Все металлические элементы находятся
МЕТАЛЛЫ — это вещества, обладающие высокой электропроводностью и теплопроводностью, ковкостью, пластичностью и металлическим блеском. Эти характерные свойства металла обусловлены наличием свободно перемещающихся электронов в его кристаллической решетке. Из известных в настоящее время 107 химических элементов 85 относятся к металлам.
Деление всех химических элементов периодической системы Д. И. Менделеева на металлы и неметаллы является условным. Если в периодической таблице провести диагональ через бор и астат, то в главных подгруппах, расположенных справа от диагонали, будут неметаллы, а в главных подгруппах слева от диагонали, побочных подгруппах и в восьмой группе (кроме инертных газов) — металлы. Причем элементы рядом с разделительной линией являются так называемыми металлоидами, т. е. веществами с промежуточными свойствами (металлов и неметаллов) . К ним относятся: бор В, кремний Si, германий Gе, мышьяк Аs, сурьма Sb, теллур Те, полоний Ро.
В соответствии с местом, занимаемым в периодической системе, различают переходные (элементы побочных подгрупп) и непереходные металлы (элементы главных подгрупп) . Металлы главных подгрупп характеризуются тем, что в их атомах происходит последовательное заполнение электронных s- и р-подуровней. В атомах металлов побочных подгрупп происходит достраивание d- и f-подуровней.
Неметаллы - Это химические элементы, которые образуют в свободном виде простые вещества, не обладающие физическими свойствами металлов.
Из известных химических элементов только 22 являются неметаллами. Если провести условную диагональ в переодической системе от берилия к астату, неметаллы окажутся над ней т. е. они находятся в правом верхнем углу.
Атомы неметаллов ( по сравнению с атомами металлов) содержат большее число электронов на внешнем энергетическом уровне, по этому простые вещества - неметаллы обладают, как правило, окислительно - восстановительной деятельностью (кроме фтора и кислорода, которые являются окислителями)
Неметаллы различны по своему агрегатному состоянию. Многие из них газы (кислород, азот, гелий, водород, неон, ксенон, криптон и т. д.). Твердые вещества (фосфор, фтор, йод, бор и т. д.). Бром является жидкостью.
Для неметаллов характерно явление аллотропии. многие из них существуют в виде аллотропных видоизменений, например - фосфор, углерод, кислород, сера и т. д.
Неметаллы имеют различные типы кристаллической решетки - атомную (бор, кремний, углерод в виде алмаза) и молекулярную (йод, белый фосфор, сера кристаллическая)
Физические свойства неметаллов зависят от типа решетки. Вещества с молекулярной решеткой - летучие, легкоплавкие, непрочные, с незначительной растворимостью в воде.
Кароче, там есть такая таблица металлов (такая полосочка, начинаеться Литем (кажись) а заканчиваеться чем-то тяжёлым) .
Основным признаком что эллемент - металл, являеться слабая связь электронов последнего уровня с ядром, они (металлы) могут эти электроны отдавать.
С этим связна причина их электропроводности.
проще говоря, металлы, это те элементы, которые на внешнем электронном уровне имеют 1-3 электрона, т. е. при взаимодействии с другими элементами, , они легко отдают эти электроны. Это 1, 2, 3 группа (гл. подг) перидической системы
А неметаллы, это те элементы, которые имеют почти завершенный электронный уровень, которым не хватает до завершения 1-3 электрона. Это 5,6,7 группа
1. Общая характеристика элементов металлов
Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .
Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.
Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).
Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.
В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.
Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.
Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.
Рис. \(7\). Самородное золото Au | Рис. \(8\). Самородное серебро Ag | Рис. \(9\). Самородная платина Pt |
Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.
В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.
Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te
В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.
В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.
Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.
Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде
Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.
Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов
Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .
Положение металов в переодической таблице особенности строения атомов металов? Физические св-ва?
Большинство эл-тов табл. Менделеева - металлы.
Металлические свойства усиливаются сверху вниз и справа налево.
Самый активный металл - франций.
На внешнем уровне обычно 1-2 электрона, которые атомы металлов могут отдавать. Чем легче их отдать - тем активнее металл.
Металлы главной подгруппы 1 группы - щелочные. Литий, натрий, калий, цезий, рубидий, франций. Очень активны.
Кальций, стронций, барий, радий - щелочноземельные.
Физ. св=ва: металл. блеск, ковкость, тепло- и электропроводность
ПОЛОЖЕНИЕ МЕТАЛЛОВ В ПЕРИОДИЧЕСКОЙ ТАБЛИЦЕ
Если в периодической таблице элементов Д. И. Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп) , а справа вверху – элементы-неметаллы. Элементы, расположенные вблизи диагонали (Be, Al, Ti, Ge, Nb, Sb и др.) , обладают двойственным характером.
К элементам - металлам относятся s - элементы I и II групп, все d- и f - элементы, а также p- элементы главных подгрупп: III (кроме бора) , IV (Ge, Sn, Pb), V (Sb,Bi) и VI (Po). Наиболее типичные элементы – металлы расположены в начале периодов (начиная со второго) .
ОСОБЕННОСТИ СТРОЕНИЯ АТОМОВ МЕТАЛЛОВ
Кристаллические решетки металлического типа содержат в узлах положительно заряженные ионы и нейтральные атомы; между ними передвигаются относительно свободные электроны.
ФИЗИЧЕСКИЕ СВОЙСТВА
Объясняются особым строением кристаллической решетки - наличием свободных электронов ("электронного газа").
1) Пластичность - способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду ––Au,Ag,Cu,Sn,Pb,Zn,Fe® уменьшается.
2) Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.
3) Электропроводность.
Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду ––Ag,Cu,Al,Fe® уменьшается.
При нагревании электропроводность уменьшается, т. к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение "электронного газа".
4) Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность - у висмута и ртути.
5) Твердость. Самый твердый – хром (режет стекло) ; самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.
6) Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий - литий (r=0,53 г/см3); самый тяжелый – осмий (r=22,6 г/см3).
Металлы, имеющие r < 5 г/см3 считаются "легкими металлами".
7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т. пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C).
Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.
Все металлические элементы находятся
Все химические элементы в Периодической таблице делятся на металлы, неметаллы и полуметаллы. Металлы занимают большую часть и расположены слева от ступенчатой линии, неметаллы справа, а между ними располагаются полуметаллы - B, Si, Ge, As, Sb, Te, At.
На данном уроке рассмотрим металлы, в частности элементы IА – IIIА групп.
Все металлы блестящие, кроме ртути твердые, но пластичные и ковкие. Хорошо проводят тепло и электричество. В химических реакциях легко расстаются с электронами, передают их другим атомам. Чем легче происходит такая передача, тем металл активнее реагирует с другими веществами. Это свойство называется называется металличностью. Металличность – это способность атомов отдавать электроны. Противоположно неметалличности – способности атомов принимать электроны. В периодах слева - направо металличность элементов уменьшается, а неметалличность увеличивается. В группах при перемещении сверху – вниз первое увеличивается, второе уменьшается.
Из вышесказанного следует, что все металлы по сравнению с неметаллами обладают низкой электроотрицательностью, т.е. способностью атомов оттягивать к себе электроны других атомов. В химических реакциях металлы окисляются, являются восстановителями.
Рассмотрим характеристику металлов IA группы (главной подгруппы I группы): литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr).
Их называют щелочными, поскольку при контакте с водой они образуют щелочи (гидроксиды), например, NaOH – едкий натр.
Сверху вниз в группе, с увеличением металличности металлов, реакции с водой начинают протекать бурно.
Так, если литий реагирует довольно спокойно, то калий взаимодействует со взрывом.
Общая характеристика щелочных металлов IA группы:
* Низкая электроотрицательность.
* Электронная конфигурация ns 1 , т.е. на внешнем энергетическом уровне только один электрон.
* Легкая ионизация атомов, с последующим образованием катионов (положительно заряженные ионы М+).
* Степень окисления +1.
Рассмотрим строение атомов щелочных металлов IA группы:
1. Литий (Li):
Электронная конфигурация в основном состоянии (ЭК в ОС): 1s 2 2s 1
2.Натрий (Na):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 1
3.Калий (K):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
4.Рубидий (Rb):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1
5.Цезий (Cs):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 1
6. Франций (Fr):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 6 7s 1
Данная группа содержит: бериллий (Be), магний (Mg) и щелочноземельные металлы: кальций (Ca), стронций (Sr), барий (Ba), радий (Ra).
Металлы активные, поэтому в природе в свободном состоянии не встречаются.
Самый распространенный среди них кальций, самый редкий – радиоактивный радий.
Многие соединения щелочноземельных металлов изоморфные, то есть сходны по форме и свойствам кристаллов.
Общая характеристика щелочноземельных металлов IIA группы:
* Электронная конфигурация ns 2 – конфигурация благородного газа гелия.
* Высокие значения ионизации атомов, убывающие по ряду Ве—Мg—Са—Sr— Ва.
* Степень окисления +2.
Рассмотрим строение атомов металлов IIA группы:
ЭК в ОС: 1s 2 2s 2
2.Магний (Mg):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2
3.Кальций (Ca):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
4.Стронций (Sr):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
5.Барий (Ba):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 2
6. Радий (Ra):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 6 7s 2
Общая характеристика элементов IIIA группы:
* Электронная конфигурация ns 2 np 1 . Три неспаренных электрона атомов данной группы, находящиеся в sp 2 -гибридизации, активно участвуют в образовании трех ковалентных связей. У атомов остается одна свободная орбиталь. Поэтому элементы IIIA группы образуют четвертую ковалентную связь по донорно-акцепторному механизму, находясь в состоянии sp 3 -гибридизации.
* Степень окисления +3, для таллия наиболее устойчива степень +1.
Рассмотрим электронные конфигурации металлов IIIA группы в основном состоянии :
1.Бор (B):
ЭК в ОС: 1s 2 2s 2 2p 1
2.Алюминий (Al):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 1
3.Галлий (Ga):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1
4. Индий (In):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 1
5.Таллий (Tl):
ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 1
2NaCl – расплав, электр. ток. → 2 Na + Cl2↑
CaCl2 – расплав, электр. ток. → Ca + Cl2↑
4NaOH – расплав, электр. ток. → 4Na + O2↑ + 2H2O
2. Восстановление металлов средней активности и неактивных металлов электролизом из растворов их солей.
- Олово образуется при электролизе раствора хлорида олова(II): Sn +2 Cl2 −1 → (электролиз) Sn 0 +Cl 0 2
- Алюминий в промышленности получают в результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов): 2Al2O3 – расплав в криолите, электр. ток. → 4Al + 3O2↑
- Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:2CuSO4+2H2O – раствор, электр. ток. → 2Cu + O2 + 2H2SO4
Электролиз используют для очистки металлов (электролитическое рафинирование).
Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3. При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, то есть переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.
Большинство металлов переводят в слитки при помощи литья: расплавленный металл заливают в форму, где он и застывает. Однако наиболее тугоплавкие металлы, например, вольфрам, из которого делают нити накаливания элепктроламп, расплавить в печи необычайно трудно. Для получения их слитков применяют порошковую металлургию – особый метод, позволяющий избежать литья. Он основан на спекании предварительно спрессованного порошка металла при температуре выше 1000°C в атмосфере водорода. Затем через брусок из металла пропускают электрический ток, за счет чего он разогревается до температуры плавления, и при этом отдельные его зерна свариваются друг с другом. Полученное изделие подвергают горячей ковке и прокатке.
V. Нахождение металлов в природе
Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.
1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)
2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)
3. Благородные – в свободном виде (Au, Pt, Ag)
В свободном состоянии присутствуют в природе металлы, которые либо плохо окисляются кислородом, либо совсем не окисляются. Например, платина, золото, серебро. Реже – медь, ртуть и некоторые другие. Самородные металлы встречаются в природе в небольших количествах в виде зерен или вкраплений в различных минералах. Лишь изредка они образуют большие куски – самородки. Самый большой самородок золота весил 112 кг. Иногда металлы практически в чистом виде содержатся в метеоритах. Так, некоторые предметы из высокочистого железа, найденные археологами, объясняются именно тем, что они были изготовлены из метеоритного железа. Но чаще всего металлы существуют в природе в связанном состоянии в составе минералов.
Минерал – это химически и физически индивидуализированный продукт природной физико-химической реакции, находящийся в кристаллическом состоянии.
Очень часто это оксиды. Например, оксид железа (III) Fe2O3 – гематит, или красный железняк. Рис. 1.
Fe3O4 – магнетит, или магнитный железняк. Нередко минералами являются сульфидные соединения: галенит ZnS, киноварь HgS.
Активные металлы часто присутствуют в природе в виде солей (сульфаты, нитраты, хлориды, карбонаты).
Минералы входят в состав горных пород и руд. Рудами называются природные образования, содержащие минералы в таком количестве, чтоб из этих руд было выгодно получать металлы. Обычно перед получением металла из руды руду обогащают, удаляя пустую породу и различные примеси. При этом образуется концентрат, который и является исходным сырьем для металлургической промышленности.
VI. Химические свойства металлов
Общие химические свойства металлов представлены в таблице:
Важно запомнить, что в химических реакциях металлы выступают в качестве восстановителей: отдают электроны и повышают свою степень окисления. Рассмотрим некоторые реакции, в которых участвуют металлы.
1. Взаимодействие с кислородом
Многие металлы могут вступать в реакцию с кислородом. Обычно продуктами этих реакций являются оксиды, но есть и исключения, о которых вы узнаете на следующем уроке. Рассмотрим взаимодействие магния с кислородом.
Магний горит в кислороде, при этом образуется оксид магния:
2Mg 0 + O2 0 = 2Mg +2 O -2
Рис. 1. Горение магния в кислороде
Атомы магния отдают свои внешние электроны атомам кислорода: два атома магния отдают по два электрона двум атомам кислорода. При этом магний выступает в роли восстановителя, а кислород – в роли окислителя.
Обратите внимание. Серебро, золото и платина с кислородом не реагируют.
2. Взаимодействие с галогенами, образуются галогениды
Для металлов характерна реакция с галогенами. Продуктом такой реакции является галогенид металла, например, хлорид.
Рис. 2. Горение калия в хлоре
Калий сгорает в хлоре образованием хлорида калия:
2К 0 + Cl2 0 = 2K +1 Cl -1
Два атома калия отдают молекуле хлора по одному электрону. Калий, повышая степень окисления, играет роль восстановителя, а хлор, понижая степень окисления,- роль окислителя
3. Взаимодействие с серой
Многие металлы реагируют с серой с образованием сульфидов. В этих реакциях металлы также выступают в роли восстановителей, тогда как сера будет окислителем. Сера в сульфидах находится в степени окисления -2, т.е. она понижает свою степень окисления с 0 до -2. Например, железо при нагревании реагирует с серой с образованием сульфида железа (II):
Fe 0 + S 0 = Fe +2 S -2
Рис. 3. Взаимодействие железа с серой
Металлы также могут реагировать с водородом, азотом и другими неметаллами при определенных условиях.
4. Взаимодействие с водой
Металлы по - разному реагируют с водой:
Помните.
Алюминий реагирует с водой подобно активным металлам, образуя основание:
Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe 0 +4H +1 2O −2 → Fe +2 O −2 ⋅Fe +3 2O −2 3 + 4H 0 2
5. Взаимодействие с кислотами
Металлы особо реагируют с серной концентрированной и азотной кислотами:
Читайте также: