При сгорании натрия и калия на воздухе образуются пероксиды металлов
Тренажер задания 31 из ЕГЭ по химии щелочных металлов, задачи на неорганическую химию (мысленный эксперимент) из экзамена ЕГЭ по химии, задания 31 по химии щелочных металлов с текстовыми решениями и ответами.
1) Над поверхностью налитого в колбу раствора едкого натра пропускали электрические разряды, при этом воздух в колбе окрашивался в бурый цвет, который исчезает через некоторое время. Полученный раствор осторожно выпарили и установили, что твердый остаток представляет собой смесь двух солей. При нагревании этой смеси выделяется газ и остается единственное вещество. Напишите уравнения описанных реакций.
2) Вещество, выделяющееся на катоде при электролизе расплава хлорида натрия, сожгли в кислороде. Полученный продукт поместили в газометр, наполненный углекислым газом. Образовавшееся вещество добавили в раствор хлорида аммония и раствор нагрели. Напишите уравнения описанных реакций.
3) Азотную кислоту нейтрализовали пищевой содой, нейтральный раствор осторожно выпарили и остаток прокалили. Образовавшееся вещество внесли в подкисленный серной кислотой раствор перманганата калия, при этом раствор обесцветился. Азотсодержащий продукт реакции поместили в раствор едкого натра и добавили цинковую пыль, при этом выделился газ с резким запахом. Напишите уравнения описанных реакций.
4) Вещество, полученное на аноде при электролизе раствора иодида натрия с инертными электродами, внесли в реакцию с калием. Продукт реакции нагрели с концентрированной серной кислотой, и выделившийся газ пропустили через горячий раствор хромата калия. Напишите уравнения описанных реакций.
5) Вещество, полученное на катоде при электролизе расплава хлорида натрия, сожгли в кислороде. Поkученный продукт последовательно обработали сернистым газом и раствором гидроксида бария. Напишите уравнения описанных реакций.
6) Белый фосфор растворяется в растворе едкого кали с выделением газа с чесночным запахом, который самовоспламеняется на воздухе. Твердый продукт реакции горения прореагировал с едким натром в таком соотношении, что в образовавшемся веществе белого цвета содержится один атом водорода; при прокаливании последнего вещества образуется пирофосфат натрия. Напишите уравнения описанных реакций.
7) Неизвестный металл сожгли в кислороде. Продукт реакции при взаимодействии с углекислым газом образует два вещества: твердое, которое взаимодействует с раствором соляной кислоты с выделением углекислого газа, и газообразное простое вещество, поддерживающее горение. Напишите уравнения описанных реакций.
8) Через избыток раствора едкого кали пропустили бурый газ в присутствии большого избытка воздуха. В образовавшийся раствор добавили магниевую стружку и нагрели, выделившимся газом нейтрализовали азотную кислоту. Полученный раствор осторожно выпарили, твердый продукт реакции прокалили. Напишите уравнения описанных реакций.
9) При термическом разложении соли А в присутствии диоксида марганца образовались бинарная соль Б и газ, поддерживающий горение и входящий в состав воздуха; при нагревании этой соли без катализатора образуются соль Б и соль высшей кислородсодержащей кислоты. При взаимодействии соли А с соляной кислотой выделяется желто-зеленый газ (простое вещество) и образуется соль Б. Соль Б окрашивает пламя в фиолетовый цвет, при ее взаимодействии с раствором нитрата серебра выпадает осадок белого цвета. Напишите уравнения описанных реакций.
10) К нагретой концентрированной серной кислоте добавили медную стружку и выделившийся газ пропустили через раствор едкого натра (избыток). Продукт реакции выделили, растворили в воде и нагрели с серой, которая в результате проведения реакции растворилась. В полученный раствор добавили разбавленную серную кислоту. Напишите уравнения описанных реакций.
11) Поваренную соль обработали концентрированной серной кислотой. Полученную соль обработали гидроксидом натрия. Полученный продукт прокалили с избытком угля. Выделившийся при этом газ прореагировал в присутствии катализатора с хлором. Напишите уравнения описанных реакций.
12) Натрий прореагировал с водородом. Продукт реакции растворили в воде, при этом образовался газ, реагирующий с хлором, а полученный раствор при нагревании прореагировал с хлором с образованием смеси двух солей. Напишите уравнения описанных реакций.
13) Натрий сожгли в избытке кислорода, полученное кристаллическое вещество помести-ли в стеклянную трубку и пропустили через неё углекислый газ. Газ, выходящий из трубки, собрали и сожгли в его атмосфере фосфор. Полученное вещество нейтрализовали избытком раствора гидроксида натрия. Напишите уравнения описанных реакций.
14) К раствору, полученному в результате взаимодействия пероксида натрия с водой при нагревании, добавили раствор соляной кислоты до окончания реакции. Раствор образо-вавшейся соли подвергли электролизу с инертными электродами. Газ, образовавшийся в результате электролиза на аноде, пропустили через суспензию гидроксида кальция. Напишите уравнения описанных реакций.
NaOH + HCl = NaCl + H2O
15) Через раствор гидроксида натрия пропустили сернистый газ до образования средней соли. К полученному раствору прилили водный раствор перманганата калия. Образовавшийся осадок отделили и подействовали на него соляной кислотой. Выделившийся газ пропустили через холодный раствор гидроксида калия. Напишите уравнения описанных реакций.
2KOH(холодный) + Cl2 = KCl + KClO + H2O
16) Смесь оксида кремния (IV) и металлического магния прокалили. Полученное в результате реакции простое вещество обработали концентрированным раствором гидроксида натрия. Выделившийся газ пропустили над нагретым натрием. Образовавшееся вещество поместили в воду. Напишите уравнения описанных реакций.
SiO2 + 2Mg = 2MgO + Si
NaH + H2O = NaOH + H
17) Продукт взаимодействия лития с азотом обработали водой. Полученный газ пропустили через раствор серной кислоты до прекращения химических реакций. Полученный раствор обработали раствором хлорида бария. Напишите уравнения описанных реакций.
18) Натрий нагрели в атмосфере водорода. При добавлении к полученному веществу воды наблюдали выделение газа и образование прозрачного раствора. Через этот раствор пропустили бурый газ, который был получен в результате взаимодействия меди с концентрированным раствором азотной кислоты. Напишите уравнения описанных реакций.
19) Гидрокарбонат натрия прокалили. Полученную соль растворили в воде и смешали с раствором бромида алюминия, в результате образовался осадок и выделился бесцветный газ. Оса док обработали избытком раствора азотной кислоты, а газ пропустили через раствор силиката калия. Напишите уравнения описанных реакций.
20) Натрий сплавили с серой. Образовавшееся соединение обработали соляной кислотой, выделившийся газ нацело прореагировал с оксидом серы (IV). Образовавшееся вещество обработали концентрированной азотной кислотой. Напишите уравнения описанных реакций.
Контрольная работа «Металлы»
4. вещества, взаимодействие которых сопровождается образованием газа.
1. алюминий и гидроксид натрия 2. Хлорид аммония и нитрат серебра 3. Серная кислота(р-р) и медь 4. Аммиак и соляная кислота
5. вещества, вступающие в реакцию при комнатной температуре
1. ртуть и сера 2. Железо и вода 3. Магний и сера 4. Медь и кислород
6. железо взаимодействует с каждым из двух веществ
1. соляная кислота и хлор 2. Хлорид лития и гидроксид калия
3. серная кислота и оксид алюминия 4. Сульфат меди и карбонат кальция
7. вещества взаимодействие которых не сопровождается образованием водорода
1. Сu u H2SO4 2. Al u NaOH 3. Ca u H2O 4. NaH u H2O
8. верны ли следующие суждения о свойствах металлов
А. железо способно вытеснять водород из растворов соляной и азотной кислот
Б. при сгорании натрия и калия на воздухе образуются пероксиды металлов
1. верно только А 2. Верно только Б
3. верны оба суждения 4. Неверны оба суждения
9. формула вещества Х в цепочке превращений
1 вариант
10. массовая доля железа наибольшая в соединении (показать решение)
Часть Б. задания с выбором нескольких вариантов ответа и на соответствие
11. вещества, способные восстанавливать медь из ее оксида
1. оксид углерода (IV) 2.Углерод 3. Сера 4. Водород 5. Соляная кислота
12. установите соответствие между исходными веществами и продуктами реакции
Исходные вещества продукты реакции
Fe u HCl 2. FeCl2
Часть В. Задания с развернутым ответом
13. составьте уравнения реакций с водой для калия, железа. Укажите условия прохождения реакций.
14. к раствору сульфата металла со степенью окисления +3 добавили небольшое количество гидроксида калия. Образовавшийся белый студенистый осадок разделили на две части. В одну пробирку прилили соляную кислоту. Во вторую раствор гидроксида калия. В обеих пробирках осадок растворился. Определите исходное вещество и запишите уравнения реакций.
Вариант
10 Массовая доля меди наибольшая в соединении
11. химический элемент в атоме которого распределение электронов по слоям 2е8е2е
1. имеет ярко выраженные металлические свойства
2. проявляет в соединениях только отрицательную степень окисления
3. с неметаллами образует соединения с ковалентной связью
4. образует летучее водородное соединение
13. составьте уравнения реакций магния с азотной кислотой, если известно, что одним из продуктов реакции является оксид азота (II)
Расставьте коэффициенты методом электронного баланса
14. металлическую пластинку красного цвета прокалили. Полученное вещество черного цвета разделили на две части. Одна часть при нагревании в токе водорода превратилась в исходный металл . а растворение другой части в серной кислоте сопровождалось образованием голубого раствора. Определите неизвестный металл и запишите уравнения химических реакций.
Пероксиды и надпероксиды
Пероксид натрия образуется при сгорании натрия на воздухе. Пероксиды калия, рубидия и цезия Ме2О2 получают косвенным путём, они менее устойчивы, чем Na2O2.
К, Rb, Cs при сгорании образуют надпероксиды МеО2 (КО2, RbO2, CsO2).
Пероксиды и надпероксиды щелочных металлов сильные окислители, например:
Пероксиды и надпероксиды легко разлагаются водой, например:
Гидроксиды
Гидроксиды щелочных металлов Ме(ОН) – бесцветные кристаллические вещества, хорошо растворимые в воде (исключая LiOH), являются сильными электролитами (существуют в воде только в виде ионов). В ряду Li – Cs растворимость гидроксидов и их основные свойства усиливаются.
Гидроксиды активно поглощают из воздуха СО2 и Н2О (поэтому всегда содержат примеси – карбонаты).
Гидроксиды проявляют все характерные свойства оснований:
NaOH + HCl = NaCl + H2O,
В промышленности гидроксиды получают электролизом водных растворов их солей, например:
Твёрдые гидроксиды и их концентрированные водные растворы разрушают живые ткани вследствие обезвоживания и щелочного гидролиза белков. Поэтому работа с ними требует мер предосторожности (резиновые перчатки, очки).
Соли
Щелочные металлы образуют соли с большинством известных кислот. С многоосновными кислотами образуют средние соли (MeCO3, MeSO3, MeSO4, Me3(PO4)3 и др.) и кислые (MeHSO3, MeHSO4, MeH2PO4, Me2HPO4 и др.).
Кислых солей щелочных металлов известно очень много, а у других металлов они встречаются редко. Склонность к образованию таких солей и их термическая устойчивость увеличивается в ряду Li – Cs.
Большинство солей щелочных металлов хорошо растворимы в воде. Исключение составляют соли лития.
Все соли щелочных металлов характеризуются высокими температурами плавления, хорошо проводят электрический ток их расплавы и растворы.
В водных растворах соли слабых кислот пордвергаются гидролизу. Например:
Летучие соединения щелочных металлов окрашивают пламя в характерные цвета: натрий – желтый, калий – фиолетовый и т.д.).
Токсикология.Ионы Na + и K + - активные участники биохимических процессов в живых организмах. Ионы Li + являются биологическим антагонистом ионов натрия Na + , они осорбенно токсичны при недостатке ионов Na + в рационе.
S-элементы IIA группы
s-Элементы IIA группы – это бериллий, магний и щелочно-земельные металлы – кальций Са, стронций Sr, барий Ва и радиоактивный радий Ra. Последние так называют потому, что их оксиды тугоплавки и малорастворимы в воде (такие вещества раньше назывались «землями»), а продукты их взаимодействия с водой имеют щелочные свойства.
В свободном состоянии эти металлы представляют собой серебристо-белые вещества, более твёрдые, чем щелочные металлы, со сравнительно высокими температурами плавления. Все эти элементы, кроме бериллия, обладают ярко выраженными металлическими свойствами.
Строение внешнего электронного уровня атомов этих элементов можно представить так: ns 2 , в возбуждённом состоянии ns 1 np 1 .
Атомы элементов IIA группы проявляют в своих соединениях одну степень окисления +2.
Металлы группы IIA сильные восстановители. Они довольно легко реагируют с большинством неметаллов:
(металлы легко окисляются образуя не пероксиды, а оксиды; оксидная плёнка бериллия и магния довольно прочная, поэтому эти металлы могут храниться на воздухе);
С водородом металлы образуют гидриды МеН2. Например:
Бериллий с водородом не взаимодействует.
Гидриды щелочноземельных металлов белые кристаллические вещества с ионной кристаллической решеткой, анион Н ‾ . Гидриды Ве и Mg твёрдые полимерные соединения. Термическая устойчивость гидридов понижается от Ва к Ве (ВеН2 плавится при 125 0 С, а ВаН2 – при 1200 0 С). Гидриды группы металлов IIA, как и гидриды металлов группы IA, сильные восстановители.
С водой активно реагируют щелочноземельные металлы (Са, Sr, Ba), реакции идут при обычной температуре. Например:
Магний реагирует при нагревании, а бериллий имеет поверхность, покрытую прочной плёнкой оксида и, поэтому, с водой не реагирует даже при высоких температурах (хотя термодинамически это возможно).
Активность взаимодействия с водой в ряду Mg – Ca – Sr – Ba – Ra возрастает.
Оксиды
Оксиды щелочно-земельных металлов – твёдые белые тугоплавкие вещества. Они могут быть получены термическим разложением карбонатов, нитратов, гидроксидов. Например:
Оксиды, кроме ВеО, реагируют с водой; MgO реагирует с горячей водой:
Оксиды щелочно-земельных металлов проявляют свойства основных оксидов:
ВеО – амфотерный оксид, белое тугоплавкое, термически устойчивое вещество. При нагревании взаимодействует с кислотами и щелочами, кислотными и основными оксидами:
2ВеО + SiO2 = Be2SiO4 (фенакит; t= 1600 0 C)
ВеО – токсичен, раздражает дыхательные пути, при попадании в лёгкие вызывает хроническое заболевание бериллиоз (лёгочная недостаточность).
Элементы группы IIA образуют гидроксиды Ме(ОН)2. Это бесцветные, тугоплавкие, твёрдые вещества. Они являются более слабыми основаниями, чем гидроксиды щелочных металлов. Основные свойства гидроксидов усиливаются от Ве(ОН)2 к Ва(ОН)2. Гидроксиды бериллия и магния – слабые основания, плохо растворимые в воде. Ве(ОН)2 склонен к полимеризации.
Гидроксиды щелочно-земельных металлов являются сильными основаниями. Они активно взаимодействуют с кислотами, кислотными оксидами. Например:
При нагревании гидроксиды разлагаются. Например:
Гидроксид бериллия проявляет амфотерные свойства, реагирует с разбавленными кислотами, щелочами в растворе и при сплавлении:
Cоли
Элементы IIA подобно щелочным металлам образуют соли со всеми кислотами. Многие соли растворимы. Малорастворимы или практически нерастворимы фториды и карбонаты, а также сульфаты кальция, стронция и бария. С ростом порядкового номера элемента растворимость солей понижается.
Растворимые соли бериллия и магния подвергаются гидролизу:
Ионы элементов группы IIA, как и ионы щелочных металлов, не образуют устойчивых комплексных соединений. Более склонны к образованию комплексных соединений бериллий и магний. В ряду Be 2+ - Mg 2+ - Ca 2+ - Sr 2+ - Ba 2+ прочность комплексных соединений уменьшается.
Жесткость воды
Жесткость воды обусловлена наличием ионов Са 2+ и Mg 2+ . Чем выше их содержание в природной воде, тем больше её жесткость.
Количественно жесткость воды характеризуют через суммарное содержание ионов Са 2+ и Mg 2+ , выраженное в моль/л. По жесткости все природные воды делятся на мягкие (общая жесткость менее 2 ммоль/л) и жесткие со средней степенью жесткости (2 – 10 ммоль/л) и высокой степенью жесткости (более 10 ммоль/л).
Виды жесткости
Различают общую жесткость, которая складывается из временной и постоянной жесткости.
Временная жесткость (устранимая, или карбонатная жесткость) удаляется кипячением воды. Эта жесткость вызвана присутствием в воде гидрокарбонатов Са(НСО3)2 и Mg (НСО3)2 и количественно равна концентрации ионов Са 2+ и Mg 2+ , которая соответствует удвоенной концентрации гидрокарбонат-иона НСО3 ‾ . При длительном кипечении воды в ней появляется осадок МеСО3 и одновременно выделяется газ СО2:
Поэтому карбонатную жесткость называют временной жесткостью.
Постоянная жесткость (неустранимая, или некарбонатная) сохраняется при кипячении воды. Количественно она равна концентрации ионов Са 2+ и Mg 2+ за вычетом временной жесткости. Обычно постоянную жесткость характеризуют содержанием CaSO4 и MgSO4, поэтому её называют сульфатной жесткостью. Эту жесткость устраняют введением в воду химических реагентов (карбонат натрия, гидроксид кальция, ортофосфат натрия, тетраборат натрия и др.). Например:
Ортофосфаты менее растворимы, чем карбонаты, поэтому лучшее умягчение достигается с помощью реагента Na3PO4.
Современный способ умягчения воды основан на использовании ионообменных смол – ионитов (катионитов и анионитов). Через трубчатый обменник, заполненный смолой в Na + -форме пропускают жесткую воду, при этом ионы Са 2+ и Mg 2+ , эквивалентно замещают ионы Na + в смоле. Ионит периодически регенерируют, промывая концентрированным раствором хлорида натрия.
Умягчение воды при стирке проводят с помощью комплексообразующих ионитов (полифосфаты натрия, метафосфаты натрия и др.). Ионы Са 2+ и Mg 2+ связываются в устойчивые комплексы и становятся инертными по отношению к мылу.
В некоторых случаях проводят полное обессоливание воды. Для этого воду подвергают перегонке (дистилляции). Другой способ обессоливания – последовательная обработка воды с помощью катионита и анионита. При пропускании через катионитный фильтр ионы металлов в растворе заменяются на ионы Н + , а при пропускании воды через анионитный фильтр анионы кислот в растворе заменяются на ионы ОН ‾ . Таким образом, в целом из воды удаляются соли, а перешедшие в воду ионы взаимно нейтрализуются: Н + + ОН ‾ = Н2О. Периодически иониты восстанавливают промывая их разбавленными растворами соответственно серной кислоты и гидроксидом натрия.
Понятие о ионофорах
Ионофоры – органические вещества, осуществляющие перенос катионов щелочных и щелочно-земельных металлов или NH4 + через биологические мембраны. К ионофорам относятся многие антиьиотики (валиномицин, нактины, энниатины и др.).
В основе действия ионофоров лежит их способность образовывать комплексы с транспортируемыми катионами. Механизм переноса ионов обычно включает следующие стадии. Вначале ионофор, расположенный на поверхности мембраны, взаимодействует с катионом, находящимся в водной фазе с одной стороны мембраны. Образующийся комплекс внедряется в мембрану и перемещается к другой её стороне под действием электрического поля или градиента концентрации, после чего комплекс диссоциирует. Катион вновь переходит в водную фазу (принцип подвижного переносчика).
Щелочные металлы. Химия щелочных металлов и их соединений
Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.
Электронное строение щелочных металлов и основные свойства
Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.
Рассмотрим некоторые закономерности изменения свойств щелочных металлов.
В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .
Физические свойства
Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.
Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.
Нахождение в природе
Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:
Поваренная соль, каменная соль, галит — NaCl — хлорид натрия
Сильвин KCl — хлорид калия
Сильвинит NaCl · KCl
Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия
Едкое кали KOH — гидроксид калия
Поташ K2CO3 – карбонат калия
Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:
Способы получения
Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):
2LiCl = 2Li + Cl2
Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:
2NaCl (расплав) → 2Na + Cl2
Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).
Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:
KCl + Na = K↑ + NaCl
KOH + Na = K↑ + NaOH
Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:
Са + 2CsCl → 2Cs + CaCl2
В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.
Качественные реакции
Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .
Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный
Химические свойства
1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .
1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:
2K + I2 = 2KI
1.2. Щелочные металлы реагируют с серой с образованием сульфидов:
2Na + S = Na2S
1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:
3K + P = K3P
2Na + H2 = 2NaH
1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:
Остальные щелочные металлы реагируют с азотом при нагревании.
1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.
Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.
2. Щелочные металлы активно взаимодействуют со сложными веществами:
2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.
Например , калий реагирует с водой очень бурно:
2K 0 + H2 + O = 2 K + OH + H2 0
Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.
2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.
Например , натрий бурно реагирует с соляной кислотой :
2Na + 2HCl = 2NaCl + H2↑
2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.
Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:
2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):
С разбавленной азотной кислотой образуется молекулярный азот:
При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:
2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .
Например , при взаимодействии лития с аммиаком образуются амиды и водород:
Ацетилен с натрием образует ацетиленид натрия и также водород:
Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2
Фенол с натрием реагирует с образованием фенолята натрия и водорода:
Метанол с натрием образуют метилат натрия и водород:
Уксусная кислота с литием образует ацетат лития и водород:
2СH3COOH + 2Li → 2CH3COOLi + H2↑
Щелочные металлы реагируют с галогеналканами (реакция Вюрца).
Например , хлорметан с натрием образует этан и хлорид натрия:
2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.
Например , натрий взаимодействует в расплаве с хлоридом алюминия :
3Na + AlCl3 → 3NaCl + Al
Оксиды щелочных металлов
Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:
1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:
2. Взаимодействием натрия с пероксидом натрия :
3. Взаимодействием натрия с расплавом щелочи :
2Na + 2NaOН → 2Na2O + Н2↑
4. Оксид лития можно получить разложением гидроксида лития :
2LiOН → Li2O + Н2O
Химические свойства
Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.
1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :
Например , оксид натрия взаимодействует с оксидом фосфора (V):
Оксид натрия взаимодействует с амфотерным оксидом алюминия:
2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).
Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:
K2O + 2HCl → 2KCl + H2O
3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.
Например , оксид лития взаимодействует с водой с образованием гидроксида лития:
Li2O + H2O → 2LiOH
4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.
Пероксиды щелочных металлов
Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.
1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:
При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:
2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .
Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:
3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:
При нагревании пероксиды, опять-таки, диспропорционируют:
4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:
5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.
Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:
Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:
6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.
Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:
Гидроксиды щелочных металлов (щелочи)
1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:
2NaCl + 2H2O → 2NaOH + H2 + Cl2
2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.
Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:
2Na + 2H2O → 2NaOH + H2
Na2O + H2O → 2NaOH
2NaH + 2H2O → 2NaOH + H2
3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.
Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:
1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:
2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:
Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:
А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:
3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.
Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:
в растворе образуется комплексная соль — тетрагидроксоалюминат:
Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:
4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.
Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:
5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).
При этом кремний окисляется щелочами до силиката и водорода:
Фтор окисляет щелочи. При этом выделяется молекулярный кислород:
Другие галогены, сера и фосфор — диспропорционируют в щелочах:
Сера взаимодействует с щелочами только при нагревании:
6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:
В растворе образуются комплексная соль и водород:
2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2
7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .
С щелочами взаимодействуют соли тяжелых металлов.
Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):
2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl
Также с щелочами взаимодействуют соли аммония.
Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:
NH4Cl + NaOH = NH3 + H2O + NaCl
8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:
2LiOH → Li2O + H2O
9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.
NaOH ↔ Na + + OH —
10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:
4NaOH → 4Na + O2 + 2H2O
Соли щелочных металлов
Нитраты и нитриты щелочных металлов
Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.
Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:
Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.
Нитриты щелочных металлов могут быть окислителями или восстановителями.
В щелочной среде нитраты и нитриты — очень мощные окислители.
Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:
Сильные окислители окисляют нитриты до нитратов.
Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:
Читайте также:
- Урок металлическая химическая связь 11 класс
- Коррозия протекающая на поверхности металла под действием сконденсированной влаги называется
- Допустимые значения твердости металла сварных швов и зон термического влияния по маркам сталей
- Фермы металлические для ангара
- Комплект чпу для фрезерного станка по металлу