Щелочные металлы относятся к s элементам
обозначим через Ак множество натуральных чисел которые делятся на к и не превышают при этом 1000000000. какие из следующих соотношений между этими множествами верны:
1) А2*А3=А6, А4*А6-А24, А7*А11*А13=А1001, А96*А54=А27*А32
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Какой объём (н.у.) будут иметь:
1) 0,36 моль гелия
2) 6 г кислорода
3) 30*10 23 молекул хлора?
Постройте граф классификации биологической системы по следующему описанию.
Согласно биологической классификации, выделяют три империи (надцарства): археобактерии, эукариоты и прокариоты. К империи эукариотов относятся царства грибов, растений и животных. К царству животных относятся типы членистоногих, моллюсков, иглокожих, кишечнополостных, хордовых и др. К типу хордовых относятся классы рыб, амфибий, рептилий, млекопитающих, птиц. К классу млекопитающих относятся отряды китов, ластоногих, хищных, грызунов, копытных и др. К отряду хищных относятся семейства медвежьих, енотовых, псовых, виверровых, кошачьих и др. К семейству псовых относятся роды лисиц, енотовидных собак, собак, песцов и др. К роду собак относятся виды собак домашних, волков, шакалов, койотов. К виду собак домашних относятся овчарки, спаниели, водолазы, сенбернары, доги, болонки и др.
Общая характеристика s-элементов первой и второй групп
s-Элементы – это элементы, у которых происходит заполнение s-подуровня. Данные элементы находятся в главных подгруппах первой и второй групп. S-элементы первой группы включают водород и щелочные металлы, а второй группы – бериллий, магний и щелочноземельные металлы. К s-элементам также относится инертный газ гелий.
s-металлы первой группы включают: литий (Li), натрий (Na), калий (К), рубидий (Rb), цезий (Сs) и франций (Fr). Данные металлы называются щелочными, так как два главных представителя (натрий и калий) образуют сильные основания – щелочи. На внешнем энергетическом уровне атомов данных элементов находится один электрон, который атомы щелочных металлов легко отдают, превращаясь в однозарядные катионы. С увеличением порядкового номера элементов увеличиваются радиусы атомов, что приводит к усилению восстановительной активности. Щелочные металлы характеризуются незначительной твёрдостью, малой плотностью и низкими температурами плавления.
s -элементы второй группы включают: бериллий (Ве), магний (Мg) и щелочноземельные металлы – кальций (Са), стронций (Sr), барий (Ва) и радий (Rа). Бериллий и магний существенно отличаются от остальных элементов данной группы. Бериллий является амфотерным металлом. Магний образует слабое основание, а щелочноземельные металлы – сильные основания. Данные металлы имеют на внешнем уровне по два электрона и сравнительно легко их отдают, превращаясь в двухзарядные катионы. Они имеют большую, чем щелочные металлы, твёрдость и довольно высокие температуры плавления.
Данные металлы обладают высокой химической активностью. Их активность можно определить по положению в электрохимическом ряду. Следует обратить внимание на то, что литий по положению в электрохимическом ряду самый активный металл (φ 0 = –3,045 В), хотя по положению в периодической таблице он, в сравнении с остальными щелочными металлами, является самым слабым восстановителем.
Это является следствием того, что положение металла в электрохимическом ряду определяется суммой трех величин:
1) энергии разрушения кристаллической решетки;
2) энергии ионизации металла;
3) энергии гидратации образовавшегося иона.
Энергии разрушения кристаллической решетки для данных металлов примерно одинаковы. Энергия ионизации атома лития в подгруппе самая высокая (Е = 5,39 эВ), но энергия гидратации иона лития, благодаря малому радиусу, аномально высокая. По сумме данных трех величин литий в водном растворе электрохимически самый активный металл.
При взаимодействии щелочных металлов с кислородом воздуха: литий образует оксид (Li2О), натрий – пероксид (Na2О2), а калий, рубидий и цезий – надпероксиды (МеО2). Бериллий, магний и щелочноземельные металлы легко окисляются на воздухе с образованием оксидов.
Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с образованием гидроксидов:
Пероксиды щелочных и щелочноземельных металлов способны взаимодействовать с углекислым газом с выделением кислорода, что позволяет использовать их в системах регенерации воздуха:
Щелочные и щелочноземельные металлы также реагируют с другими неметаллами: галогенами, серой, азотом, водородом. При этом образуются соответствующие галогениды, сульфиды, нитриды и гидриды. Например,
Гидриды полностью разлагаются водой с образованием водорода и гидроксида металла. Например,
Данные металлы вытесняют водород из воды, так как в элекрохимическом ряду стоят левее алюминия. Например,
Бериллий и магний с водой реагируют медленно вследствие малой растворимости образующихся гидроксидов.
Ве(ОН)2 обладает амфотерными свойствами , т.е. взаимодействует с кислотами и щелочами:
Наиболее распространенные соединения данных элементов следующие:
NаCl – хлорид натрия (поваренная соль) консервант пищевых продуктов;
NаОН – гидроксид натрия (каустическая сода). Применяется для получения мыла, очистки нефти и др.
Nа2СО3 – карбонат натрия (кальцинированная сода);
NаНСО3 – гидрокарбонат натрия (питьевая сода);
Калий в виде калийных солей необходим для питания растений.
Магний нужен растениям, так как входит в состав хлорофилла.
СаО – оксид кальция (негашеная известь);
Са(ОН)2 – гидроксид кальция (гашеная известь) широко применяется в строительном деле;
СаSО4·2Н2О – сульфат кальция (гипс);
СаСО3 – карбонат кальция (известняк, мел, мрамор). При его термическом разложении получают негашеную известь и углекислый газ
Следует отметить, что соединения натрия, калия, кальция и магния нужны для жизнедеятельности живых организмов.
Водород и гелий также относятся к s-элементам. Данные элементы по распространенности во Вселенной занимают: водород – первое место, а гелий – второе.
Содержание водорода на Земле составляет ~1 %, но в свободном виде Н2 почти не встречается. Он входит в состав различных соединений. Водород существует в виде трех изотопов: протий 1 1Н, дейтерий 2 1D и тритий 3 1Т. В природе на 6800 атомов водорода приходится 1 атом дейтерия. Вследствие большой разницы в массах физические и химические свойства изотопов водорода и образуемых ими соединений довольно значительно отличаются. Одним из наиболее распространенных в природе химических соединений водорода является вода. На примере данного соединения будет показан общий подход при анализе строения и свойств химических соединений.
Гелий на Земле встречается только в атмосфере и содержание его невелико. В химическом отношении это инертное вещество, поэтому применяется в автогенной сварке для создания инертной среды. Температура плавления гелия – 271,4 о С (при давлении 3,0 МПа), а температура кипения – 269,9 о С, что позволяет использовать его в качестве хладоносителя в физике низких температур.
Место щелочных металлов в Периодической системе химических элементов
К элементам 1 группы относятся литий, натрий, калий, рубидий, цезий и франций. Групповое название элементов – щелочные металлы – связано с тем, что их гидроксиды являются едкими щелочами. Франций – радиоактивный и малодоступный для изучения элемент, период его полураспада составляет всего 22 минуты.
Самый легкий металл литий был открыт шведским химиком Иоганном Августом Арфведсоном в 1817 г. в минерале петалит LiAl[Si4O10]. Берцелиус предложил назвать элемент «литион», поскольку это первый щелочной металл, обнаруженный в минерале. Название происходит от греческого «литос» – камень.
Соединения натрия известны человеку с древнейших времен. Хлорид натрия – соль – в качестве пищевой добавки используется очень давно. Древние греки знали пищевую соду, а алхимики – гидроксид натрия. Простое вещество натрий было открыто в 1807 г. английским ученым Гемфри Дэви. Дэви получил металл электролизом твердого гидроксида натрия и первым изучил его свойства. Название элемента происходит от греческого «нитрон» – сода, хотя Дэви предложил название «содиум» (едкий натр также называют каустической содой).
Калий был получен Гемфри Дэви немного раньше натрия, в 1807 г., электролизом твердого гидроксида калия. Название элемента происходит от арабского «алкали» – щелочь; название, предложенное Дэви – потассиум (англичане называют едкое кали едким поташем), сохранилось в Англии.
Рубидий был открыт немецкими учеными Робертом Вильгельмом Бунзеном и Густавом Робертом Кирхгофом в 1861 г. Элемент был обнаружен методом спектрального анализа в образце минерала липедолита по темно-красной линии в спектре. Бунзен впервые получил металлический рубидий. Название происходит от латинского «рубидус» – темно-красный.
Цезий был обнаружен по двум ярким линиям в синей части спектра немецкими учеными Робертом Вильгельмом Бунзеном и Густавом Робертом Кирхгофом в 1860 г. Название происходит от латинского «цезиус» – небесно-голубой.
Возможность существования элемента № 87 была предсказана Д.И. Менделеевым. Радиоактивный элемент франций был открыт в 1939 г. французским ученым Маргаритой Пере. Назван элемент в честь Франции.
Щелочные металлы расположены в 1 группе Периодической системы химических элементов Д.И. Менделеева.
Щелочные металлы относятся к s-элементам. На внешнем энергетическом уровне атомы щелочных металлов имеют 1 электрон, их электронная конфигурация ns 1 . Они легко отдают один электрон, проявляя степень окисления +1. Радиусы атомов возрастают при переходе от лития к францию, значения потенциала ионизации и относительной электроотрицательности уменьшаются. Все щелочные металлы в электрохимическом ряду напряжений располагаются в начале ряда и являются сильными восстановителями, эта способность возрастает с увеличением заряда ядра атома.
Химические свойства щелочных металлов
При обычных условиях s-металлы находятся в кристаллическом состоянии. Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).Щелочные металлы обладают высокой теплопроводностью и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки. Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.
Литий, натрий и калий легче воды и плавают на ее поверхности, реагируя с ней.
В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.
Щелочные металлы образуют соединения с преимущественно ионной связью. Оксиды щелочных металлов - твердые гигроскопичные вещества, легко взаимодействующие с водой. При этом образуются гидроксиды - твердые вещества, хорошо растворимые в воде. Соли щелочных металлов, как правило, тоже хорошо растворяются в воде.
Химические свойства щелочных металлов
Все щелочные металлы взаимодействуют:
- с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий.
Уравнение реакции в общем виде:
Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:
Гидроксиды натрия и калия не отщепляют воду
-взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):
-при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.).
- способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:
- с солями, происходит по следующему принципу – вытесняют менее активные металлы (см. ряд активности металлов, выше) из их солей:
3Na + AlCl3 = 3NaCl + Al
- с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.
- с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:
Название | Ат. № | Относит, ат. масса | Электронная формула | Радиус, пм | изотопы (%) | |
Li | Литий Lithium [от греч. Lithos — камень] | 6,941 | 2s | Li+ 78, | 6Li (7,5) 7Li* (92,5) | |
Na | Натрий Sodium [англ. Soda; лат. Natrium | 22,9898 | 3s | Na+ 98, | 23Na* (100) | |
К | Калий Potassium [англ. Potash; лат. Kalium] | 39,0983 | 4s | K+ 133, | 39K* (93,26) 40К (0,012) 41 К* (6,73) | |
Rb | Рубидий Rubidium [от лат. rubidius — глубокого красного цвета] | 37 | 85,4678 | 5s | Rb+ 1,49, | 185Rb* (72,17) 87Rb* (27,83) |
Cs | Цезий Cesium [от лат. Caesius — небесно-голубой] | 55 | 132,905 | 6s | Cs+ 165, | 133Сз* (100) |
Fr | Франций Francium [в честь Франции] | 7s | Fr+ 180 | 223Fr* (следы) |
Литий (Li) имеет среди всех металлов самую низкую плотность — 0,53 г/см3, с небольшой активностью реагирует с кислородом и водой. Является стратегическим металлом оборонной промышленности. Применяется в виде сплавов с Аl и Mg в производстве водородных бомб, в составе смазочных масел, эмалей, аккумуляторов, стекла; используется в медицине. Литий из щелочных металлов наиболее токсичен. Препарат Li2СO3 используют в медицине для лечения маниакально-депрессивного психоза. При длительном воздействии препарат нарушает функции почек и ЦНС. Поэтому повышенное содержание Li в крови и моче считают признаком нарушения функции почек.
Натрий (Na) — мягкий металл, серебристо-белого цвета, на срезе быстро окисляющийся. Бурно реагирует с водой. В больших количествах используется в промышленности, в частности, в теплообменниках ядерных реакторов; в составе NaCl широко применяется в пищевой и химической индустрии. Относится к жизненно необходимым элементам. В организме взрослого человека содержится около 100 г натрия, из них 30% — в костях. Неорганические соли натрия растворимы в воде с образованием соответствующих ионов. Некоторые соли натрия с органическими кислотами, например, соли мочевой и винной кислот (ураты и тартраты) растворимы слабо. Na+ является основным межклеточным катионом, регулирующим электролитный гомеостаз, деятельность натриевых насосов, перенос через биомембраны аминокислот, Сахаров, анионов разной природы; поддерживающим осмотическое давление и рН среды, перенос в крови СO2 (в виде бикарбоната), гидратацию белков, растворимость (солюбилизацию) органических кислот. Избыток натрия в пище вызывает перегрузку систем электролитного гомеостаза и обезвоживание тканей организма.
Калий (К) — мягкий металл белого цвета, активно реагирующий с кислородом и водой. Используется в производстве удобрений, в химической промышленности, для варки стекла. Относится к жизненно необходимым элементам. В организме взрослого человека содержится около 140 г калия, 98% — внутри клеток. К+ является важнейшим внутриклеточным катионом. Он необходим для поддержания нервно-мышечной возбудимости, внутриклеточного осмотического давления и рН, обеспечения сокращения мышц и проницаемости мембран клеток. Внеклеточный К+ стимулирует работу натриевого насоса. В натрий-калиевом насосе при некоторых физиологических процессах ионы К+ могут замещаться Rb+ и Cs+. Значительные количества последнего элемента могут появляться в организме после радиоактивного облучения.
По реакционной способности калий сходен с Na+. Na и К —2 основных металла, обеспечивающие электролитный гомеостаз. Оба элемента в живых организмах определяют осмотическое давление по обе стороны мембраны клеток и являются положительными противоионами для отрицательных анионов (Сl–, НРО42–, HCO3– и органических). В норме у человека соотношение ионов Na+/K+ в крови колеблется около значения 1,5. Снижение концентрации К+ в цельной крови и повышение в плазме связаны с нарушением проницаемости внешней мембраны клеток, обычно непроницаемой для К+, либо с нарушениями деятельности Na+/K+ - обменивающего насоса па внутренней мембране митохондрий. В нервных клетках такое нарушение работы этого насоса сопровождается нарушением мембранного потенциала нейронов и проведения по ним нервных импульсов. Изменения содержания ионов щелочных металлов отмечаются при многих неврологических заболеваниях. Однако К полезен лишь в умеренных дозах; его избыток в крови особенно часто наблюдается при заболеваниях почек. Длительное нарушение нормального соотношения Na+/K+ приводит к сердечнососудистым заболеваниям.
Рубидий (Kb) — примесный микроэлемент. В организме человека содержится около 0,3 мг рубидия, как правило, внутри клеток (аналогично К+). Может образовывать координационные соединения. Поскольку кинетика и механизм поглощения и участия в обмене сходны с К, изотоп 86Rb используют в исследованиях обмена К+. При дефиците К+ прием рубидия восстанавливает кислотно-щелочной баланс. Rb быстро выводится из организма через почки.
Цезий (Cs) — по биологическим свойствам сходен с К+. В организме человека может содержаться до 1,5 мг цезия. В медицине используют в качестве радиоактивной метки изотоп 137Cs (период полураспада t1/2 = 30 лет), а также стабильный изотоп 133Cs при магнитно-резонансной томографии. Считается нетоксичным.
Франций (Fr) — в природе встречается в ничтожных количествах в урановых рудах. Образуется в результате радиоактивного распада актиния (вместе с гелием). Из-за небольшого времени полураспада всех изотопов элемент изучен слабо. Должен быть токсичным из-за радиоактивности, хотя в организме человека не обнаружен.
IIК щелочноземельным металлам относятся металлы IIA группы Периодической системы Д.И. Менделеева – кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Кроме них в главную подгруппу II группы входят бериллий (Be) и магний (Mg). На внешнем энергетическом уровне щелочноземельных металлов находится два валентных электрона. Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов – ns 2 . Кроме Ве 1s2 2s2. В своих соединениях они проявляют единственную степень окисления равную +2. В ОВР являются восстановителями, т.е. отдают электрон. Все щелочноземельные металлы характеризуются наличием металлического типа химической связи, что обуславливает их высокую тепло- и электропроводность. Температуры кипения и плавления щелочноземельных металлов выше, чем щелочных металлов.
С увеличением заряда ядра атомов элементов, входящих в группу щелочноземельных металлов, энергия ионизации атомов уменьшается, а радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются.
Бериллий (Be) — очень легкий, его сплав с медью сходен со сталью. В свободном состоянии Be – металл серо-стального цвета, обладающий плотной гексагональной кристаллической решеткой, достаточно твердый и хрупкий. На воздухе Be покрывается оксидной пленкой, что придает ему матовый оттенок и снижает его химическую активность.В эпоху нанотехнологии он необходим для атомной, электронной, электротехнической, авиационной и нефтегазовой промышленности. Be обладает некомпенсированным спином и высокой латентной токсичностью, хотя его атомная масса среди прочих металлов наименьшая. Он связан диагональным соотношением с Аl, и имеет с ним много общих свойств. Контакт с солями Be вызывает поражение кожи. Ион Ве2+ имеет малые размеры, но высокую плотность заряда. В организме он ингибирует фосфатазы, особенно щелочную, участвующую в процессах образования костей, а также ферменты, активируемые Mg2+ и К+, нарушает репликацию ДНК. Ионы Ве2+ образуют комплексы с тетраэдрическим расположением лигандов (КЧ = 4) с различной стереохимической конфигурацией.
Бериллий в природе находится в связанном состоянии. Важнейшие минералы бериллия: берилл- Be3 Al2 (SiO3 )6 , хризоберилл- Be(AlO2 )2 и фенакит- Be2 SiO4 .
Магний (Mg) в виде простого вещества представляет собой белый металл, который, также, как и Be, при нахождении на воздухе приобретает матовый оттенок за счет образующейся оксидной пленки. Mg мягче и пластичнее бериллия. Кристаллическая решетка Mg – гексагональная. Магний— по свойствам связан диагональным соотношением с Li. Абсолютно необходим для нормальной жизнедеятельности в виде иона Mg2+. Mg2+ необходим для нервно-мышечной передачи и мышечного сокращения. Наиболее часто недостаток магния (в норме содержащегося в плазме крови в концентрации 0,9 мМ) наблюдается при алкоголизме, сопровождаясь также накоплением Са2+. При избытке магния развиваются слабовыраженные токсические реакции. Прием больших количеств солей Mg2+ вызывает рвоту.
Название | Ат. № | Относит, ат. масса | Электронная формула | Радиус, пм | Основные изотопы (%) |
Be | Бериллий Beryllium [от греч. Beryllos — берилл] | 9,012 | 2s2 | Be2+ 34 | 9Be*(100) |
Mg | Магний Magnesium [от Магнезия — полуостров в Греции] | 24,305 | 3s2 | Mg2+ 78 | 24Mg (78,99) 25Mg* (10) 26Mg (11,01) |
Химические свойства
-Получение Be осуществляют по реакции восстановления его фторида. Реакция протекает при нагревании:
Магний, кальций и стронций получают электролизом расплавов солей, чаще всего – хлоридов:
Причем, при получении Mg электролизом расплава дихлорида для понижения температуры плавления в реакционную смесь добавляют NaCl.
Для получения Mg в промышленности используют металло- и углетермические методы:
2(CaO×MgO) (доломит) + Si = Ca2SiO4 + Mg
- Взаимодействие с водой.
В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде, но с горячей водой магний образует основание Mg(OH)2
Щелочные металлы
К щелочным металлам относятся литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr.
Щелочные металлы:
Щелочные металлы – это химические элементы 1-й группы периодической таблицы химических элементов Д.И. Менделеева (по устаревшей классификации – элементы главной подгруппы I группы):
При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Строение атомов щелочных металлов:
Особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns 1 . Щелочные металлы относятся к элементам s-семейства.
Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия – самый низкий) и электроотрицательности. Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов .
Так, электронная конфигурация атома лития 1s 2 2s 1 . атом лития состоит из положительно заряженного ядра (+3), вокруг которого по атомным оболочкам (двум s-орбиталям) движутся три электрона. Поскольку литий расположен во втором периоде, оболочки всего две, одна из которых является внешней. При этом 2 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома цезия на 2s-орбитали находятся один неспаренный электрон. Электроны, расположенные на внешней оболочке, называются валентными и участвуют в образовании химических связей. В свою очередь ядро атома лития состоит из трех протонов и четырех нейтронов.
Радиус атома лития составляет 145 пм. Потенциал ионизации (первый электрон) атома лития равен 5,39 эВ (519,9 кДж/моль). Электроотрицательность атома лития равна 0,98 (шкала Полинга).
Электронная конфигурация атома натрия 1s 2 2s 2 2p 6 3s 1 . Атом натрия состоит из положительно заряженного ядра (+11), вокруг которого по трем оболочкам движутся 11 электронов. При этом 10 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку натрий расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома натрия – на 3s-орбитали находится один неспаренный электрон. В свою очередь ядро атома натрия состоит из 11 протонов и 12 нейтронов.
Радиус атома натрия составляет 190 пм. Потенциал ионизации атома натрия равен 5,14 эВ (495,6 кДж/моль). Электроотрицательность атома натрия равна 0,93 (шкала Полинга).
Электронная конфигурация атома калия 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 . Атом калия состоит из положительно заряженного ядра (+19), вокруг которого по четырем оболочкам движутся 19 электронов. При этом 18 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку калий расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая и третья – внутренние оболочки представлена s- и р-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома калия – на 4s-орбитали находится один неспаренный электрон. В свою очередь ядро атома калия состоит из 19 протонов и 20 нейтронов.
Радиус атома калия составляет 235 пм. Потенциал ионизации атома калия равен 4,34 эВ (418,5 кДж/моль). Электроотрицательность атома калия равна 0,82 (шкала Полинга).
Электронная конфигурация атома рубидия 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 . Атом рубидия состоит из положительно заряженного ядра (+37), вокруг которого по пяти оболочкам движутся 37 электронов. При этом 36 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку рубидий расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая и четвертая – внутренние оболочки представлены s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома рубидия на 5s-орбитали находится один неспаренный электрон. В свою очередь ядро атома рубидия состоит из 37 протонов и 48 нейтронов.
Радиус атома рубидия составляет 248 пм. Потенциал ионизации атома рубидия равен 4,17 эВ (402,8 кДж/моль). Электроотрицательность атома рубидия равна 0,82 (шкала Полинга).
Электронная конфигурация атома цезия 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 1 . Атом цезия состоит из положительно заряженного ядра (+55), вокруг которого по шести оболочкам движутся 55 электронов. При этом 54 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку цезий расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая и пятая – внутренние оболочки представлены s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома цезия на 6s-орбитали находятся один неспаренный электрон. В свою очередь ядро атома цезия состоит из 55 протонов и 78 нейтронов.
Радиус атома цезия составляет 267 пм. Потенциал ионизации атома цезия равен 3,89 эВ (375,5 кДж/моль). Электроотрицательность атома цезия равна 0,79 (шкала Полинга).
С увеличением порядкового номера у щелочных металлов увеличиваются радиус атома, способность отдавать валентные электроны и восстановительная активность, уменьшается электроотрицательность и энергия ионизации.
Физические свойства щелочных металлов:
Все щелочные металлы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень легкие, мягкие и пластичные, их можно резать скальпелем и ножом. Щелочные металлы имеют небольшую плотность. Так, литий, натрий и калий легче воды и плавают на её поверхности , реагируя с ней. Щелочные металлы обладают высокой тепло- и электропроводностью. Они имеют низкую температуру плавления и кипения.
С увеличением порядкового номера у щелочных металлов уменьшаются плотность, температура плавления, температура кипения, твердость.
Химические свойства щелочных металлов:
Все щелочные металлы обладают высокой химической активностью. Они проявляют высокую химическую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями. Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. В соединениях щелочные металлы проявляют единственную степень окисления +1. Все соединения щелочных металлов носят ионный характер. Почти все соединения растворимы в воде.
С увеличением порядкового номера у щелочных металлов усиливаются металлические свойства и ослабевают неметаллические свойства, увеличивается восстановительная способность, возрастает химическая активность их щелочей.
Читайте также: