Почему металлы не могут быть окислителями

Обновлено: 07.01.2025

Общие представления о химической устойчивости металлов. Металлы и их сплавы – важнейшие конструкционные материалы. Чтобы иметь представление о химической устойчивости этих материалов, необходимо знать свойства металлов, их поведение в различных средах. Химические свойства металлов объясняются следующими особенностями.

Все металлы – восстановители, что обусловлено строением их атомов. Внешние электроны в атомах металлов находятся на значительном удалении от ядра и связаны с ним сравнительно слабо – атомы металлов характеризуются низкими энергиями ионизации и близким к нулю или отрицательным сродством к электрону. Именно поэтому металлы легко отдают валентные электроны, выступая в качестве восстановителей и превращаясь в положительные ионы и, как правило, не способны присоединять электроны – проявлять окислительные свойства.

Все металлы по восстановительным свойствам разделены на три группы:

1) активные металлы (в «Ряду напряжений» находятся от Li до Al включительно);

2) металлы средней активности (в ряду напряжений находятся от Al до H2);

3) малоактивные металлы (в ряду напряжений стоят после водорода).

Будучи восстановителями, металлы могут взаимодействовать с окислителями. Важнейшим окислителем, входящим в состав воздуха, является кислород. С кислородом взаимодействуют почти все металлы, кроме Ag, Au, Hg и платиновых металлов, причём щелочные и щелочноземельные взаимодействуют очень активно, так что уже при обычной температуре рубидий и цезий самовозгораются:

Хотя процессы взаимодействия других металлов с кислородом протекают менее активно, их окисление всегда термодинамически выгодно, т.к. сопровождается уменьшением свободной энергии Гиббса. Образующиеся при этом оксиды во многих случаях придают химическую устойчивость изделиям из металла.

Термодинамическая возможность реакции металла с тем или иным окислителем определяется условием или ЭДС реакции (Е = jо - jв ) положительна. Сравнение ряда потенциалов окислителей:

F2/2F Cl2/2Cl Br2/2Br O2/OH H2O, H/H2
+2,87 +1,356 +1,087 +1,23 (рН=0) 0,0 (рН=0)
+0,82 (рН=7) -0,41 (рН=7)

с электродными потенциалами металлов позволяет сделать следующие выводы. Все металлы окисляются фтором и могут окисляться хлором. Большинство металлов (кроме платины и золота) могут окисляться бромом и кислородом в кислой среде. В нейтральной среде кислород не может окислять золото, платиновые металлы, ртуть, серебро. Ионы водорода в кислой среде могут окислять многие металлы, кроме платиновых, ртути, золота, серебра, меди, рения, сурьмы и висмута. Реальная возможность окисления того или иного металла определяется не только термодинамикой, но и кинетикой процесса. Взаимодействие многих металлов с окислителями тормозится пассивными пленками на поверхности металлов.

Взаимодействие металлов с водой. Окислителем в этом случае является катион водорода (ион гидроксония Н3О+), присутствующий в результате равновесной реакции Н2О D Н+ + ОН.

Для того чтобы выяснить, какие металлы окисляются катионами водорода, концентрация которых обусловлена диссоциацией молекул воды, необходимо определить окислительно-востановительный потенциал водородного электрода в воде. При 25 о С и рН = 7 , Е = . ЭДС реакции будет положительна (Е > 0), если < - 0,41В. Значит, все металлы, имеющие стандартный электродный потенциал меньший, чем – 0,41В (в «Ряду напряжений» стоят до кадмия включительно), могут окисляться катионами водорода, т.е. восстанавливать водород из воды.

Чтобы процесс мог протекать до конца, необходимо, чтобы образующиеся гидроксиды Me(OH)n были растворимы в воде. В противном случае, вследствие образования малорастворимых оснований, покрывающих металл, реакция практически прекращается.

2Na + 2H2O ® 2 Na + + H2 + 2OH.

Процесс термодинамически возможен, т.к. < - 0,41B, но из-за образования малорастворимого Zn(OH)2, предохраняющего цинк от воздействия воды, практически не идёт.

Процесс термодинамически не возможен, т.к. > - 0,41B.

Приведённые выше расчёты указывают лишь на возможность осуществления процесса, а не на обязательное его протекание. В действительности существуют ограничения, которые препятствуют реализации такой возможности, а иногда полностью её исключают. Например, пассивацию поверхности металла малорастворимым соединением, в частности основанием, мы уже рассмотрели. На возможность реального осуществления реакции влияет реальное состояние поверхности (наличие оксидных плёнок). Так, в соответствии с электродными потенциалами металлы Be, Mg, Al, Ti и др. должны взаимодействовать с водой (восстанавливать катионы водорода из воды). Однако оксидные поверхностные слои, не растворимые в воде, исключают возможность такого взаимодействия. Нерастворимость TiO2 ни в воде, ни в разбавленных растворах кислот и щелочей обусловливает высокую химическую пассивность титана.

Взаимодействие металлов с растворами щелочей. Только амфотерные металлы Be, Al, Zn, Pb, Sn могут взаимодействовать с растворами щелочей по ионно-молекулярной схеме:

где n, m – степень окисления металла и заряд комплексного иона, соответственно.

В качестве примера рассмотрим взаимодействие бериллия с раствором гидроксида натрия. Схема процесса:

в-ль ок-ль продукт продукт

Схемы полуреакций и ионно-молекулярное уравнение:

1 Be + 4OH– 2eˉ = [Be(OH)4] 2-

Для определения металлов, восстанавливающих водород из щелочных растворов, т.е. для расчёта ЭДС реакции нельзя пользоваться потенциалами окислительно-восстановительных систем , т.к. металл, окисляясь, переходит в значительно более сложный ион – [Me(OH)n] m - . В подобных случаях надо рассматривать потенциал системы [Me(OH)n] m - /Ме.

Кроме того, концентрация [H + ] в щелочном растворе зависит от концентрации щелочи. Например, для 1М раствора NaOH [OH] = 1 моль/л; при 25 0 С [H + ] = = 10 -14 моль/л. Отсюда .

Взаимодействие металлов с растворами кислот.Минеральные кислоты HCl, H3PO4, H2SO4 разбавленная и др., за исключением HNO3 любой концентрации и H2SO4 концентрированной, являются окислителями металлов за счёт катионов водорода.

Для перечисленных кислот взаимодействие с металлами идёт по схеме:

Ме + 2Н + ® Ме n + + H2

Определим ЭДС данной ОВР в общем виде в стандартных условиях:

Чтобы металл мог восстанавливать катионы Н + до Н2 при взаимодействии с перечисленными минеральными кислотами, необходимо, чтобы его стандартный электродный потенциал был меньше нуля вольт и образующаяся соль была растворимой в воде (реакция будет идти до конца; в противном случае поверхность металла запассивируется).

, процесс термодинамически возможен.

1 Zn – 2eˉ = Zn 2+

Zn + 2H + = Zn 2+ + H2

, процесс возможен, но образующаяся в начальный момент малорастворимая соль PbSO4 покрывает металл пассивирующей солевой плёнкой и реакция практически прекращается.

Особенности взаимодействия металлов с растворами азотной кислоты. В азотной кислоте сильным окислителем является нитрат- ион NO, поэтому при её взаимодействии с металлами водород Н2 не выделяется, а протекает восстановление NO. Каким будет продукт восстановления - зависит от концентрации кислоты и активности металла.

Чем активнее металл и чем меньше концентрация кислоты, тем в большей степени восстанавливается азот (понижается его степень окисления). Азотная кислота как сильный окислитель окисляет металлы до высоких степеней окисления, взаимодействует со всеми металлами, стоящими в «Ряду напряжений», по серебро включительно.

В зависимости от концентрации кислоты и активности металла получаются следующие продукты:

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Окислительно-восстановительные реакции


Разбираться в ОВР важно, чтобы хорошо сдать ЕГЭ по химии. Какие реакции называются окислительно-восстановительными, их типы, а также примеры окислителей и восстановителей — в нашей подробной статье.

11 класс, ЕГЭ/ОГЭ

Что такое ОВР

Окислительно-восстановительная реакция (ОВР) — это реакция, которая протекает с изменением степеней окисления.

В такой реакции всегда участвуют вещество-окислитель и вещество-восстановитель. Другие вещества могут выступать в качестве среды, в которой протекает данная реакция.

Конечно, в каждом правиле есть исключения. Например, реакция диспропорционирования галогенов в горячем растворе щелочи выглядит так: Br2 + KOH = KBrO3 + KBr + H2O. Здесь и окислителем, и восстановителем является простое вещество бром (Br2).

Теперь посмотрим внимательнее на вещества — участники окислительно-восстановительных реакций.

Окислитель — вещество, в состав которого входит ион или атом, который в процессе реакции будет принимать электроны, тем самым понижая свою степень окисления.

Восстановитель — вещество, в состав которого входит ион или атом, который в процессе реакции будет отдавать электроны, тем самым повышая свою степень окисления.

Из определений понятно, что реакция включает два противоположных по действиям явления: процесс окисления и процесс восстановления. Процесс восстановления — это процесс принятия электронов, а процесс окисления — процесс отдачи электронов. Оба процесса протекают одновременно: окислитель восстанавливается, а восстановитель окисляется.

Вот мы и узнали общие закономерности протекания окислительно-восстановительных реакций. Теперь давайте разберемся, какие вещества могут быть окислителями, а какие — восстановителями, и может ли одно вещество проявлять те и другие свойства.

Примеры веществ-окислителей

Вещества — только окислители, рисунок 1

Вещества — только окислители, рисунок 2

И марганец, и хром в кислой среде (H + ) образуют соли той кислоты, которая образовывала среду. В нейтральной среде (H2O) марганец превращается в оксид бурого цвета, а хром — в серо-зеленый нерастворимый в воде гидроксид. В щелочной среде (OH − ) марганец превращается в манганат (MnO4 2− ), а хром — в комплексное соединение светло-зеленого цвета.

Только окислителями могут быть простые вещества-неметаллы. Например, представители VIIA группы — галогены. Проявляя окислительные свойства в кислой среде, галогены восстанавливаются до соответствующих им галогеноводородных кислот: HF, HCl, HBr, HI. В щелочной среде образуются соли галогеноводородных кислот.

Кислород превращается в анион с устойчивой степенью окисления −2. А сера ведет себя как окислитель по отношению к водороду и металлам, образуя при этом сероводород и сульфиды.

Только окислителями могут быть и протон водорода (H + ) и катионы металлов в их высших степенях окисления при нескольких возможных. Ион Н + при взаимодействии с восстановителями переходит в газообразный водород (H2), а катионы металлов — в ионы с более низкой степенью окисления: 2CuCl2 + 2KI = CuCl + 2KCl + I2.

Рассмотрим как ведут себя сильные кислоты-окислители — азотная и серная. В зависимости от их концентрации меняются и продукты реакции.

Разбавленная азотная кислота никогда не реагирует с металлами с выделением водорода в отличие от разбавленной серной кислоты. Обе эти кислоты реагируют с металлами, стоящими в ряду активности после водорода.

Продукты взаимодействия металлов с азотной и серной кислотами

Эти кислоты проявляют окислительные способности и с некоторыми неметаллами, окисляя их до соответствующих кислот в высшей степени окисления неметалла-восстановителя.

Продукты взаимодействия неметаллов с азотной и серной кислотами

Для удобства мы собрали цвета переходов важнейших веществ-окислителей в одном месте.

Цвета переходов окислителей

Примеры веществ-восстановителей

Типичными восстановителями могут быть щелочные (IA) и щелочноземельные (IIA) металлы, цинк и алюминий, а также катионы металлов в своих низших степенях окисления при нескольких возможных. Например:

Типичными восстановителями также могут быть бескислородные кислоты и их соли. Например, H2S + 4Cl2 + 4H2O = 8HCl + H2SO4.

Гидриды активных металлов (щелочных и щелочноземельных) тоже являются типичными восстановителями. Например, NaH + H2O = NaOH + H2.

Для удобства мы собрали цвета переходов важнейших веществ-восстановителей в одном месте.

Цвета переходов восстановителей

Окислительно-восстановительная двойственность

Окислительно-восстановительная двойственность — это способность атома проявлять как свойства окислителя, так и свойства восстановителя в зависимости от условия протекания химической реакции.

Разберем вещества, атомы которых обладают окислительно-восстановительной двойственностью.

По отношению к водороду и металлам сера играет роль окислителя: S + H2 = H2S.

При взаимодействии с сильными окислителями повышает свою степень окисления до +4 или +6: S + KMnO4 = K2SO4 + MnO2.

Кислородсодержащие соединения серы в степени окисления +4

Сера в сульфитах и сернистой кислоте при взаимодействии с сильными окислителями повышает степень окисления до +6: SO2 + 2HNO3 (конц) = H2SO4 + 2NO2.

С восстановителями соединения серы проявляют окислительные свойства, восстанавливаясь до степени окисления 0 или −2: SO2 + C = CO2 + S.

Пероксид водорода

Атом кислорода в пероксиде водорода находится в промежуточной степени окисления –1, и в присутствии восстановителей может понижать степень окисления до –2: 4H2O2 + PbS = PbSO4 + 4H2O.

Атом кислорода в пероксиде водорода находится в промежуточной степени окисления –1, и в присутствии окислителей может повышать степень окисления до 0: 3H2O2 + 2KMnO4 = 3O2 + 2MnO2 + 2KOH + 2H2O.

Простое вещество йод

Окислительная способность проявляется у йода в реакции с такими восстановителями, как сероводород, фосфор и металлы: I2 + H2S = S + 2HI.

Йод при взаимодействии с более сильными окислителями играет роль восстановителя: I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl.

Азотистая кислота и нитриты

При взаимодействии с более сильными окислителями азот повышает степень окисления до +5 и превращается либо в азотную кислоту из азотистой, либо в нитрат-анион из нитрит-аниона: 5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O.

При взаимодействии с сильными восстановителями обычно происходит восстановление до NO (иногда до других соединений азота в более низких степенях окисления): 2HNO2 + 2HI = 2NO + I2 + 2H2O.

Для удобства мы собрали представителей типичных окислителей и восстановителей в одну схему.

Важнейшие окислители и восстановители

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции можно поделить на четыре типа:

Рассмотрим каждую по отдельности.

Межмолекулярная ОВР — это реакция, окислитель и восстановитель которой являются различными веществами.

2KI + Br2 = 2KBr + I2, где Br2 — окислитель, а KI — восстановитель (за счёт I −1 ).

Внутримолекулярная ОВР — это реакция, в которой один атом является окислителем, а другой восстановителем в рамках одного соединения.

Пример такой окислительно-восстановительной реакции:

Внутримолекулярная ОВР

где Cl +5 — окислитель, а O −2 — восстановитель.

Термическое разложение нитратов — это внутримолекулярная ОВР. Вот схема разложения нитратов в зависимости от металла, входящего в состав соли.

Разложение нитратов

Исключение — разложение нитрата железа (II): 4Fe(NO3)2 = 2Fe2O3 + 8NO2 + O2. Здесь железо окисляется до +3 вопреки правилам. Иначе разлагается при нагревании и нитрат аммония: NH4NO3 = N2O + 2H2O.

Окислительно-восстановительная реакция диспропорционирования — это реакция, в ходе которой один и тот же атом является и окислителем, и восстановителем. Например, 3HNO2 = HNO3 + 2NO + H2O, где N +3 переходит в N +5 , являясь восстановителем, и N +3 переходит в N +2 , являясь окислителем.

Окислительно-восстановительная реакция контрпропорционирования — это реакция, в которой атомы одного и того же химического элемента в разных степенях окисления входят в состав разных веществ, при этом образуя новые молекулы одного и того же продукта.

Основные правила составления ОВР

Подобрать среди исходных веществ окислитель и восстановитель, а также вещество, которое отвечает за среду — при необходимости. Для этого нужно расставить степени окисления элементов и сравнить их окислительно-восстановительные свойства.

Составить уравнение реакции и записать продукты реакции. Следует помнить, что в кислой среде образуются соли одно-, двух- и трехзарядных катионов, а для создания среды чаще всего используют серную кислоту. В кислой среде невозможно образование оснó‎вных оксидов и гидроксидов, так как они вступят в реакцию с кислотой. В щелочной среде не могут образовываться кислоты и кислотные оксиды, а образуются соли.

Уравнять методом электронного баланса или методом полуреакций.

Составим алгоритм для уравнивания окислительно-восстановительных реакций методом электронного баланса.

Главное условие протекания ОВР — общее число электронов, отданных восстановителем, должно быть равно общему числу электронов, принятых окислителем.

Определите атомы, которые меняют свои степени окисления в ходе реакции.

Выпишите, сколько электронов принял окислитель и отдал восстановитель. Если восстановителей несколько, выписываем все.

Найдите НОК для суммарно отданных/принятых электронов.

Расставьте первые полученные коэффициенты перед окислителем и одним или несколькими восстановителями.

Уравняйте все присутствующие металлы в уравнении реакции.

Уравняйте кислотные остатки.

Уравняйте водород — в обеих частях его должно быть одинаковое количество.

Степень окисления элемента


В химии степень окисления элементов говорит о том, как проходят окислительно-восстановительные реакции, а точнее — как при этом атомы перераспределяют между собой электроны. Это не очень сложная тема, но в ней часто бывает путаница. Разберемся, как считать степень окисления в разных соединениях.

Что такое степень окисления

Для начала давайте вспомним, как проходят химические связи в молекуле вещества. Взаимодействуя между собой, атомы могут притягивать или отдавать электроны для образования общей электронной пары. Атом с более высокой электроотрицательностью (ЭО) притягивает электроны и приобретает отрицательный заряд, а атом с меньшей ЭО, напротив, отдает электроны и обретает положительный заряд.

Степень окисления — это условный заряд, который предположительно обретет атом после перемещения электронов. Он вычисляется из предположения, что все свободные электроны полностью перемещаются от одного атома к другому и все образованные связи — ионные.

Почему в определении степени окисления мы говорим об условном заряде? Потому что в реальности он может быть другим, а химические связи атома в соединении не обязательно будут ионными. Но мы предполагаем, что все именно так, чтобы немного упростить расчеты. Это помогает в составлении формул и классификаций.

Степень окисления

Запомните:

Численно степень окисления равна количеству электронов, которые перешли от одного атома к другому.

У атома с меньшей ЭО, который отдает электроны, — положительная степень окисления.

У атома с большей ЭО, который притягивает электроны, — отрицательная степень окисления.

Простые вещества, такие как Cl2, O2 и т. д., имеют степень окисления, равную 0, поскольку смещения электронов в данном случае не происходит.

Как рассчитать степень окисления

Как мы уже выяснили выше, определить степень окисления элемента (иначе говоря, окислительное число) помогает электроотрицательность. Значения ЭО легко узнать, пользуясь таблицей Менделеева или шкалой относительной электроотрицательности. Сравните, у какого химического элемента в соединении ЭО выше — этот элемент будет притягивать электроны и приобретет отрицательный заряд.

Шкала относительной электроотрицательности по Полингу

Шкала относительной электроотрицательности

В нейтральной молекуле все окислительные числа в сумме образуют ноль. В ионе их сумма равна заряду иона.

Это правило поможет составить уравнение и посчитать степень окисления любого химического элемента в соединении, если известны данные по остальным элементам. Еще больше облегчат расчеты следующие закономерности:

у водорода в гидридах окислительное число −1, а во всех остальных веществах оно равно +1;

у кислорода степень окисления в оксидах равна −2, в пероксидах −1, в соединениях с фтором +2;

у неметаллов в соединениях с водородом и металлами окислительное число всегда отрицательное;

у металлов степень окисления всегда положительная.

Также есть элементы, которые во всех соединениях отдают или принимают одинаковое количество электронов, поэтому их окислительное число — постоянная величина.

Элементы с постоянной степенью окисления

Алгоритм действий

Итак, мы знаем основные закономерности. Давайте разберемся, как находить степени окисления на примерах. Предлагаем следующий алгоритм действий.

Посмотрите, является ли вещество элементарным. Если да — значит, оно находится в химически несвязанном состоянии и окислительное число равно 0. Это правило подходит как для веществ, образованных из отдельных атомов, так и для тех, что включают многоатомные молекулы одного и того же элемента.

Пример

Степень окисления Cl2, S8 равна 0.

Если это соединение, определите, состоит ли оно из ионов. В многоатомном ионе сумма всех степеней окисления равна его заряду. Узнайте эту сумму из таблицы растворимости и составьте уравнение с известными окислительными числами.

Допустим, нужно определить заряд азота в ионе аммония.

Согласно таблице растворимости заряд иона аммония NH4 + равен +1. Это значит, что сумма степеней окисления в этом соединении тоже будет равна +1.

Также известно, что водород всюду, кроме гидридов, имеет заряд +1. В данном случае есть 4 атома водорода, т. е. +1 × 4.

Составим формулу: х + (+1) × 4 = +1. Значит х = −3.

Окислительное число азота в ионе аммония равно −3, т. е. N -3 H4 +1 .

Если соединение — нейтральная молекула, составьте уравнение, учитывая, что все окислительные числа в сумме равны 0.

Допустим, нужно определить степень окисления серы в соединении Na2SO4.

Мы знаем, что у щелочного металла Na постоянное окислительное число +1. Кислород, согласно вышеизложенным правилам, в оксидах имеет заряд −2.

Составим уравнение: (+1) × 2 + х + (−2) × 4 = 0. Значит х = −6.

Степень окисления серы равна −6, т. е. Na2 +1 S -6 O4 -2 .

Как узнать степень окисления нескольких элементов

А как быть, если неизвестны окислительные числа двух и более элементов в соединении? В математике уравнения с двумя неизвестными не всегда имеют решение. Но в химии есть выход: можно разделить химическую формулу на несколько частей, которые имеют постоянные заряды.

Как вычислить степень окисления в сложном веществе (NH4)2SO4? Посмотрим на него как на соединение двух ионов с известными зарядами: NH4 + и SO4 2- .

Поскольку мы знаем окислительные числа водорода и кислорода, найти заряды азота и серы в каждом ионе не составит труда.

В ионе NH4 + формула для определения заряда азота будет следующей: х + (+1) × 4 = 1. Понятно, что х = −3, т. е. степень окисления азота −3.

В ионе SO4 2- формула для серы х + (−2) × 4 = −2. Следовательно, х = 6, т. е. заряд серы равен +6.

Получаем следующие окислительные числа: (N -3 H4 +1 )2S +6 O4 -2 .

Как определить высшую и низшую степень окисления

Выделяют высшую (или максимально положительную) и низшую (максимально отрицательную) степени окисления. В диапазоне между ними располагаются окислительные числа, которые могут принадлежать данному химическому элементу в различных соединениях. Для четных групп характерны четные числа в диапазоне, а для нечетных групп — нечетные.

Высшая степень окисления совпадает с номером группы элемента (для элементов в главной подгруппе) в короткой форме периодической системы.

Низшая степень окисления равна числу, которое получится, если от номера группы элемента отнять 8.

Исключения: фтор, железо, кобальт, родий, подгруппа никеля, кислород, благородные газы (помимо ксенона).

Проиллюстрируем на примере, как найти высшую и низшую степень окисления.

По степени окисления можно понять, как поведет себя вещество в окислительно-восстановительных реакциях. Если в соединении главный действующий элемент имеет высшую степень окисления, оно является окислителем, а если он имеет низшую степень окисления — восстановителем.

Например, серная кислота является окислителем, поскольку у серы в данном случае заряд +6. А вот в сернистой кислоте у серы заряд всего +4, поэтому она может проявлять и окислительную способность, и восстановительную. В сероводороде заряд серы равен −2, и это минимальная степень окисления, а значит, данное вещество — восстановитель.

Как найти степень окисления в органическом соединении

В органической химии определять окислительные числа элементов немного сложнее, поскольку все органические вещества включают углерод, известный большим количеством неполярных связей. Если у нас всего один атом углерода, можно использовать стандартный способ.

Рассчитайте степень окисления углерода в метаноле H3C−OH.

Мы знаем, что водород Н имеет окислительное число +1, а у кислорода в данном случае оно равно −2. Составим уравнение:

х + (+1) × 4 + (+2) × 1 = 0

Заряд углерода равен −2, т. е. C -2 H4 +1 O -2 .

Но что делать, если атомов углерода больше? Придется анализировать структурную формулу, чтобы понять, какие химические связи есть между элементами и сколько электронов они теряют/приобретают в результате. Такой вариант нахождения окислительного числа называют графическим.

Графический метод

Нарисуйте структурную формулу соединения.

Изобразите стрелками химические связи и смещение атомов (все связи между атомами углерода С−С считайте неполярными).

Посчитайте, сколько стрелок ведет к атому (это «−») и сколько от него (это «+»), а затем суммируйте «+» и «−», чтобы узнать степень окисления.

Графический метод определения степени окисления

Валентность и степень окисления: в чем разница?

Школьники, которые только начали изучать данные разделы химии, нередко путают степень окисления и валентность. Численно эти показатели могут совпадать (но далеко не всегда), а вот по смыслу они в корне различаются.

Валентность показывает, какое количество связей способен образовать один атом, а степень окисления — сколько электронов перемещается в результате этих связей.

Разница между валентностью и степенью окисления

Между этими двумя понятиями есть следующие отличия:

валентность не имеет знака, в то время как у окислительного числа он есть («+» или «−»);

валентность равна нулю только в том случае, если атом не имеет связей с другими частицами, а степень окисления может быть равна нулю и при наличии таких связей;

вычисляя степень окисления, мы предполагаем, что в соединении ионные связи, хотя на самым деле это может быть не так, а валентность всегда имеет реальный смысл.

Поэтому отождествлять эти два понятия ни в коем случае не стоит. Более того, не нужно ориентироваться на валентность, пытаясь определить окислительное число.

Лекция 15. Общие химические свойства металлов

С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления.Из известных в настоящее время 109 элементов 86 являются металлами. Основной отличительной особенностью металлов является наличие в конденсированном состоянии свободных, не связных с определенным атомом электронов. Эти электроны способны перемещаться по всему объему тела. Наличие свободных электронов определяет всю совокупность свойств металлов. В твердом состоянии большинство металлов имеет кристаллическую высокосимметричную структуру одного из типов: кубическую объемноцентрированную, кубическую гранецентрированную или гексагональную плотноупакованную (рис. 1).


Рис. 1. Типичная структура кристалла металлов: а – кубическая объемноцентрированная; б–кубическая гранецентрированная; в – плотная гексагональная

Существует техническая классификация металлов. Обычно выделяют следующие группы: черные металлы (Fe); тяжелые цветные металлы(Cu, Pb, Zn, Ni, Sn, Co, Sb, Bi, Hg, Cd), легкие металлы с плотностью менее 5 г/см 3 (Al, Mg, Ca и т.д.), драгоценные металлы (Au, Ag и платиновые металлы) и редкие металлы (Be, Sc, In, Ge и некоторые другие).

В химии металлы классифицируются по их месту в периодической системе элементов. Различают металлы главных и побочных подгрупп. Металлы главных подгрупп называют непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s– и p– электронных оболочек.

Типичными металлами являются s–элементы (щелочные Li, Na, K, Rb, Cs, Fr и щелочноземельные Be, Mg, Ca, Sr, Ba, Ra металлы). Данные металлы расположены в Iа и IIа подгруппах (т. е., в главных подгруппах I и II групп). Этим металлам отвечает конфигурация валентных электронных оболочек ns 1 или ns 2 (n – главное квантовое число). Для данных металлов характерно:

а) металлы имеют на внешнем уровне 1 – 2 электрона, поэтому проявляют постоянные степени окисления +1, +2;

б) оксиды этих элементов носят основной характер (исключение –бериллий, т.к. малый радиус иона придает ему амфотерные свойства);

в) гидриды имеют солеобразный характер и образуют ионные кристаллы;

г) возбуждение электронных подуровней возможно только у металлов IIА группы с последующей sp–гибридизацией орбиталей.

К p–металлам относятся элементы IIIа (Al, Ga, In, Tl), IVа (Ge, Sn, Pb), Vа (Sb, Bi) и VIа (Ро) групп с главными квантовыми числами 3, 4, 5, 6. Данным металлам отвечает конфигурация валентных электронных оболочек ns 2 p z (z может принимать значение от 1 до 4 и равно номеру группы минус 2). Для данных металлов характерно:

а) образование химических связей осуществляется s – и p–электронами в процессе их возбуждения и гибридизации (sp–и spd), однако сверху вниз по группам способность к гибридизации падает;

б) оксиды p– металлов амфотерные или кислотные (основные оксиды только у In и Tl);

в) гидриды p–металлов имеют полимерный характер (AlH3)n или газообразный (SnH4 ,PbH4 и т. д.), что подтверждает сходство с неметаллами, открывающими эти группы.

В атомах металлов побочных подгрупп, называемых переходными металлами, происходит застраивание d– и f– оболочек, в соответствии с чем их делят на d–группу и две f–группы лантаноиды и актиноиды.

К переходным металлам относят 37 элементов d–группы и 28 металлов f–группы. К металлам d–группы относят элементы Ib (Cu, Ag, Au), IIb (Zn, Cd, Hg), IIIb (Sc, Y, La, Ac), IVb (Ti, Zr, Hf, Db), Vb (V, Nb, Ta, Jl), VIb (Cr, Mo, W, Rf), VIIb (Mn, Tc, Re, Bh) и VIII групп (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Rt, Hn, Mt, Db, Jl, Rf, Bh, Hn, Mt). Этим элементам отвечает конфигурация 3d z 4s 2 . Исключения составляют некоторые атомы, в том числе атомы хрома с полузаполненной 3d 5 –оболочкой (3d 5 4s 1 ) и меди – с полностью заполненной 3d 10 –оболочкой (3d 10 4s 1 ). Эти элементы обладают некоторыми общими свойствами:

1. все они образуют сплавы между собой и другими металлами;

2. наличие частично заполненных электронных оболочек обусловливает способность d–металлов образовывать парамагнитные соединения;

3. в химических реакциях они проявляют переменную валентность (за немногими исключениями), а их ионы и соединения, как правило, окрашены;

4. в химических соединениях d–элементы электроположительны. "Благородные" металлы, обладая высоким положительным значением стандартного электродного потенциала (Е>0), взаимодействуют с кислотами необычным образом;

5. ионы d–металлов имеют вакантные атомные орбитали валентного уровня (ns, np, (n–1) d), поэтому они проявляют акцепторные свойства, выступая в качестве центрального иона в координационных (комплексных) соединениях.

Химические свойства элементов определяются их положением в Периодической системе элементов Менделеева. Так, металлические свойства сверху вниз в группе возрастают, что обусловлено уменьшением силы взаимодействия между валентными электронами и ядром вследствие увеличения радиуса атома и за счет возрастания экранирования электронами, расположенными на внутренних атомных орбиталях. Это приводит к облегчению ионизации атома. В периоде металлические свойства уменьшаются слева направо, т.к. это связано с увеличением заряда ядра и тем самым с увеличением прочности связи валентных электронов с ядром.

В химическом отношении атомы всех металлов характеризуются сравнительной легкостью отдачи валентных электронов (т.е. малой величиной энергии ионизации) и низким значением сродства к электрону (т.е. малой способностью удерживать избыточные электроны). Как следствие этого низкое значение электроотрицательности, т.е., способность образовывать только положительно заряженные ионы и проявлять в своих соединениях только положительную степень окисления. В связи с этим металлы в свободном состоянии являются восстановителями.

Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется значением стандартного электродного потенциала металла (т.е. положением металла в ряду напряжений) и концентрацией (активностью) его ионов в растворе.

Взаимодействие металлов с элементарными окислителями (F2, Cl2, O2, N2, S и т.д.). Например, реакция с кислородом, как правило, протекает следующим образом

где n – валентность металла.

Взаимодействие металлов с водой. Металлы, обладающие стандартным потенциалом менее –2,71 В, вытесняют водород из воды на холоде с образованием гидроксидов металлов и водорода. Металлы со стандартным потенциалом от –2,7 до –1,23 В вытесняют водород из воды при нагревании

Остальные металлы с водой не реагируют.

Взаимодействие с щелочами. С щелочами могут реагировать металлы, дающие амфотерные оксиды, и металлы, обладающие высокими степенями окисления, в присутствии сильного окислителя. В первом случае металлы образуют анионы своих кислот. Так, реакция взаимодействия алюминия с щелочью запишется уравнением

в котором, лигандом является ион гидроксида. Во втором случае образуются соли, например K2CrO4 .

Взаимодействие металлов с кислотами. С кислотами металлы реагируют различно в зависимости от численного значения стандартного электродного потенциала (Е) (т.е. от положения металла в ряду напряжения) и окислительных свойств кислоты:

· в растворах галогеноводородов и разбавленной серной кислоты окислителем является только ион Н + , и поэтому с этими кислотами взаимодействуют металлы, стандартный потенциал которых меньше стандартного потенциала водорода:

Me + 2n H + = Me n+ + n H2;

· концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме Au и Pt). Водород при этом не выделяется, т.к. функцию окислителя в кислоте выполняет cульфат–ион (SO4 2– ). В зависимости от концентрации и условий проведения опыта cульфат–ион восстанавливается до различных продуктов. Так, цинк в зависимости от концентрации серной кислоты и температуры реагирует следующим образом:

– при очень высокой температуре 4Zn + 5H2SO4(конц.) = 4ZnSO4 + H2S +4H2O;

· в разбавленной и концентрированной азотной кислоте функцию окислителя выполняет нитрат–ион (NO3 – ), поэтому продукты восстановления зависят от степени разбавления азотной кислоты и активности металлов. В зависимости от концентрации кислоты, металла (величины его стандартного электродного потенциала) и условий проведения опыта нитрат–ион восстанавливается до различных продуктов. Так, кальций в зависимости от концентрации азотной кислоты реагирует следующим образом:

Концентрированная азотная кислота не реагирует (пассивирует) с железом, алюминием, хромом, платиной и некоторвми другими металлами.

Взаимодействие металлов друг с другом. При высоких температурах металлы способны реагировать друг с другом с образованием сплавов. Сплавы могут быть твердыми растворами и химическими (интерметаллическими) соединениями (Mg2Pb, SnSb, Na3Sb8, Na2K и др.).

Свойства металлического хрома (…3d 5 4s 1 ). Простое вещество хром представляет собой блестящий на изломе серебристый металл, который хорошо проводит электрический ток, имеет высокую температуру плавления (1890°С) и кипения (2430°С), большую твердость (в присутствии примесей, очень чистый хром мягок) и плотность (7,2 г/см 3 ).

При обычной температуре хром устойчив к действию элементарных окислителей и воде благодаря плотной окисной пленке. При высоких температурах хром взаимодействует с кислородом и другими окислителями.

Cr + Cl2(газ) ® CrCl3 (малиновый цвет)

С металлами при сплавлении хром образует интерметаллиды (FeCr2, CrMn3). При 600°С хром взаимодействует с парами воды:

В электрохимическом отношении металлический хром близок к железу:. Поэтому он может растворяться в неокисляющих (по аниону) минеральных кислотах, таких как галогеноводородные:

Сr + 2HCl ® CrCl2(голубой цвет) + H2­.

На воздухе идет быстро следующая стадия:

Окисляющие (по аниону) минеральные кислоты растворяют хром до трехвалентного состояния:

В случае с HNO3(конц) происходит пассивация хрома – на поверхности образуется прочная пленка оксида – и металл не реагирует с кислотой. (Пассивный хром имеет высокий окислительно-восстановительный потенциал = + 1,3 В.)

Основная область применения хрома – металлургия: создание хромистых сталей. Так, в инструментальную сталь вводят 3 – 4% хрома, шарикоподшипниковая сталь содержит 0,5 – 1,5% хрома, в нержавеющей стали (один из вариантов): 18 – 25% хрома, 6 – 10% никеля, < 0,14% углерода, ~0,8% титана, остальное – железо.

Свойства металлического железа (…3d 6 4s 2 ). Железо – белый блестящий металл. Образует несколько кристаллических модификаций, устойчивых в определенном температурном интервале.

Химические свойства металлического железа определяются его положением в ряду напряжений металлов: .

При нагревании в атмосфере сухого воздуха железо окисляется:

В зависимости от условий и от активности неметаллов железо может образовывать металлоподобные (Fe3C, Fe3Si, Fe4N), солеподобные (FeCl2, FeS) соединения и твердые растворы (с C, Si, N, B, P, H).

В воде железо интенсивно корродирует:

При недостатке кислорода образуется смешанный оксид Fe3O4:

Разбавленная соляная, серная и азотная кислоты растворяют железо до двухвалентного иона:

Более концентрированная азотная и горячая концентрированная серная кислоты окисляют железо до трехвалентного состояния (выделяются NO и SO2 соответственно):

Очень концентрированная азотная кислота (плотность 1,4 г/см3) и серная (олеум) пассивируют железо, образуя на поверхности металла оксидные пленки.

Железо используют для получения железоуглеродистых сплавов. Велико биологическое значение железа, т.к. оно – составная часть гемоглобина крови. В организме человека содержится около 3 г железа.

Химические свойства металлического цинка (…3d 10 4s 2 ). Цинк – синевато-белый, пластичный и тягучий металл, но выше 200°С становится хрупким. Во влажном воздухе он покрывается защитной пленкой основной соли ZnCO3×3Zn(OH)2 или ZnO и дальнейшего окисления не происходит. При высоких температурах взаимодействует:

Исходя из величин стандартных электродных потенциалов, цинк вытесняет кадмий, который является его электронным аналогом, из солей: Cd 2+ + Zn ® Cd + Zn 2+ .

Благодаря амфотерности гидроокиси цинка металлический цинк способен растворяться в щелочах:

В разбавленных кислотах:

В концентрированных кислотах:

Значительная часть цинка расходуется для цинкования железных и стальных изделий. Широкое промышленное использование имеют сплавы цинка с медью (нейзильбер, латунь). Цинк широко используется при изготовлении гальванических элементов.

Химические свойства металлической меди (…3d 10 4s 1 ). Металлическая медь кристаллизуется в кубической гранецентрированной кристаллической решетке. Это ковкий мягкий, вязкий металл розового цвета с температурой плавления 1083°С. Медь находится на втором месте после серебра по электро- и теплопроводности, что обусловливает значение меди для развития науки и техники.

Медь реагирует с поверхности с кислородом воздуха при комнатной температуре, цвет поверхности становится темнее, а в присутствии CO2, SO2 и паров воды покрывается зеленоватой пленкой основных солей (CuOH)2CO3, (CuOH)2SO4.

Медь непосредственно соединяется с кислородом, галогенами, серой:

В присутствии кислорода металлическая медь взаимодействует с раствором аммиака при обычной температуре:

Находясь в ряду напряжений после водорода , медь не вытесняет его из разбавленных соляной и серной кислот. Однако в присутствии кислорода воздуха медь растворяется в этих кислотах:

Окисляющие кислоты растворяют медь с переходом ее в двухвалентное состояние:

Со щелочами медь не взаимодействует.

С солями более активных металлов медь взаимодействует, и эта окислительно-восстановительная реакция лежит в основе некоторых гальванических элементов:

Cu SO4 + Zn® Zn SO4 + Cu; E о = 1,1 B

Mg + CuCl2 ® MgCl2 + Cu; E о = 1,75 B.

Медь образует с другими металлами большое число интерметаллических соединений. Наибольшую известность и ценность имеют сплавы: латунь Cu–Zn (18 – 40% Zn), бронза Cu–Sn (колокольная – 20% Sn), инструментальная бронза Cu–Zn–Sn (11% Zn, 3 – 8% Sn), мельхиор Cu–Ni–Mn–Fe (68% Cu, 30% Ni, 1% Mn, 1% Fe).

Нахождение металлов в природе и способы получения.Вследствие высокой химической активности, металлы в природе находятся в виде различных соединений, и только малоактивные (благородные) металл – платина, золото и т.п. – встречаются в самородном (свободном) состоянии.

Наиболее распространенными природными соединениями металлов являются оксиды (гематит Fe2O3, магнетит Fe3O4, куприт Cu2O, корунд Al2O3, пиролюзит MnO2 и др.), сульфиды (галенит PbS, сфалерит ZnS, халькопирит CuFeS, киноварь HgS и т.д.), а также соли кислородосодержащих кислот (карбонаты, силикаты, фосфаты и сульфаты). Щелочные и щелочноземельные металлы встречаются преимущественно в виде галогенидов (фторидов или хлоридов).

Основная масса металлов получается путем переработки полезного ископаемого – руды. Поскольку металлы, входящие в состав руд находятся в окисленном состоянии, то их получение осуществляется путем реакции восстановления. Предварительно руду очищают от пустой породы

Образовавшийся концентрат оксида металла очищают от воды, а сульфиды, для удобства последующей переработки, переводят в оксиды путем обжига, например:

Для разделения элементов полиметаллических руд пользуются методом хлорирования. При обработке руд хлором в присутствии восстановителя образуются хлориды различных металлов, которые вследствие значительной и различной летучести могут быть легко отделены друг от друга.

Восстановление металлов в промышленности осуществляется посредством различных процессов. Процесс восстановления безводных соединений металлов при высоких температурах называют пирометаллургией. В качестве восстановителей используют металлы, более активные, чем получаемый, либо углерод. В первом случае говорят о металлотермии, во втором – карботермии, например:

Особое значение углерод приобрел как восстановитель железа. Углерод для восстановления металлов применяется обычно в виде кокса.

Процесс восстановления металлов из водных растворов их солей относится к области гидрометаллургии. Получение металлов осуществляется при обычных температурах, причем в качестве восстановителей могут быть использованы сравнительно активные металлы или электроны катода при электролизе. Электролизом водных растворов солей могут быть получены только сравнительно малоактивные металлы, расположенные в ряду напряжений (стандартных электродных потенциалов) непосредственно перед водородом или после него. Активные металлы – щелочные, щелочноземельные, алюминий и некоторые другие, получают электролизом расплава солей.

Читайте также: