Металлический корпус электростанции должен быть заземлен при помощи заземлителя

Обновлено: 07.01.2025

Ответ: Для обеспечения безопасности людей в ЭУ с изолированной нетралью в соответствии с требованиями Правил устройства электроустановок должны быть сооружены заземляющие устройства, к которым надежно подключаются корпуса электрооборудования, которые вследствие нарушения изоляции могут оказаться под напряжением.

2.3 Вопрос: Как осуществляется присоединение заземляющих и нулевых защитных проводников?

Ответ: Присоединение заземляющих и нулевых защитных проводников к заземлителям, заземляющему контуру к заземляющим конструкциям выполняется сваркой, а к корпусам аппаратов, МАШИН и опор ВЛ - сваркой или надежным болтовым соединением.

Каждая часть электроустановки, подлежащая заземлению или занулению, присоединяется к сети заземления или зануления с помощью отдельного проводника. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки запрещается.

Заземляющие и нулевые защитные проводники должны иметь покрытие, предохраняющее от коррозии.

1.4 Вопрос: Как осуществляется заземление или зануление переносных электроприёмников ?

Ответ: Заземление или зануление переносных электроприемников осуществляется специальной жилой (третья - для электроприемников однофазного и постоянного тока, четвертая - для электроприемников трёхфазного тока), расположенной в одной оболочке с фазными жилами переносного провода и присоединяемой к "корпусу" электроприемника и к специальному контакту вилки втычного соединения. Сечение этой жилы должно быть равным сечению фазных проводников. Использование для этой цели нулевого рабочего проводника, в том числе расположенного в общей оболочке, не допускается. Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5 мм кв. для переносных электроприемников в промышленных установках и не менее 0,75 мм кв. для бытовых переносных электроприёмников.

2.4 Вопрос: Что относится к электрозащитным средствам?

Ответ: К электрозащитным средствам относятся:

- изолирующие штанги всех видов (оперативные, измерительные, для наложения

- изолирующие и электроизмерительные клещи;

- указатели напряжения всех видов и классов напряжений (с газоразрядной лампой, бесконтактные, импульсного типа, с лампой накаливания и др.);

- бесконтактные сигнализаторы наличия напряжения;

- диэлектрические перчатки, боты и галоши, ковры, изолирующие подставки;

- защитные ограждения (щиты, ширмы, изолирующие накладки, колпаки);

- устройства и приспособления для обеспечения безопасности труда при приведении испытаний в измерении в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, устройство для определения разности напряжения в транзите, указатели повреждения кабелей и т.п.),

- плакаты и знаки безопасности;

- прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением 110 кВ и выше, а также в электросетях до 1000 В (полимерные и гибкие изоляторы; изолирующие лестницы, канаты, вставки телескопических вышек и подъемников; штанги для переноса и выравнивания потенциала; гибкие изолирующие покрытия и

Заземляющие устройства распределительных подстанций – назначение, конструктивные особенности, особенности эксплуатации

Заземляющие устройства распределительных подстанций – назначение, конструктивные особенности, особенности эксплуатации

Электрическое оборудование распределительных подстанций в нормальном режиме работы находится в исправном техническом состоянии и не представляет опасности для человека. Металлические части корпуса изолированы от токоведущих частей оборудования. Но в случае возникновения аварийной ситуации в электрической сети, которая сопровождается повреждением изоляции оборудования или замыканием одной из фаз сети на землю, человек при контакте с оборудованием или нахождением в непосредственной близости с ним будет подвержен удару электрическим током.

Ток величиной 90-100 мА и выше, воздействующий на организм человека в течение доли секунды, является смертельным. Тяжесть удара электрическим током зависит также от путей прохождения тока и от физиологических особенностей организма человека, поэтому часто смертельным может быть ток и меньшей величины.

Для предотвращения поражения персонала, обслуживающего электроустановки, электрическим током, металлические части корпусов оборудования, а также металлические элементы, находящихся в непосредственной близости к оборудованию, подлежат заземлению.

Заземление подразумевает соединение металлических элементов, корпусов оборудования с заземляющим контуром электроустановки, в данном случае подстанции.

Перечислим, какие элементы оборудования распределительных подстанций заземляют:

бак силового трансформатора;

бак высоковольтного выключателя;

металлические элементы шинных порталов, опорных конструкций разъединителей, отделителей и другого оборудования распределительных устройств;

дверцы, ограждения, корпуса распределительных щитов, шкафов с оборудованием;

металлическая броня кабельных линий независимо от назначения (силовых, вторичной коммутации), концевые и соединительные кабельные муфты с металлическим корпусом;

вторичные обмотки трансформаторов тока и трансформаторов напряжения;

металлические гладкостенные и гофрированные трубы, в которых прокладываются электропроводки и другие металлические корпуса действующего оборудования и устройств электроустановок.

Распределительная подстанция

Конструктивные особенности заземляющего устройства подстанции

Заземляющее устройство подстанции конструктивно состоит из двух основных элементов – заземлителя и заземляющих проводников (заземляющих шин).

Заземлитель – это металлические элементы, которые прикасаются непосредственно с землей. Заземлители, в свою очередь, бывают двух типов – естественными и искусственными. К естественным заземлителям можно отнести различные металлоконструкции, часть которых заходит в землю, трубопроводы различного назначения (за исключением газовых и других трубопроводов, по которым протекают горючие жидкости), металлические оболочки (броня) кабельных линий, проложенных в земле. Искусственные заземлители выполняют посредством закапывания в землю стальных труб, стержней, полос, угловой стали.

Заземляющие проводники осуществляют соединение металлических частей оборудования и других элементов, подлежащих заземлению, с заземлителем. То есть посредством заземляющих проводников происходит заземление оборудования .

Корпуса оборудования, опорные конструкции оборудования и т.д. заземляются при помощи жестких металлических шин. Заземляющие шины окрашиваются в черный цвет. В определенных местах на заземляющих шинах и на заземленных металлических элементах должны быть предусмотрены места установки переносных защитных заземлений. Данные места зачищаются, покрываются смазочным материалом для предотвращения окисления металла, возле данных мест устанавливается в виде готового знака или наносится краской знак заземления.

Переносные защитные заземления состоят из гибких медных проводников, присоединяющихся к заземленным и заземляемым элементам при помощи специальных зажимов. Переносные заземления играют роль заземляющих проводников, они применяются для заземления участков электрической сети для обеспечения безопасности при выполнении ремонтных работ, для заземления спецтехники, которая применяется для выполнения работ в пределах электроустановки или в непосредственной близости к линиям электропередач.

Подвижные элементы оборудования – дверцы шкафов, ограждения, стационарные заземляющие ножи разъединителей и др. для обеспечения надежного контакта с заземленным корпусом шкафа или опорной конструкцией соединяют гибкими медными проводниками.

Присоединение металлических заземляющих шин к заземляющимся конструкциям осуществляется посредством сварки. Подключение заземляющих шин к корпусам оборудования, в зависимости от его конструктивных особенностей может осуществляться как сваркой, так и при помощи болтовых соединений. Медные заземляющие проводники подвижных элементов оборудования подключаются к заземленным элементам болтовыми соединениями или пайкой, если требуется подключить медный проводник к металлической оболочке кабельной линии.

Оборудование на распределительной подстанции

Особенности эксплуатации заземляющих устройств

Существую нормированные значения сопротивления заземляющих устройств. В зависимости от рабочего напряжения электроустановки, уровня токов замыкания на землю, допустимое максимальное сопротивление заземляющего контура подстанции может варьироваться от 0,5 до 4 Ом.

В процессе эксплуатации заземляющие устройства должны периодически проходить проверку. Проверка выполняется не реже одного раза в 6 лет и состоит из двух этапов – измерения сопротивления заземляющего устройства и выборочной проверки состояния заземлителей.

Также в процессе эксплуатации оборудования электроустановок необходимо периодически проводить зачистку мест установки переносных защитных заземлений от ржавчины и покрытие их новым слоем смазки для предотвращения образования коррозии.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Заземление электростанции

Заземление электростанции

12 июл.

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно - нет более скандального вопроса, чем заземление. Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Если опустить вступление "библии электрика" (ПУЭ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется "Заземление и защитные меры электробезопастности".

В п. 1.7.2. сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ;
электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
электроустановки до 1 кВ с глухозаземленной нейтралью;
электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль. Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд - нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

При описании остальных вариантов устройств электроустановок проще всего поступить как в одном из вариантов инструкции на Роллс-Ройс - "если автомобиль сломался, Ваш водитель наверняка знает, что нужно делать". По крайней мере схемы, отличные от глухозаземленной нейтрали, встречаются при строительстве домашних сетей немногим чаще, чем Роллс-Ройсы на улицах.

Введем немного терминов - так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться "вытащенными из контекста". Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно - как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети - всегда можно обратиться к первоисточнику.

1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.
1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между "землей" и "нулем" очень небольшие. На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены "в одном флаконе"). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48);
при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Иначе говоря, заземлять или занулять устройство, подключенное к напряжению 220 вольт переменного тока совсем не обязательно. И в этом нет ничего особо удивительного - третьего провода в обычных советских розетках реально не наблюдается. Можно сказать, что вступающий на практике в свои права Евростандарт (или близкая к нему новая редакция ПУЭ) лучше, надежнее, и безопаснее. Но по старому ПУЭ у нас в стране жили десятки лет. И что особенно важно, дома строили целыми городами.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого - ВСН 59-88 (Госкомархитектуры) "Электрооборудование жилых и общественных зданий. Нормы проектирования" Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, - от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин "Вятка-автомат" моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает - хочешь "заземлить" - сначала "занули". Кстати, это имеет прямое отношение к знаменитому вопросу "забатареивания" - которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Следующий аспект, которые необходимо рассмотреть - числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно - первая цель заземления - обеспечить безопасность человека в классическом случае попадания "фазы" на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться "на корпусе" в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое "на корпус" существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр - сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых - 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сечение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной "бытовой" ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью (7.1.12 ПУЭ. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети (7.1.11 ПУЭ. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков). Это желательно хорошо понимать, ведь часто "ноль" и "земля" отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный - L, нулевой рабочий - N и нулевой защитный - РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или "хвостика" грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку. И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепутает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако "рабочий ноль" идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно "заземленого" устройства окажется 220 вольт. Или еще проще - отгорит где-то в цепи контакт - и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека - прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) отличается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Рис. 4.6. Схема заземления.

Картина довольна необычная (для бытового восприятия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос - ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой - потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни - в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

При двухпроводной сети нельзя заземлять корпус устройства на рабочий ноль. В крайнем случае, и соблюдая осторожность, можно так заземлить выводы грозозащиты с высоковольтной развязкой.

На этом можно было бы закончить изложение, если бы сеть располагалась в пределах одного здания (вернее, одной комнаты с единой шиной). Реально домашние сети имеют большие воздушные пролеты (и что самое неприятное, выполнены на приличной высоте). Поэтому нужно отдельно и подробно рассмотреть вопрос молниезащиты.

Заземление силового оборудования и цеховых сетей

Заземление силового оборудования и цеховых сетей

Для чего заземляются электроустановки, какую опасность для людей представляют не заземленные цепи, и наконец, в каких случаях и как в промышленности выполняется заземление? На эти и другие вопросы даст ответ наша статья. Вы узнаете, каким образом устанавливаются заземлители, как прокладываются для них проводники в различных условиях; что запрещено, а что разрешено использовать для устройства защитного заземления. Мы поговорим о нюансах заземления оболочек кабелей, и том как выполняется прокладка проводников в сухих и сырых помещениях.

Несмотря на то, что проводники электрических сетей изолированы электрически между собой и от земли, емкостным токам изоляция проводников препятствовать не может, ведь электросеть и земля образуют собой обкладки протяженного конденсатора, между которыми неизбежно протекает емкостный ток. То есть всегда имеет место паразитная электрическая цепь, которая через эту емкость замкнута на землю. Поэтому, при случайном контакте, при прикосновении даже к изолированному проводнику, человек подвергается опасности поражения током.

Безусловно, повреждения проводов, находящихся под высоким переменным потенциалом, представляют для людей гораздо большую опасность, однако для предохранения от последствий замыкания на токопроводные корпуса оборудования, сами эти кожухи предварительно соединяются с землей при помощи заземлителей.

В различных промышленных электрических установках на напряжение до 1000 вольт с глухозаземленным нулем однофазного источника, либо с заземленной нейтралью, так же как и в потребителях постоянного тока с глухозаземленной нулевой точкой, выполняют зануление, чтобы в случае аварии размыкание происходило бы автоматически и при том максимально быстро. Скорость срабатывания зависит от выбранного устройства защиты.

С этой целью части оборудования, которые случайно могут попасть под высокое напряжение в аварийной ситуации, зануляют, соединяют с заземленным нулевым проводником сети. Например если на корпус осветительного прибора произойдет замыкание, и корпус при этом занулен, то автоматически сработают предохранители, и напряжение с цепи будет мгновенно снято. ПУЭ предписывают выполнять монтаж большинства установок на 380 и 220 вольт с глухозаземленной нейтралью (непосредственно присоединенной к заземляющему устройству).

В электрических установках с рабочим напряжением до 1000 вольт с изолированной нейтралью, и всегда, когда рабочее напряжение выше 1000 вольт, выполняют заземление, смысл которого — снизить ток, могущий протечь через человека, до ничтожно малой величины. Это достигается заземлением частей оборудования, причем заземляющее устройство обязано иметь сопротивление значительно меньшее, чем у организма человека, который обладает в свою очередь сопротивлением в диапазоне 800 Ом - 100 кОм, что зависит от множества факторов, физиологических в том числе (состояние здоровья, обувь, одежда и т.д).

В электрооборудовании с изолированной нейтралью и классом не превышающим 1000 вольт, сопротивление цепи заземления не должно превышать 4 Ома, а для установок с заземленной нейтралью: для 660 В — не более 2 Ом, для 380 В — не более 4 Ом, и для 220 В — не более 8 Ом. Для высоковольтного оборудования, номиналом от 3000 до 35000 вольт, сопротивление устройств заземления рассчитывается по формуле 125/(ток в землю при замыкании), при этом нормирован максимум в 10 Ом.

Если заземление выступает общим для оборудования различного класса напряжения, то его сопротивление должно быть меньше или равно крайним верхним значениям, иначе защита не даст требуемого эффекта в плане безопасности в силу существенного падения напряжения на элементах оборудования.

Электроустановки переменного трехфазного тока на 380 и более вольт; оборудование постоянного тока на 440 и более вольт, всегда выполняются с занулением или заземлением. В цехах особой опасности, а также в открыто стоящих установках переменного напряжения от 42 вольт, и в оборудовании постоянного напряжения от 110 вольт, — тоже всегда делают зануление или заземление. Взрывоопасное оборудование без вариантов зануляются или заземляются, независимо от уровня рабочего напряжения, поскольку любая случайно возникшая искра или нагрев могут привести к трагедии.

Зануляют или заземляют внешние элементы трансформаторов, двигателей и генераторов, осветительных приборов, различных аппаратов, а также приводы, измерительные обмотки токовых трансформаторов, внешние оболочки щитов, подвижные и съемные элементы конструкций с установленным внутри них электрическим оборудованием, муфты кабелей и другие кабельные конструкции, проводящие оплетки как проводов, так и кабелей, проводящие трубы для защиты электропроводки, каркасы шинопроводов, тросы и т. п. Это касается как стационарного, так и мобильного электрического оборудования, и то и другое встречается в промышленности.

Но есть случаи, когда заземление не обязательно. Так, не делают зануления и не заземляют корпуса оснащенные дополнительной изоляцией, и корпуса тех электрических потребителей, которые имеют подключение к сети не напрямую, а через изолирующий трансформатор. Допускается не делать вообще зануление и не заземлять корпуса, установленные непосредственно на уже зануленных или заземленных проводящих конструкциях при надежном между ними контакте. Это не предмет данной статьи, но подобные меры защиты при косвенном прикосновении призваны защитить электроустановки.

Каждый из зануляемых или заземляемых элементов составного электроприемника соединяется с сетью зануления или заземления своим персональным отводом. Запрещено включать части защищаемой установки последовательно между собой и затем в защитный нулевой или в заземляющий проводник.

Тем не менее несколько различных конструкций, например обрамлений кранов и рельсов, можно подключить последовательно, если они непосредственно используются в роли нулевых защитных или заземляющих шин, либо если сами являются зануляющими или заземляющими магистралями. Каждый болт зануляющей или заземляющей магистрали фиксирует, тем не менее, один индивидуальный проводник.

Когда человек работает с электроинструментом, он все равно касается проводящего корпуса, и при проблемах с изоляцией, корпус иногда может попасть под сетевое напряжение, представляющее опасность для рабочего. Монтажный электроинструмент нередко запитывают от щитка, где а качестве устройств защиты выступают плавкие вставки, срабатывающие, однако, лишь при значительном ток. Но сопротивление провода в петле замыкания играет против нас, и срабатывание защиты может занять более секунды, а это уже опасно для человеческого организма.

Чтобы избежать риска, применяют автоматические устройства защитного отключения, которые успевают срабатывать не более чем за 210 мс после момента замыкания на землю или на корпус.

Защитные устройства данного рода бывают разных видов: для контроля непрерывности заземляющей цепи, для контроля изоляции фаз (от земли), для защиты от попадания фазного тока на корпус, для защиты от двухфазных или однофазных замыканий с землей, для защиты от прямого прикосновения к уязвимым для тока элементам корпуса. Устройства с контролем ТНП типа С-901 и ИЭ-9807, обладают чувствительностью в 10 мА, а время их срабатывания менее 51 мс. Такие устройства не дают току успеть причинить вред человеку.

С целью заземления электроустановок прежде всего применяют естественные заземлители, у которых сопротивление растеканию удовлетворяет ПУЭ. Это может быть железобетонный фундамент здания, закопанная труба водопровода, обсадная труба и т.п. Заземлять электрическое оборудование о трубопроводы с транспортируемым по ним горючим, о чугунные трубы, о временные трубопроводы запрещено.

В первую очередь в качестве нулевых и заземляющих проводников функционируют стандартные рабочие нулевые проводники; проводники специального назначения; проводящие конструкции зданий и части сооружений производственного профиля, например шахты лифтов, рельсы под кранами и т.п., разнообразные трубопроводы, оболочки мощных кабелей, короба электропроводок.

Запрещено использовать как заземляющие проводники: оболочки изолирующих трубок, гофры, несущие тросы, оболочки свинцовые и защитную броню проводов и кабелей, ведь они сами должны грамотно заземляться. Электроустановки и проводящие элементы строительной инфраструктуры, а также всевозможные трубопроводы, подключают к сети зануления или заземления чтобы выравнять их потенциал. Хватает естественного контакта металлов в соединениях.

Если все же требуется искусственный заземлитель, то применяют заглубленные, горизонтальные и вертикальные промышленные заземлители. Для их изготовления типично применяют круглого сечения сталь, от 10 до 16 мм в диаметре, чаще полосовую сталь 40 на 4 мм, либо угловую 50 на 50 на 5 мм. Вертикальные имеют длину от 2,5 до 5 метров, их ввинчивают (до 5 метров) или забивают (до 3 метров) вглубь грунта вручную или при помощи электрического или иного специального инструмента.

Электроустановки, связанные с землей, обладающей удельным сопротивлением превышающим 200 Ом-м, заземляют углубленным заземлителем или дополнительно обрабатывают землю с целью повысить электропроводность — для вертикальных заземлителей укладывают попеременными слоями Ca(OH)2 или NaNO3 и землю, и диаметр такой обработки составляет пол метра на одну треть высоты стержня в верхней его части. По завершении укладки каждого из слоев, их поливают поочередно водой.

Если поблизости есть участки земли с более высокой проводимостью, прибегают к выносным заземлителям с использованием дополнительных кабелей или проводов. В условиях вечной мерзлоты заземлители устанавливают в талых зонах, водоемах, а также в буровых скважинах по типу артезианских.

В качестве материала стационарных проводников для заземления традиционно служит сталь, если конечно для этого не используется четвертый нулевой проводник трехфазной системы (медный). В таблице приведены минимальные размеры для нулевых и заземляющих проводников, включая стальные заземлители. При напряжении электроустановки с изолированной нейтралью от 1000 вольт, сопротивление заземляющих проводников не может, согласно ПУЭ, превышать сопротивления фазных более чем в 3 раза. Минимально разрешенные значения сечений указаны в таблицах.

Для электроустановок напряжением до 1000 вольт, в промышленных помещениях, в цехах, применяют магистраль заземления, стальную шину сечением не меньше 100 кв.мм, а при напряжении более 1000 вольт, минимальное сечение для нее составляет 120 кв.мм. Использовать металлоконструкции, трубопроводы, оборудование, как рабочий нулевой проводник запрещено.

Мобильные электроустановки для зануления или заземления используют индивидуальный проводник в виде жилы в составе кабеля, в одной оболочке, общей и для фазных проводников, того же сечения, что и фазные жилы.

Для заземления и в качестве защитных нулевых проводников на взрывоопасном оборудовании, на опасных производствах, применяют специализированные проводники. Использовать можно и металлоконструкции, стальные трубы, оболочки кабелей и т. д., но только как вспомогательную меру, прежде всего должен присутствовать специальный заземляющий проводник.

Для взрывоопасных установок с глухозаземленной нейтралью при напряжении до 1000 вольт, зануление силовых сетей исполняется дополнительно проложенным проводником: четвертым — для трехфазных сетей, и третьим — для двухфазных и однофазных сетей. Даже осветительные однофазные сети во взрывоопасных зонах класса В-1 оснащены третьим защитным проводником.

Когда естественные конструкции не удовлетворяют требованиям ПУЭ, не остается другого выхода, кроме как возводить искусственные заземлители.

Углубленные заземлители монтируют, укладывая их на дно котлована еще при начале монтажа фундамента сооружения, на этапе строительства. Вертикальные заземлители забивают или просто вдавливают, загоняя в грунт при помощи специальных приспособлений, таких как автоматические коперы или гидропрессы. Закладка верха делается на отметке от 0,6 до 0,7 метров ниже уровня отметки земли, а высота выступа от дна котлована — 0,1 — 0,2 метра. Это делается для того, чтобы затем было удобно приваривать соединительные проводники в виде полос или цилиндрические стержни.

Соединяются проводники в цепях заземлителей путем сварки внахлестку. Если грунт агрессивен и может привести к коррозии металла, то сечение заземлителей увеличивают, применяют как стойкую к коррозии альтернативу омедненные или оцинкованные заземлители, а для большей надежности добавляют антикоррозийную электрическую (катодную) защиту.

Защита асбестовыми трубами добавляется к горизонтальным заземлителям, если они пересекают подземные коммуникации, железнодорожные пути и другие сооружения, могущие способствовать причинению механических повреждений какой-нибудь из пересекающихся конструкций. Когда монтаж окончен, и котлован готов к окончательной засыпке, составляется обязательный акт, где юридически фиксируется, что осуществлена скрытая прокладка.

Нулевые защитные и заземляющие проводники должны по возможности быть легко доступными для диагностики и осмотра. Это, конечно же, не касается жил и оболочек кабелей, труб скрытой проводки и металлических конструкций, которые изначально находятся в фундаментах и в земле, нулевых и заземляющих проводников, смонтированных в скрытых необслуживаемых и несменяемых трубах.

Если помещение сухое, то заземляющие проводники прокладывают прямо по кирпичному или бетонному основанию, проводящие полосы шин крепятся к нему дюбелями. В сырых же помещениях необходимы прокладки или держатели, чтобы проводник располагался на расстоянии в 1 см от основания или более.

На прямых поверхностях основания проводники закрепляют на расстоянии 60 — 100 см между крепежными элементами, а на поворотах — с отступом в 100 см от угла и от мест ответвлений, на расстоянии 40 — 60 см от пола, и не менее 5 см от съемных канальных перекрытий. Чтобы проложить заземляющий проводник сквозь стену, применяют гильзы или монтажные проемы, а в местах пересечения температурных швов добавляют компенсаторы.

К металлическим элементам установок заземляющие проводники приваривают, исключением являются разъемы, служащие для измерений. Нахлестку при сварке делают по длине равной шестикратному диаметру круглого проводника или равной приблизительно ширине полосы.

Корпусы машин традиционно имеют специальный болт для фиксации заземляющего проводника, а установленные на салазкаи станки заземляются присоединением проводника прямо к салазкам. Если оборудование вибрирует при работе, то дополнительно устанавливают контргайку. Прежде чем соединить контактные поверхности, их до блеска зачищают и наносят тонким слоем немного вазелина.

Трубопроводы, примененные как заземлители, иногда оснащены задвижками, встречаются на них и водомеры, и фланцы, в таких местах нужны обходные перемычки площадью сечения от 100 кв.мм, которые приваривают или устанавливают при помощи хомутов.

Маркировка заземляющих проводников

Нулевые защитные и заземляющие проводники, смонтированные открыто, специально маркируются, чтобы можно было их отличить от других коммуникаций, - желтая полоса на зеленом фоне. Места для присоединения переносных заземлителей не окрашивают.

Броню контрольных и силовых кабелей, их металлические оплетки, заземляют. Заземляют также концевые и соединительные муфты кабелей, проводящие кабельные сборки, короба, лотки и тросы крепления кабелей. Стальные трубы, внутри которых в зданиях прокладывают кабели, - тоже заземляются.

Гибкими многопроволочными медными проводниками обеспечивают контакт оболочки и брони с концевыми и соединительными муфтами. На концах линий эти проводники соединяют с магистралями заземления. Сечения гибких проводников, в соответствии с сечением проводящей жилы кабеля, принимаются равными: 6 кв.мм для сечения жилы кабеля до 10 кв.мм, 10 кв.мм для кабеля 16-35 кв.мм., 16 кв.мм для 50-120 кв.мм и 25 кв.мм для 150-240 кв.мм.

Для обеспечения непрерывности заземляющей цепи кабелей, на местах стыковки соединительными свинцовыми муфтами, применяют пайку: с одного конца кабеля к броне припаивается проводник заземления, затем проводник заземления припаивается к центру муфты, далее - к броне конца следующего куска кабеля. Для заземления проводящих коробов и лотков монтаж осуществляют аналогичным образом, - минимум в паре мест с обоих концов линии делают припайки.

Если кабель проложен на тросах, то все проводящие части, включая и сам трос, заземляются. Применяемые для заземления стальные трубы надежно соединяются с нулевым проводом либо с заземляющим устройством.

Для сохранения в безопасности людей, выполняющих обслуживание, а также для защиты свинцовой или алюминиевой оболочки кабеля, на случай пробоя изоляции на землю, заземляют всю металлическую оболочку и броню кабеля, проводящие корпуса муфт и опорных конструкций.

Надеемся, что эта статья была полезной для вас, и теперь вы имеете представление о том, как и зачем реализуется заземление электроустановок.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Читайте также: