Почему калий самый активный металл

Обновлено: 05.01.2025


Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Активные металлы в таблице Менделеева

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Электрохимический ряд напряжений металлов

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

Реагируют с простыми веществами, образуя соли

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей – минералов, горных пород.

Минералы и чистые металлы

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп – щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома – немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия – высокие температуры, разрушение оксидной плёнки.

Щелочные металлы

К щелочным металлам относят химические элементы: одновалентные металлы, составляющие Ia группу: литий, натрий, калий, рубидий, цезий и франций.

Эти металлы очень активны, быстро окисляются на воздухе и бурно реагируют с водой. Их хранят под слоем керосина из-за их сильной реакционной способности.

Натрий под слоем керосина

Общая характеристика

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Щелочные металлы

  • Li - 2s 1
  • Na - 3s 1
  • K - 4s 1
  • Rb - 5s 1
  • Cs - 6s 1
  • Fr - 7s 1
Природные соединения
  • NaCl - галит (каменная соль)
  • KCl - сильвин
  • NaCl*KCl - сильвинит

Галит и сильвит

Получение

Получить такие активные металлы электролизом водного раствора - невозможно. Для их получения применяют электролиз расплавов при высоких температурах (естественно - безводных):

NaCl → Na + Cl2↑ (электролиз расплава каменной соли)

Химические свойства

Одной из особенностей щелочных металлов является их реакция с кислородом. Литий в такой реакции преимущественно образует оксид, натрий - пероксид, калий, рубидий и цезий - супероксиды.

K + O2 → KO2 (супероксид калия)

Помните, что металлы никогда не принимают отрицательных степеней окисления. Щелочные металлы одновалентны, и проявляют постоянную степень окисления +1 в различных соединениях: гидриды, галогениды (фториды, хлориды, бромиды и йодиды), нитриды, сульфиды и т.д.

Li + H2 → LiH (в гидридах водород -1)

Na + F2 → NaF (в фторидах фтор -1)

Na + S → Na2S (в сульфидах сера -2)

K + N2 → K3N (в нитридах азот -3)

Щелочные металлы бурно взаимодействуют с водой, при этом часто происходит воспламенение, а иногда - взрыв.

Na + H2O → NaOH + H2↑ (воду можно представить в виде HOH - натрий вытесняет водород)

Иногда в задачах может проскользнуть фраза такого плана: ". в ходе реакции выделился металл, окрашивающий пламя горелки в желтый цвет". Тут вы сразу должны догадаться: речь, скорее всего, про натрий.

Щелочные металлы по-разному окрашивают пламя. Литий окрашивает в алый цвет, натрий - в желтый, калий - в фиолетовый, рубидий - синевато-красный, цезий - синий.

Окраска пламени щелочными металлами

Оксиды щелочных металлов

Имеют общую формулу R2O, например: Na2O, K2O.

Получение оксидов щелочных металлов возможно в ходе реакции с кислородом. Для лития все совсем несложно:

В подобных реакциях у натрия и калия получается соответственно пероксид и супероксид, что приводит к затруднениям. Как из пероксида, так и из супероксида, при желании можно получить оксид:

По свойствам эти оксиды являются основными. Они хорошо реагируют c водой, кислотными оксидами и кислотами:

Li2O + H2O → LiOH (осн. оксид + вода = основание - реакция идет, только если основание растворимо)

Na2O + SO2 → Na2SO3 (обратите внимание - мы сохраняем СО серы +4)

Гидроксиды щелочных металлов

Относятся к щелочам - растворимым основаниям. Наиболее известные представители: NaOH - едкий натр, KOH - едкое кали.

Гидроксиды щелочных металлов получаются в ходе электролиза водных растворов их солей, в реакциях обмена, в реакции щелочных металлов и их оксидов с водой:

KCl + H2O → (электролиз!) KOH + H2 + Cl2 (на катоде выделяется водород, на аноде - хлор)

Калий с водой

Проявляют основные свойства. Хорошо реагируют с кислотами, кислотными оксидами и солями, если в ходе реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

LiOH + H2SO4 → LiHSO4 + H2O (соотношение 1:1, кислота в избытке - получается кислая соль)

2LiOH + H2SO4 → Li2SO4 + 2H2O (соотношение 2:1, основание в избытке - получается средняя соль)

KOH + SO2 → KHSO3 (соотношение 1:1 - получается кислая соль)

2KOH + SO2 → K2SO3 + H2O (соотношение 2:1 - получается средняя соль)

С амфотерными гидроксидами реакции протекают с образованием комплексных солей (в водном растворе) или с образованием окиселов - смешанных оксидов (при высоких температурах - прокаливании).

NaOH + Al(OH)3 → Na[Al(OH)4] (в водном растворе образуются комплексные соли)

NaOH + Al(OH)3 → NaAlO2 + H2O (при прокаливании образуется окисел - смесь двух оксидов: Al2O3 и Na2O, вода испаряется)

Реакции щелочей с галогенами заслуживают особого внимания. Без нагревания они идут по одной схеме, а при нагревании эта схема меняется:

NaOH + Cl2 → NaClO + NaCl + H2O (без нагревания хлор переходит в СО +1 и -1)

NaOH + Cl2 → NaClO3 + NaCl + H2O (с нагреванием хлор переходит в СО +5 и -1)

В реакциях щелочей с йодом образуется исключительно иодат, так как гипоиодит неустойчив даже при комнатной температуре, не говоря о нагревании. С серой реакция протекает схожим образом:

NaOH + I2 → NaIO3 + NaI + H2O (с нагреванием)

Выделение йода

NaOH + S → Na2S + Na2SO3 + H2O (сера переходит в СО -2 и +4)

Уникальным является также взаимодействие щелочей с кислотным оксидом NO2, который соответствует сразу двум кислотам - и азотной, и азотистой.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Активные металлы


Среди всех металлов некоторые отличаются тем, что они очень легко вступают в восстановительные реакции. Такие металлы имеют много схожих свойств и объединяются в класс активных металлов.

Положение активных металлов в таблице Менделеева

К активным металлам относятся три группы элементов:

  • щелочные металлы;
  • щелочноземельные металлы;
  • алюминий.

Щелочные металлы находятся в первой группе таблицы Менделеева, то есть занимают в ней крайнее левое положение. В частности щелочными металлами являются:

  • литий (Li);
  • натрий (Na);
  • калий (K);
  • рубидий (Rb);
  • цезий (Cs);
  • франций (Fr).

Щелочноземельные металлы находятся во второй группе, то есть правее щелочных металлов. К ним относятся:

В целом активные металлы отличаются тем, что имеют один или два валентных электрона, поэтому они легко отдают эти электроны в ходе химических реакций, выступая в качестве восстановителей. Степень активности металла можно оценить по его расположению в электрохимическом ряде активности металлов. Чем левее там находится металл, тем сильнее выражены его восстановительные свойства. Крайнее левое положение в ряде занимает литий. В вот крайне правое положение в ряду занимает золото, именно поэтому оно почти не окисляется кислотами.


Электрохимический ряд напряжений металлов

Алюминий – это так называемый постпереходный металл, по своим свойствам он находится где-то между активными и среднеактивными металлами. Разные ученые придерживаются различного мнения о том, стоит ли считать алюминий активным металлом.

Активные металлы не встречаются в природе в чистом виде, так как они быстро вступают в химические реакции с другими элементами. Чаще всего в природе они присутствуют в виде оксидов. Например, даже если алюминий получен в чистом виде, то на воздухе он быстро покрывается оксидной пленкой.

Свойства щелочных металлов

Цвет всех щелочных металлов – белый, с серебристым оттенком. Исключением является цезий, имеющий серебристо-желтый цвет. Щелочные металлы можно резать простым скальпелем, так как у них низкая твердость. Также они имеют малую плотность – от 534 кг/м 3 у лития до 1900 кг/м 3 у цезия. Литий, калий и натрий настолько легкие, что они плавают в воде, но построить корабль из них не получится, так как вода быстро окисляет и разрушает эти металлы. Франций и цезий плавятся уже при комнатной температуре, а самый тугоплавкий щелочной металл – это литий, плавящийся при 180,6°С.

Для защиты щелочных металлов от воздуха и волы их хранят в керосине. При реагировании лития с водой выделяется водород, а натрий и особенно калий просто взрываются в воде. При взаимодействии с кислородом образуются оксиды.

Свойства щелочноземельных металлов

Щелочноземельные металлы значительно тверже щелочных, их нельзя просто взять и разрежать ножом. Также они тяжелее – их плотность колеблется от 1550 кг/м 3 у кальция до 5500 кг/м 3 у радия. Цвет щелочноземельных металлов – серый. Температуры плавления этих элементов находятся в диапазоне 650-840°С. Исключение – бериллий, плавящийся лишь при 1278°С.

Чем больше порядковый номер щелочноземельного металла в таблице Менделеева, тем выше его химическая активность. Например, бериллий вообще не взаимодействует с кислородом и по своим свойствам напоминает алюминий. Наиболее активные стронций, барий и радий приходится хранить в керосине, также как и щелочные металлы.

Подведение итогов

Активные металлы отличаются тем, что имеют лишь один-два валентных электрона, которые они легко отдают. Поэтому эти элементы очень быстро вступают в химические реакции, а в природе в чистом виде не встречаются.

Электрохимический ряд напряжений металлов (ряд Бекетова)


Активные металлы в таблице Менделеева


Рис. 1. Активные металлы в таблице Менделеева.

Электрохимический ряд напряжений металлов


Рис. 2. Электрохимический ряд напряжений металлов.

Литий

Самый электрохимически активный металл литий

При внесении уточнений и рассмотрения наиболее электрохимически активного элемента становится очевидно, что лидирующее положение в плане активности займет литий. Название данного элемента переводится как «камень» – связано это с тем, что он был обнаружен в петалите (минерал). Металл, обладающий серебристым цветом, тонет в воде, но уверенно держится на поверхности керосина. По электрохимической активности данный элемент превосходит все остальные щелочные элементы, вытесняя другие металлы при химических реакциях. Это главное свойство лития является определяющим для остальных его характеристик.

Литий в небольших количествах необходим для нормального функционирования организма человека

– 2K + 2HMnO4 → 2KMnO4 + H2

– 2Na + 2H2O → 2NaOH + H2; – 2NaOH + CuCl2 → Cu(OH)2↓ + 2NaCl

Минералы и чистые металлы


Рис. 3. Минералы и чистые металлы.

Цезий – самый активный и взрывной металл на планете

Цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре. Открыт он был в 1860 году немецкими учёными Р. В. Бунзеном и Г. Р. Кирхгофом, которые проводили спектральный анализ вод минерального источника в Германии при помощи оптической спектроскопии. Это первый элемент, который был открыт таким методом. Кстати говоря, что бы получить 50 г искомого вещества, химики переработали 300 тонн минеральной воды.

В чистом виде цезий был получен в 1882 году шведским химиком К. Сеттербергом при электролизе расплава смеси цианида цезия и бария. Из-за низкой температуры плавления цезий уже при 24,5 градусах Цельсия находится в полужидком состоянии. Расплав представляет подвижную жидкость, хорошо отражающую свет. Само вещество – парамагнетик.

Цезий самый редкий и рассеянный в земной коре элемент. В природе встречается лишь один его изотоп – цезий 133. Он полностью устойчив и не подвержен радиоактивному распаду. Поэтому все радиоактивные изотопы металла получены искусственно.

Период его полураспада изотопа цезия-135 составляет 3 000 000 лет. А цезий- 137 за 33,5 года распадается только наполовину. Этот изотоп цезия признан одним из основных источников загрязнения биосферы.

Долгий период полураспада позволяет веществу проникать в воду, почву, растения и накапливаться в них.

Цезий самый активный металл в мире. Атом цезия взрывается на воздухе, в замерзшей воде, при контакте цезия с кислотами, простыми спиртами и т.д. Почему же так происходит? Элемент имеет сильный отрицательный электрохимический потенциал.

Его атом заряжен отрицательно и стремится притянуть к себе положительно заряженные частицы. А еще особую роль играет площадь поверхности цезия при реакциях с другими веществами.

Какой металл является Щелочноземельным?

Щёлочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra).

Как убрать ссылки на файлы в автокаде? Как убрать ссылки в Яндексе? Как убрать ссылку с картинки в ворде? Как убрать старые наклейки со шкафа? Как убрать старый известковый налет? Как убрать ставку ндс в 1с? Как убрать стену в контакте? Как убрать стим Гуард без телефона? Как убрать столбец1 в Excel? Как убрать страницу в клетку в ворде?

Получение в России

Как было указано, главным минералом, из которого получают цезий, является поллуцит. А также этот наиболее активный металл можно получить из редкого авогадрита. В промышленности используется именно поллуцит. Добыча его после распада Советского Союза в России не велась, несмотря на то что еще в те времена были обнаружены гигантские запасы цезия в Вороньей тундре под Мурманском.

К тому моменту, когда отечественная промышленность смогла позволить себе добычу цезия, лицензия на разработку этого месторождения была приобретена компанией из Канады. Сейчас извлечение цезия производит новосибирская .

самый активный металл

Каким способом был открыт цезий?

Самый активный металл был первым химическим элементом, наличие которого в поверхности земной коры было обнаружено при помощи метода спектрального анализа. Когда ученые получили спектр металла, то в нем они увидели две линии небесно-голубого цвета. Таким образом и получил свое название этот элемент. Слово caesius в переводе с латинского языка значит «небесно-голубой».


Использование цезия

Этот металл используется для изготовления различных фотоэлементов. А также соединения цезия применяются в специальных отраслях оптики – в изготовлении инфракрасных приборов, биноклей ночного видения. Цезий используют в изготовлении прицелов, которые позволяют заметить технику и живую силу врага. Также его применяют для изготовления особых металлогалогенных ламп.

Но этим не исчерпывается круг его применения. На основе цезия был создан также ряд медицинских препаратов. Это лекарства для лечения дифтерии, язвенных болезней, шоков и шизофрении. Как и соли лития, соли цезия обладают нормотимическими свойствами – или, попросту, способны стабилизировать эмоциональный фон.

наиболее активный металл

Что относится к металлам и Неметаллам?

Типичными металлами являются щелочные (литий, натрий, калий, рубидий, цезий) и щелочноземельные (кальций, стронций, барий, магний) металлы. … Неметаллы в обычных условиях находятся в твердом (фосфор, сера, селен, углерод и др.), жидком (бром) и газообразном (кислород, водород, азот и др.)

Кто поет песню и мое сердце остановилось? Кто поет песню я стала сильнее? Кто поет песню из фильма чародеи? Кто поет песню из кинофильма Москва слезам не верит? Кто поёт песню километры дорог где мы будем Чилить? Кто поет песню Лирика Сектор Газа девушка? Кто поет песню Мама я танцую под нашу босую? Кто поет песню Мауи на русском? Кто поет песню между нами тает лед? Кто поет песню моя моя неземная?

Литература

  • Перельман Ф. М.. Рубидий и цезий.
    М., Изд-во АН УССР, 1960. 140 стр. с илл.
  • Кульварская Б. С., Соболева Н. А., Татаринова Н. В. Изв. АН СССР. Сер. физич.; 1988. Т.52. № 8. С.1509-1512.
  • Лидин Р.А. и др.
    Химические свойства неорганических веществ. — 3-е изд., испр. — Москва: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0.
  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия.
    — М.-Л.: Химия, 1970.- 407 с
  • Солодов Н. А., Рубидий и цезий,
    М., 1971;
  • Плющев В. Е., Степин Б. Д., Аналитическая химия рубидия и цезия,
    М., 1975
  • Коган Б. И., Названова В. А., Солодов Н. А., Рубидий и цезий
    , М., 1971;
  • Моисеев А. А., Рамзаев П. В., Цезий-137 в биосфере
    , М., 1975;
  • Редкол.: Зефиров Н. С. (гл. ред.).
    Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — 783 с. — ISBN 5-85270-310-9.
  • Mattsson S., Radionuclides in lichen, reindeer and man
    , Lund, 1972.

Почему водород не является металлом?

Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода. … В своих соединениях водород всегда одновалентен.

Как на самсунге сохранить контакты на сим карту? Как начисляются проценты на остаток денежных средств на банковской карте? Как найти карту клада в майнкрафте? Как найти особняк по карте в Майнкрафт? Как найти Сбербанк Онлайн реквизиты карты? Как найти Сириус на карте? Как найти старые карты гугл? Как найти свою карту Летуаль? Как настроить голос в Яндекс картах? Как настроить карту халва?

Добыча цезия из руды

Производство металла затруднено сложностью извлечения металла высокой очистки из руд.

Кристаллы цезия

Способы получения предполагают ректификацию, очистку от мехпримесей, удаление следов газов (O2, H2, N2), ступенчатая кристаллизация.

Интересно: цезий хранят в герметичных сосудах, заполненных инертным газом, жидкостью или в вакууме.

Калий

Калий

Калий — элемент первой группы (по старой классификации — главной подгруппы первой группы), четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 19. Обозначается символом K (лат. Kalium ). Простое вещество калий — мягкий щелочной металл серебристо-белого цвета.

В природе калий встречается только в соединениях с другими элементами, например, в морской воде, а также во многих минералах.

Очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щёлочь.

Во многих свойствах калий очень близок натрию, но с точки зрения биологической функции и использования клетками живых организмов они антагонистичны.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
    • 2.1 Месторождения
    • 5.1 Взаимодействие с простыми веществами
    • 5.2 Взаимодействие со сложными веществами
    • 5.3 Соединения с кислородом
    • 5.4 Гидроксид
    • 6.1 Важные соединения
    • 7.1 Калий в организме человека

    История и происхождение названия

    Соединения калия используются с древнейших времён. Так, производство поташа (который применялся как моющее средство) существовало уже в XI веке. Золу, образующуюся при сжигании соломы или древесины, обрабатывали водой, а полученный раствор (щёлок) после фильтрования выпаривали. Сухой остаток, помимо карбоната калия K2CO3, содержал сульфат калия K2SO4, соду и хлорид калия KCl.

    19 ноября 1807 года в Бейкеровской лекции английский химик Дэви сообщил о выделении калия электролизом расплава едкого кали (KOH)(в рукописи лекции Дэви указал, что он открыл калий 6 октября 1807 года). Дэви назвал его «потасий» (лат. potasium ; это название (правда, в некоторых языках с двумя буквами s) до сих пор употребительно в английском, французском, испанском, португальском и польском языках. При электролизе влажного едкого кали KOH на ртутном катоде он получил амальгаму калия, а после отгонки ртути - чистый металл. Дэви определил его плотность, изучил химические свойства, в том числе разложение воды и поглощение водорода.

    В 1808 году французские химики Гей-Люссак и Л. Тенар выделили калий химическим путём - прокаливанием KOH с углём.

    В 1809 году немецкий физик Л. В. Гильберт предложил название «калий» (лат. kalium , от араб. аль-кали — поташ). Это название вошло в немецкий язык, оттуда в большинство языков Северной и Восточной Европы (в том числе русский) и «победило» при выборе символа для этого элемента — K.

    Нахождение в природе

    Ввиду высокой химической активности калий в свободном состоянии в природе не встречается. Породообразующий элемент, входит в состав слюд, полевых шпатов и т. д. Также калий входит в состав минералов сильвина KCl, сильвинита KCl·NaCl, карналлита KCl·MgCl2·6H2O, каинита KCl·MgSO4·6H2O, а также присутствует в золе некоторых растений в виде карбоната K2CO3 (поташ). Калий входит в состав всех клеток (см. ниже раздел Биологическая роль). Кларк калия в земной коре составляет 2,4 % (5-й по распространённости металл, 7-й по содержанию в коре элемент). Средняя концентрация в морской воде — 380 мг/л .

    Месторождения

    Крупнейшие месторождения калия находятся на территории Канады (производитель PotashCorp), России (ПАО «Уралкалий», г. Березники, г. Соликамск, Пермский край, Верхнекамское месторождение калийных руд), Белоруссии (ПО «Беларуськалий», г. Солигорск, Старобинское месторождение калийных руд).

    Получение

    Калий, как и другие щелочные металлы, получают электролизом расплавленных хлоридов или щелочей. Так как хлориды имеют более высокую температуру плавления (600—650 °C), то чаще проводят электролиз расплавленных щелочей с добавкой к ним соды или поташа (до 12 %). При электролизе расплавленных хлоридов на катоде выделяется расплавленный калий, а на аноде — хлор:

    K + + e − → K 2Cl − → Cl2

    При электролизе гидроксида калия на катоде также выделяется расплавленный калий, а на аноде — кислород:

    Вода из расплава быстро испаряется. Чтобы калий не взаимодействовал с хлором или кислородом, катод изготовляют из меди и над ним помещают медный цилиндр. Образовавшийся калий в расплавленном виде собирается в цилиндре. Анод изготовляют также в виде цилиндра из никеля (при электролизе щелочей) либо из графита (при электролизе хлоридов).

    Важное промышленное значение имеют и методы термохимического восстановления:

    Na + KOH → N2,380−450oC NaOH + K

    и восстановление из расплава хлорида калия карбидом кальция, алюминием или кремнием.

    Физические свойства

    Калий

    Калий — серебристый металл с характерным блеском на свежеобразованной поверхности. Очень лёгок и легкоплавок. Относительно хорошо растворяется в ртути, образуя амальгамы. Будучи внесённым в пламя горелки, калий (а также его соединения) окрашивает пламя в характерный розово-фиолетовый цвет.

    Калий

    Калий активно взаимодействует с водой. Выделяющийся водород воспламеняется, а ионы калия придают пламени фиолетовый цвет. Раствор фенолфталеина в воде становится малиновым, демонстрируя щелочную реакцию образующегося KOH

    Калий образует кристаллы кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,5247 нм , Z = 2 .

    Химические свойства

    Элементарный калий, как и другие щелочные металлы, проявляет типичные металлические свойства и очень химически активен, является сильным восстановителем. На воздухе свежий срез быстро тускнеет из-за образования плёнок соединений (оксиды и карбонат). При длительном контакте с атмосферой способен полностью разрушиться. С водой реагирует со взрывом. Хранить его необходимо под слоем бензина, керосина или силикона, дабы исключить контакт воздуха и воды с его поверхностью. С Na, Tl, Sn, Pb, Bi калий образует интерметаллиды.

    Взаимодействие с простыми веществами

    Калий при комнатной температуре реагирует с кислородом воздуха, галогенами; практически не реагирует с азотом (в отличие от лития и натрия). При умеренном нагревании реагирует с водородом с образованием гидрида (200—350 °C):

    с халькогенами (100—200 °C, E = S, Se, Te):

    При сгорании калия на воздухе образуется надпероксид калия KO2 (с примесью K2O2):

    В реакции с фосфором в инертной атмосфере образуется фосфид калия зелёного цвета (200 °C):

    Взаимодействие со сложными веществами

    Калий при комнатной температуре (+20 °C) активно реагирует с водой, кислотами, растворяется в жидком аммиаке (−50 °C) с образованием тёмно-синего раствора аммиаката калия.

    Калий глубоко восстанавливает разбавленные серную и азотную кислоты:

    При сплавлении металлического калия со щелочами он восстанавливает водород гидроксогруппы:

    При умеренном нагревании реагирует с газообразным аммиаком с образованием амида (+65…+105 °C):

    Металлический калий реагирует со спиртами с образованием алкоголятов:

    Алкоголяты щелочных металлов (в данном случае — этилат калия) широко используются в органическом синтезе.

    Соединения с кислородом

    При взаимодействии калия с кислородом воздуха образуется не оксид, а пероксид и супероксид:

    Оксид калия может быть получен при нагревании металла до температуры не выше 180 °C в среде, содержащей очень мало кислорода, или при нагревании смеси супероксида калия с металлическим калием:

    Оксиды калия обладают ярко выраженными осно́вными свойствами, бурно реагируют с водой, кислотами и кислотными оксидами. Практического значения они не имеют. Пероксиды представляют собой желтовато-белые порошки, которые, хорошо растворяясь в воде, образуют щёлочи и пероксид водорода:

    Калий

    Свойство обменивать углекислый газ на кислород используется в изолирующих противогазах и на подводных лодках. В качестве поглотителя используют эквимолярную смесь супероксида калия и пероксида натрия. Если смесь не эквимолярна, то в случае избытка пероксида натрия поглотится больше газа, чем выделится (при поглощении двух объёмов CO2 выделяется один объём O2), и давление в замкнутом пространстве упадёт, а в случае избытка супероксида калия (при поглощении двух объёмов CO2 выделяется три объёма O2) выделяется больше газа, чем поглотится, и давление повысится.

    В случае эквимолярной смеси (Na2O2:K2O4 = 1:1) объёмы поглощаемого и выделяемого газов будут равны (при поглощении четырёх объёмов CO2 выделяется четыре объёма O2).

    Пероксиды являются сильными окислителями, поэтому их применяют для отбеливания тканей в текстильной промышленности.

    Получают пероксиды прокаливанием металлов на воздухе, освобождённом от углекислого газа.

    Также известен озонид калия KO3, оранжево-красного цвета. Получить его можно взаимодействием гидроксида калия с озоном при температуре не выше +20 °C:

    Озонид калия является очень сильным окислителем, например, окисляет элементарную серу до сульфата и дисульфата уже при +50 °C:

    Гидроксид

    Гидроксид калия (или едкое кали) представляет собой твёрдые белые непрозрачные, очень гигроскопичные кристаллы, плавящиеся при температуре 360 °C. Гидроксид калия относится к щелочам. Он хорошо растворяется в воде с выделением большого количества тепла. Растворимость едкого кали при +20 °C в 100 г воды составляет 112 г .

    Применение

    • Жидкий при комнатной температуре сплав калия и натрия используется в качестве теплоносителя в замкнутых системах, например, в атомных силовых установках на быстрых нейтронах. Кроме того, широко применяются его жидкие сплавы с рубидием и цезием. Сплав с составом 12 % натрия, 47 % калия, 41 % цезия обладает рекордно низкой температурой плавления −78 °C.
    • Соединения калия — важнейший биогенный элемент и потому применяются в качестве удобрений. Калий является одним из трёх базовых элементов, которые необходимы для роста растений наряду с азотом и фосфором. В отличие от азота и фосфора, калий является основным клеточным катионом. При его недостатке у растения прежде всего нарушается структура мембран хлоропластов — клеточных органелл, в которых проходит фотосинтез. Внешне это проявляется в пожелтении и последующем отмирании листьев. При внесении калийных удобрений у растений увеличивается вегетативная масса, урожайность и устойчивость к вредителям.
    • Соли калия широко используются в гальванотехнике, так как, несмотря на относительно высокую стоимость, они часто более растворимы, чем соответствующие соли натрия, и потому обеспечивают интенсивную работу электролитов при повышенной плотности тока.

    Важные соединения

    • Бромид калия применяется в медицине и как успокаивающее средство для нервной системы.
    • Гидроксид калия (едкое кали) применяется в щелочных аккумуляторах и при сушке газов.
    • Карбонат калия (поташ) используется как удобрение, при варке стекла, как кормовая добавка для птицы.
    • Хлорид калия (сильвин, «калийная соль») используется как удобрение.
    • Нитрат калия (калийная селитра) — удобрение, компонент чёрного пороха.
    • Перхлорат и хлорат калия (бертолетова соль) используются в производстве спичек, ракетных порохов, осветительных зарядов, взрывчатых веществ, в гальванотехнике.
    • Дихромат калия (хромпик) — сильный окислитель, используется для приготовления «хромовой смеси» для мытья химической посуды и при обработке кожи (дубление). Также используется для очистки ацетилена на ацетиленовых заводах от аммиака, сероводорода и фосфина.

    Калий

    • Перманганат калия — сильный окислитель, используется как антисептическое средство в медицине и для лабораторного получения кислорода.
    • Тартрат натрия-калия (сегнетова соль) в качестве пьезоэлектрика.
    • Дигидрофосфат и дидейтерофосфат калия в виде монокристаллов в лазерной технике.
    • Пероксид калия и супероксид калия используются для регенерации воздуха на подводных лодках и в изолирующих противогазах (поглощает углекислый газ с выделением кислорода).
    • Фтороборат калия — важный флюс для пайки сталей и цветных металлов.
    • Цианид калия применяется в гальванотехнике (серебрение, золочение), при добыче золота и при нитроцементации стали. Чрезвычайно ядовит, один из сильнейших ядов.
    • Калий совместно с перекисью калия применяется при термохимическом разложении воды на водород и кислород (калиевый цикл «Газ де Франс», Франция).
    • Сульфат калия применяется как удобрение.

    Биологическая роль

    Калий — важнейший биогенный элемент, особенно в растительном мире. При недостатке калия в почве растения развиваются очень плохо, уменьшается урожай, поэтому около 90 % добываемых солей калия используют в качестве удобрений.

    Калий в качестве катиона наряду с катионами натрия является базовым элементом так называемого калиево-натриевого насоса клеточной мембраны, который играет важную роль в проведении нервных импульсов.

    Калий

    Калий в организме человека

    Калий содержится большей частью в клетках, до 40 раз больше, чем в межклеточном пространстве. В процессе функционирования клеток избыточный калий покидает цитоплазму, поэтому для сохранения концентрации он должен нагнетаться обратно при помощи натрий-калиевого насоса. Калий и натрий между собой функционально связаны и выполняют следующие функции:

    • Создание условий для возникновения мембранного потенциала и мышечных сокращений.
    • Поддержание осмотической концентрации крови.
    • Поддержание кислотно-щелочного баланса.
    • Нормализация водного баланса.

    Рекомендуемая суточная доля калия составляет для детей от 600 до 1700 миллиграммов, для взрослых — от 1800 до 5000 миллиграммов. Потребность в калии зависит от массы тела, физической активности, физиологического состояния и климата места проживания. Рвота, продолжительные поносы, обильное потение, использование мочегонных повышают потребность организма в калии.

    Основными пищевыми источниками являются бобы (в первую очередь белая фасоль), шпинат и капуста кормовая, финики, картофель, батат, сушёные абрикосы, дыня, киви, авокадо, помело, бананы, брокколи, печень, молоко, ореховое масло, цитрусовые, виноград. Калия достаточно много в рыбе и молочных продуктах.

    Практически все сорта рыбы содержат более 200 мг калия на 100 г . Количество калия в разных видах рыбы различается.

    Овощи, грибы и травы также содержат много калия, однако в консервированных продуктах его уровень может быть гораздо меньше. Много калия содержится в шоколаде.

    Всасывание происходит в тонком кишечнике. Усвоение калия облегчает витамин B6, затрудняет — алкоголь.

    При недостатке калия развивается гипокалиемия. Возникают нарушения работы сердечной и скелетной мускулатуры. Продолжительный дефицит калия может быть причиной острой невралгии.

    При избытке калия развивается гиперкалиемия, для которой основным симптомом является язва тонкого кишечника. Настоящая гиперкалиемия может вызвать остановку сердца.

    Изотопы

    Природный калий состоит из трёх изотопов. Два из них стабильны: 39 K (изотопная распространённость 93,258 %) и 41 K (6,730 %). Третий изотоп 40 K (0,0117 %) является бета-активным с периодом полураспада 1,251 миллиарда лет. Сравнительно малый период полураспада и большая распространённость калия по сравнению с ураном и торием означает, что на Земле ещё 2 млрд лет назад и ранее калий-40 вносил главный вклад в естественный радиационный фон. В каждом грамме природного калия в секунду распадается в среднем 31,0±0,3 ядра 40 K, благодаря чему, например, в организме человека массой 70 кг ежесекундно происходит около 4000 радиоактивных распадов. Поэтому легкодоступные в быту соединения калия (поташ, хлорид калия, калийная селитра и т. д.) можно использовать как пробные радиоактивные источники для проверки бытовых дозиметров. 40 K наряду с ураном и торием считается одним из основных источников геотермальной энергии, выделяемой в недрах Земли (полная скорость энерговыделения оценивается в 40—44 ТВт ). В минералах, содержащих калий, постепенно накапливается 40 Ar, один из продуктов распада калия-40, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

    Один из искусственных изотопов — 37 K, — с временем полураспада 1,23651 секунды, применяется в экспериментах по изучению Стандартной модели слабого взаимодействия.

    Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
    Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
    W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

    Литий
    Li
    Атомный номер: 3
    Атомная масса: 6,941
    Темп. плавления: 453,85 К
    Темп. кипения: 1615 К
    Плотность: 0,534 г/см³
    Электроотрицательность: 0,98

    Натрий
    Na
    Атомный номер: 11
    Атомная масса: 22,98976928
    Темп. плавления: 371,15 К
    Темп. кипения: 1156 К
    Плотность: 0,97 г/см³
    Электроотрицательность: 0,96

    Калий
    K
    Атомный номер: 19
    Атомная масса: 39,0983
    Темп. плавления: 336,58 К
    Темп. кипения: 1032 К
    Плотность: 0,86 г/см³
    Электроотрицательность: 0,82

    Рубидий
    Rb
    Атомный номер: 37
    Атомная масса: 85,4678
    Темп. плавления: 312,79 К
    Темп. кипения: 961 К
    Плотность: 1,53 г/см³
    Электроотрицательность: 0,82

    Цезий
    Cs
    Атомный номер: 55
    Атомная масса: 132,9054519
    Темп. плавления: 301,59 К
    Темп. кипения: 944 К
    Плотность: 1,93 г/см³
    Электроотрицательность: 0,79

    Франций
    Fr
    Атомный номер: 87
    Атомная масса: (223)
    Темп. плавления: ~300 К
    Темп. кипения: ~950 К
    Плотность: 1,87 г/см³
    Электроотрицательность: 0,7

    Читайте также: