительно им. У каждого имеется собственная критическая точка, при которой наступает разрушение кристаллической решетки и переход из твердой формы в жидкую с сохранением объема металлического элемента. Описанный процесс называется плавлением металлов и в металлургической промышленности он является основой производства.
Важно: в технике используются сплавы из чистых металлов и легирующих добавок. Получить нужные свойства без применения процесса плавления невозможно.
Новые соединения образуются в процессе смешивания кристаллических решеток чистых элементов. Температура плавления – величина непостоянная, зависящая от концентрации входящих в сплав компонентов.
В зависимости от температуры плавления, металлы подразделяют на 3 категории – легкоплавкие, среднеплавкие и тугоплавкие. Первые имеют верхний порог расплавки менее 1 000 по Цельсию, а последние более 1500 градусов.
О применении тугоплавких и легкоплавких металлов в технике ниже.
Тугоплавкие металлы | Легкоплавкие металлы |
---|---|
Применение в сварке. Все мы знаем об электродах из вольфрамового сплава. В данном случае металл выступает в качестве основы для расходника. | Жидкометаллические тепловые носители нашли применение в энергетической промышленности и машиностроении. |
Элементы в электронике. | Изготовление моделей выплавляемого типа. |
Космос и авиация. Некоторые сплавы используются в сверхзвуковой авиации и производстве космических кораблей. | Вакуумная техника. Применение в уплотнениях, пайке швов и прочем подобном. |
Военная промышленность. Как правило, конструктивно важные элементы, которые обязаны быть защищены от высоких температур и расплавки, упаковывают в оболочки из тугоплавкого металла. | Микроэлектроника, а именно покрытие различных датчиков, предохранителей и конечно же использование в качестве припоев. |
Применяются при разработке техники вакуумного типа. | Используются как основа для расплавляемой смазки для металлов. |
Наиболее популярным и наглядным применением тугоплавких металлов является нити накалывания в лампах. Из металлопроката можно выделить полосы вытяжки, фольгу, трубы и проволоку.
3) Электропроводимость
В основе данного свойства лежит способность металла в проводимости электрического тока. Значение является обратным величине электрического сопротивления. Обозначение параметра в технической литературе – «G», а единица измерения в соответствии с международной системой – сименсы (См).
Наибольшей проводимостью электрического тока может похвастаться серебро (62 500 000 См/м) . Так как сам по себе металл относится к группе «благородных», делать из него проводку весьма дорого. В качестве более дешевой альтернативы используется медь (59 500 000 См/м). Ее более высокая температура плавления дает возможность продлить срок службы конструкционного элемента, целью которого является проводимость электричества.
Обратите внимание: любой из сплавов имеет намного меньшую электрическую проводимость нежели чистое вещество.
Причиной тому служит слияние структурной сетки элементов, из-за чего прекращается нормальная работа электронов внутри нового металлического вещества. Формирование базы знаний вокруг рассматриваемого свойства происходило за счет теории электропроводимости металлов.
В нее входит 6 пунктов:
- Высокая проводимость повязана на количестве свободных электронов;
- Возникновение тока происходит за счет внешнего воздействия на металл, в результате чего происходит упорядочивание движения электронов внутри элемента.
- Сила тока, проходящего через металл, рассчитывается на основании закона Ома.
- Разное число элементарных частиц влияет на значение сопротивления.
- Ток в цепи возникает сразу же после воздействия на электроны.
- При повышении температурного режима увеличивается и сопротивление металла.
Наибольшей электропроводимостью могут похвастаться металлы из щелочной группы, но из-за их ограничений по другим свойствам (температура плавления и химическая активность), их применение в технике и промышленности крайне ограничено.
Где используются электроповодимые металлы:
- при заземлении электроустановок;
- с целью выравнивания потенциалов;
- как громоотводы.
Ну и основная функция проводников – это доставка электричества. Обход наукой стороной данного свойства не позволил бы развиваться техническому прогрессу как таковому в принципе.
4) Какие еще физические свойства металлов используют в технике: теплопроводимость
Теплопроводимость веществ – неотъемлемая часть термодинамики. В отношении металла данное свойство показывает на сколько хорошо материал способен распределять тепло по всей плоскости металлического объекта . Транспортировка тепловой энергии происходит за счет движения элементарных частиц внутри элемента – атомы, электроны и так далее.
Справочные значения тепловой проводимости для популярных металлов и сплавов представленный на картинке выше. Более детальные таблицы представлены в специализированной литературе по материаловедению.
Обратите внимание: значения теплопроводимости подают на промежутке от 0 до 600 по Цельсию.
Сказать о тотальном преимуществе металлов с высокой или низкой теплопроводиомстью нельзя. Все зависит от сферы применения материала.
В каких областях важен рассматриваемый параметр:
- строительство. Приоритет на низкую проводимость материалов. В таких помещениях температура будет сохранять оптимальные показатели как летом, так и зимой;
- отопительные системы. Актуально в производстве радиаторов и труб для транспортировки тепла;
- техника. В определенных направлениях приборостроения важна защита от перегрева. При таких требованиях выбор материала-оболочки осуществляется на основании теплопроводимости материала.
Важно понимать, что при образовании новых типов сплавов параметр проводимости тепла изменяется. Чтобы узнать актуальные значения, используются опытные методы определения. Частный выбор зависит от особенностей исследуемого металла.
Базовые физические свойства металлов:
5) Магнетизм
Способность металлов намагничиваться или притягиваться магнитами стоит на втором месте по важности для ниши техники. Существует 2 способа определения уровня магнетизма металлов – магнитно-металлографический метод и магнитная металлография. Второй реализовать проще, ибо в основе лежат проявления магнитных свойств на поверхности исследуемого образца металлического элемента.
О классификации металлических элементов в чистом виде по отношению к магнитным полям расскажу отдельной таблицей.
Группа | Отношение | Представители |
---|---|---|
Ферромагниты | Могут набирать магнитное поле при воздействии слабых магнитных полей. | Кобальт, железо, никель, гадолиний. |
Парамагниты | Практически не набирают магнитное поле вне зависимости от его силы воздействия. | Хром, титан, алюминий, лантан, лютеций и другие лантаноиды. |
Диамагниты | Совсем не притягиваются к магнитам + некоторые могут даже отталкиваться. | Олово, висмут, медь. |
По факту, магнитными свойствами обладает очень мало металлов, но в повседневности использование магнита указывает нам на противоположный факт. Причина тому 90% промышленности, которая в основе сплавов использует железо, проявляющее крайне сильные ферромагнитные свойства по отношению к магнитным полям.
Где нужны магнитные свойства металлов:
- в акустических системах, при производстве реле и бесконтактных датчиков;
- при изготовлении бытовой техники – сепараторы и холодильники;
- электромашины;
- элементы узлов в кодовых замках и охранных сигнализациях;
- техногенераторы;
- датчики расположения;
- приборы для измерения электричества;
- периферия на ПК;
- узлы в телефонах, видеокамерах и фотоаппаратах;
- узлы устройств для обработки воды, топлива и масел. Иными словами – магнитные фильтры.
В дополнение, металлы с магнетизмом – это источник прогресса в медицине и автоматизированных транспортных системах. Ну и не будем забывать о магнитных устройствах, что используются в рекламе, реализациях, выставках и прочих мероприятиях по всему миру.
Некоторые специалисты к физическим свойствам относят также коэффициенты линейного и объемного расширений. Данные параметры характеризуют способность металлов расширяться в процессе нагревания. Особо важно учитывать данный параметр в строительной сфере – мосты, железные дороги, трамвайные пути и тому подобное. Так как свойство является составляющей теплопроводимости, рассматривать отдельно его я не вижу смысла.
На этом разбор вопроса считаю исчерпанным. Теперь вы в полной мере знаете, какие физические свойства металлов используют в технике и прочих сферах деятельности человека. При возникновении вопросов, можете изложить их в комментариях.
4. Применение металлов и их сплавов
О том, что свойства металлов меняются при их сплавлении, стало известно ещё в древности. \(5\) тысяч лет тому назад наши предки научились делать бронзу — сплав олова с медью. Бронза по твёрдости превосходит оба металла, входящие в её состав.
Свойства чистых металлов, как правило, не соответствуют необходимым требованиям, поэтому практически во всех сферах человеческой деятельности используют не чистые металлы, а их сплавы.
Сплав — это материал, который образуется в результате затвердения расплава двух или нескольких отдельных веществ.
В состав сплавов кроме металлов могут входить также неметаллы, например, такие как углерод или кремний.
Добавляя в определённом количестве примеси других металлов и неметаллов, можно получить многие тысячи материалов с самыми разнообразными свойствами, в том числе и такими, каких нет ни у одного из составляющих сплав элементов.
- механически прочнее и твёрже,
- со значительно более высокой или низкой температурой плавления,
- устойчивее к коррозии,
- устойчивее к высоким температурам,
- практически не менять своих размеров при нагревании или охлаждении и т. д.
Например, чистое железо — сравнительно мягкий металл. При добавлении в железо углерода твёрдость его существенно возрастает. По количеству углерода, а следовательно, и по твёрдости, различают сталь (содержание углерода менее \(2\) % по массе), чугун (\(С\) — более \(2\) % ). Но не только углерод изменяет свойства стали. Добавленный в сталь хром делает её нержавеющей, вольфрам делает сталь намного более твёрдой, добавка марганца делает сплав износостойким, а ванадия — прочным.
Сплавы, используемые для изготовления различных конструкций, должны быть прочными и легко обрабатываемыми.
Такие сплавы железа, как стали, отличаются высокой прочностью и твёрдостью. Их можно ковать, прессовать, сваривать.
Чугуны используют для изготовления массивных и очень прочных деталей. Например, раньше из чугуна отливали радиаторы центрального отопления, канализационные трубы, до сих пор изготавливают котлы, перила и опоры мостов. Изделия из чугуна изготавливаются с применением литья.
Сплавы алюминия, используемые в конструкциях, наряду с прочностью должны отличаться лёгкостью. Дюралюминий, силумин — сплавы алюминия, они незаменимы в самолёто-, вагоно- и кораблестроении.
Для улучшения ударопрочности, коррозионной стойкости, износоустойчивости сплавы легируют — вводят специальные добавки. Добавка марганца делает сталь ударопрочной. Чтобы получить нержавеющую сталь, в состав сплава вводят хром.
Инструментальные сплавы предназначены для изготовления режущих инструментов, штампов и деталей точных механизмов. Такие сплавы должны быть износостойкими и прочными, причём при разогревании их прочность не должна существенно уменьшаться. Таким требованиям отвечают, например, нержавеющие стали, которые прошли специальную обработку (закалку).
Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.
Сплавы служат незаменимым материалом при изготовлении особо чувствительных и высокоточных приборов, различного рода датчиков и преобразователей энергии.
Например, на изготовление сердечников трансформаторов и деталей реле идёт сплав никеля. Отдельные детали электромоторов изготавливаются из сплавов кобальта.
Сплав никеля с хромом — нихром, отличающийся высоким сопротивлением — используется для изготовления нагревательных элементов печей и бытовых электроприборов.
Из сплавов меди в электротехнической промышленности и в приборостроении наиболее широкое применение находят латуни и бронзы.
Латуни незаменимы при изготовлении приборов, деталью которых являются запорные краны. Такие приборы используются в сетях подачи газа и воды.
Главным востребованным свойством легкоплавких сплавов является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем. Кроме того, эти сплавы должны иметь определённую плотность, прочность на разрыв, химическую инертность, теплопроводность.
Легкоплавкие сплавы производят из висмута, свинца, кадмия, олова и других металлов. Такие сплавы используют в термодатчиках, термометрах, пожарной сигнализации, например, сплав Вуда. А также в литейном деле для производства выплавляемых моделей, для фиксации костей и протезирования в медицине.
Сплав натрия с калием (температура плавления \(–\)\(12,5\) °С) используется как теплоноситель для охлаждения ядерных реакторов.
Рис. \(7\). Припой (сплав для паяния) имеет невысокую температуру плавления | Рис. \(8\). Легкоплавкие сплавы незаменимы в датчиках пожарной сигнализации |
Применение в чистом виде драгоценных металлов в ювелирном деле не всегда оправдано и целесообразно из-за их дороговизны, физических и химических особенностей.
Для придания ювелирным изделиям из золота большей твёрдости и износостойкости используются сплавы с другими металлами.
Самая лучшая добавка — это серебро (понижает температуру плавления) и медь (повышает твёрдость). Чистое золото используют очень редко, так как оно слишком мягкое, легко деформируется и царапается.
Из сплавов золота с \(10–30\) % других благородных металлов (платины или палладия) изготавливают форсунки лабораторных приборов, а из сплава с \(25–30\) % серебра — ювелирные изделия и электрические контакты.
Оловянная бронза (сплав меди с оловом) — один из первых освоенных человеком сплавов металлов. Она обладает большей, по сравнению с чистой медью, твёрдостью, прочностью и более легкоплавка. Бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё. Классической маркой бронзы является колокольная бронза.
Одно из новых направлений в искусстве — производство художественных литых изделий из чугуна. Литые изделия из чугуна существенно превосходят по качеству кованые изделия.
Чугун — металл гораздо более хрупкий и не такой ковкий, как сталь. Но даже из такого, казалось бы, грубого материала можно получать настоящие произведения литейного искусства способом литья, например, такие как литые лестницы или решётки на окна. Такие изделия подвержены лишь поверхностной коррозии и не требуют тщательного ухода.
Свойства металлов: химические, физические, технологические
Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные. А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева. Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.
Химические свойства
Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.
Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.
Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.
Физические свойства
Среди основных общих физических свойств металлов можно выделить:
- Плавление.
- Плотность.
- Теплопроводность.
- Тепловое расширение.
- Электропроводность.
Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).
Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.
Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.
Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.
Механические свойства
Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.
При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.
Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.
Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.
Способность металла менять форму под внешним воздействием называется пластичностью.
Технологические свойства
Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.
Среди основных технологических свойств можно выделить:
- Ковкость.
- Текучесть.
- Свариваемость.
- Прокаливаемость.
- Обработку резанием.
Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.
Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.
Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.
Свойство металла закаливаться называется прокаливаемостью.
Интересные факты
- Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
- И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
- Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
- Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
- Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.
Видео
И в завершение образовательное видео по теме нашей статьи.
Автор: Павел Чайка, главный редактор журнала Познавайка
Читайте также: