Кальций относится к щелочным металлам

Обновлено: 20.01.2025

КА́ЛЬЦИЙ -я; м. [от лат. calx (calcis) - известь] Химический элемент (Ca), металл серебристо-белого цвета, входящий в состав известняков, мрамора и др.

КА́ЛЬЦИЙ (лат. Calcium), Ca (читается «кальций»), химический элемент с атомным номером 20, расположен в четвертом периоде в группе IIА периодической системы элементов Менделеева; атомная масса 40,08. Относится к числу щелочноземельных элементов (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) .
Природный кальций состоит из смеси нуклидов (см. НУКЛИД) с массовыми числами 40 (в смеси по массе 96,94 %), 44 (2,09%), 42 (0,667%), 48 (0,187%), 43 (0,135%) и 46 (0,003%). Конфигурация внешнего электронного слоя 4s 2 . Практически во всех соединениях степень окисления кальция +2 (валентность II).
Радиус нейтрального атома кальция 0,1974 нм, радиус иона Cа 2+ от 0,114 нм (для координационного числа 6) до 0,148 нм (для координационного числа 12). Энергии последовательной ионизации нейтрального атома кальция равны, соответственно, 6,133, 11,872, 50,91, 67,27 и 84,5 эВ. По шкале Полинга электроотрицательность кальция около 1,0. В свободном виде кальций — серебристо-белый металл.
История открытия
Соединения кальция встречаются в природе повсеместно, поэтому человечество знакомо с ними с древнейших времен. Издавна в строительном деле находила применение известь (см. ИЗВЕСТЬ) (негашеная и гашеная), которую долгое время считали простым веществом, «землей». Однако в 1808 английский ученый Г. Дэви (см. ДЭВИ Гемфри) сумел получить из извести новый металл. Для этого Дэви подверг электролизу смесь слегка увлажненной гашеной извести с окисью ртути и выделил из образующейся на ртутном катоде амальгамы новый металл, который он назвал кальцием (от лат. calx, род. падеж calcis — известь). В России некоторое время этот металл называли «известковием».
Нахождение в природе
Кальций — один из наиболее распространенных на Земле элементов. На его долю приходится 3,38% массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Из-за высокой химической активности кальций в свободном виде в природе не встречается. Большая часть кальция содержится в составе силикатов (см. СИЛИКАТЫ) и алюмосиликатов (см. АЛЮМОСИЛИКАТЫ) различных горных пород (граниты (см. ГРАНИТ) , гнейсы (см. ГНЕЙС) и т. п.). В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (см. КАЛЬЦИТ) (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как известняк (см. ИЗВЕСТНЯК) СaCO3, ангидрит (см. АНГИДРИТ) CaSO4 и гипс (см. ГИПС) CaSO4·2H2O, флюорит (см. ФЛЮОРИТ) CaF2, апатиты (см. АПАТИТЫ) Ca5(PO4)3(F,Cl,OH), доломит (см. ДОЛОМИТ) MgCO3·СaCO3. Присутствием солей кальция и магния в природной воде определяется ее жесткость (см. ЖЕСТКОСТЬ ВОДЫ) . Значительное количество кальция входит в состав живых организмов. Так, гидроксилапатит Ca5(PO4)3(OH), или, в другой записи, 3Ca3(PO4)2 ·Са(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др.
Получение
Металлический кальций получают электролизом расплава, состоящего из CaCl2 (75—80%) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C:
4CaO + 2Al = CaAl2O4 + 3Ca.
Физические и химические свойства
Металл кальций существует в двух аллотропных модификациях (см. Аллотропия (см. АЛЛОТРОПИЯ) ). До 443 °C устойчив a-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив b-Ca с кубической объемно центрированной решеткой типа a-Fe (параметр a = 0,448 нм). Температура плавления кальция 839 °C, температура кипения 1484 °C, плотность 1,55 г/см 3 .
Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина.
В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca 2+ /Ca 0 –2,84 В, так что кальций активно реагирует с водой:
Ca + 2Н2О = Ca(ОН)2 + Н2.
С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:
2Са + О2= 2СаО; Са + Br2= CaBr2.
При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:
Са + Н2= СаН2 (гидрид кальция),
Ca + 6B = CaB6 (борид кальция),
3Ca + N2= Ca3N2 (нитрид кальция)
Са + 2С = СаС2 (карбид кальция)
3Са + 2Р = Са3Р2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР5;
2Ca + Si = Ca2Si (силицид кальция), известны также силициды кальция составов CaSi, Ca3Si4 и CaSi2.
Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (т. е. эти реакции — экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:
СаН2 + 2Н2О = Са(ОН)2 + 2Н2,
Ca3N2 + 3Н2О = 3Са(ОН)2 + 2NН3.
Оксид кальция — типично основной. В лаборатории и технике его получают термическим разложением карбонатов:
CaCO3 = CaO + CO2.
Технический оксид кальция СаО называется негашеной известью.
Он реагирует с водой с образованием Ca(ОН)2 и выделением большого количества теплоты:
CaО + Н2О = Ca(ОН)2.
Полученный таким способом Ca(ОН)2 обычно называют гашеной известью или известковым молоком (см. ИЗВЕСТКОВОЕ МОЛОКО) из-за того, что растворимость гидроксида кальция в воде невелика (0,02 моль/л при 20°C), и при внесении его в воду образуется белая суспензия.
При взаимодействии с кислотными оксидами CaO образует соли, например:
CaО +СО2 = СаСО3; СаО + SO3 = CaSO4.
Ион Ca 2+ бесцветен. При внесении в пламя солей кальция пламя окрашивается в кирпично-красный цвет.
Такие соли кальция, как хлорид CaCl2, бромид CaBr2, иодид CaI2 и нитрат Ca(NO3)2, хорошо растворимы в воде. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, средний ортофосфат Ca3(PO4)2, оксалат СаС2О4 и некоторые другие.
Важное значение имеет то обстоятельство, что в отличие от среднего карбоната кальция СаСО3 кислый карбонат кальция (гидрокарбонат) Са(НСО3)2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:
СаСО3 + СО2+ Н2О = Са(НСО3)2.
В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:
Са(НСО3)2 = СаСО3 + СО2+ Н2О.
Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы (см. Карст (см. КАРСТ (явление природы)) ), а в пещерах образуются красивые каменные «сосульки» — сталактиты (см. СТАЛАКТИТЫ (минеральные образования)) и сталагмиты (см. СТАЛАГМИТЫ) .
Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жесткость воды (см. ЖЕСТКОСТЬ ВОДЫ) . Временной ее называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.
Применение кальция и его соединений
Металлический кальций применяют для металлотермического получения урана (см. УРАН (химический элемент)) , тория (см. ТОРИЙ) , титана (см. ТИТАН (химический элемент)) , циркония (см. ЦИРКОНИЙ) , цезия (см. ЦЕЗИЙ) и рубидия (см. РУБИДИЙ) .
Природные соединения кальция широко используют в производстве вяжущих материалов (цемент (см. ЦЕМЕНТ) , гипс (см. ГИПС) , известь и др.). Связывающее действие гашеной извести основано на том, что с течением времени гидроксид кальция реагирует с углекислым газом воздуха. В результате протекающей реакции образуются игольчатые кристаллы кальцита СаСОз, которые прорастают в расположенные рядом камни, кирпичи, другие строительные материалы и как бы сваривают их в единое целое. Кристаллический карбонат кальция — мрамор — прекрасный отделочный материал. Мел используют для побелки. Большие количества известняка расходуются при производстве чугуна, так как позволяют перевести тугоплавкие примеси железной руды (например, кварц SiO2) в сравнительно легкоплавкие шлаки.
В качестве дезинфицирующего средства очень эффективна хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) — «хлорка» Ca(OCl)Cl — смешанный хлорид и гипохлорид кальция (см. КАЛЬЦИЯ ГИПОХЛОРИТ) , обладающий высокой окислительной способностью.
Широко применяется и сульфат кальция, существующий как в виде безводного соединения, так и в виде кристаллогидратов — так называемого «полуводного» сульфата — алебастра (см. АЛЕВИЗ ФРЯЗИН (Миланец)) CaSO4·0,5H2O и двухводного сульфата — гипса CaSO4·2H2O. Гипс широко используют в строительстве, в скульптуре, для изготовления лепнины и различных художественных изделий. Применяют гипс и в медицине для фиксации костей при переломах.
Хлорид кальция CaCl2 используют наряду с поваренной солью для борьбы с оледенением дорожных покрытий. Фторид кальция СаF2 — прекрасный оптический материал.
Кальций в организме
Кальций — биогенный элемент (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) , постоянно присутствующий в тканях растений и животных. Важный компонент минерального обмена животных и человека и минерального питания растений, кальций выполняет в организме разнообразные функции. В составе апатита (см. АПАТИТ) , а также сульфата и карбоната кальций образует минеральный компонент костной ткани. В организме человека массой 70 кг содержится около 1 кг кальция. Кальций участвует в работе ионных каналов (см. ИОННЫЕ КАНАЛЫ) , осуществляющих транспорт веществ через биологические мембраны, в передаче нервного импульса (см. НЕРВНЫЙ ИМПУЛЬС) , в процессах свертывания крови (см. СВЕРТЫВАНИЕ КРОВИ) и оплодотворения. Регулируют обмен кальция в организме кальциферолы (см. КАЛЬЦИФЕРОЛЫ) (витамин D). Недостаток или избыток кальция приводит к различным заболеваниям — рахиту (см. РАХИТ) , кальцинозу (см. КАЛЬЦИНОЗ) и др. Поэтому пища человека должна в нужных количествах содержать соединения кальция (800—1500 мг кальция в сутки). Содержание кальция высоко в молочных продуктах (таких, как творог, сыр, молоко), в некоторых овощах и других продуктах питания. Препараты кальция широко используются в медицине.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "кальций" в других словарях:

КАЛЬЦИЙ — (Са) желтый блестящий и тягучий металл. Удельный вес 1,6. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. КАЛЬЦИЙ (ново лат. calcium, от лат. calx известь). Серебристого цвета металл. Словарь иностранных слов,… … Словарь иностранных слов русского языка

КАЛЬЦИЙ — КАЛЬЦИЙ, Calcium, хим. элемент, симв. Са, блестящий, серебристо белого цвета металл с кристаллич. изломом, относящийся к группе щелочно земельных металлов. Уд. вес 1,53; ат. в. 40,07; точка плавления 808°. Са относится к числу весьма… … Большая медицинская энциклопедия

КАЛЬЦИЙ — (Calcium), Ca, химический элемент II группы периодической системы, атомный номер 20, атомная масса 40,08; относится к щелочно земельным металлам; tпл 842шC. Содержится в костной ткани позвоночных, раковинах моллюсков, яичной скорлупе. Кальций… … Современная энциклопедия

КАЛЬЦИЙ — металл серебристо белого цвета, вязкий, ковкий, на воздухе быстро окисляющийся. Темп pa плавления 800 810°. В природе встречается в виде различных солей, образующих залежи мела, известняка, мрамора, фосфоритов, апатитов, гипса и др. На жел. дор.… … Технический железнодорожный словарь

КАЛЬЦИЙ — (лат. Calcium) Ca, химический элемент II группы периодической системы, атомный номер 20, атомная масса 40,078, относится к щелочноземельным металлам. Название от латинского calx, родительный падеж calcis известь. Серебристо белый металл,… … Большой Энциклопедический словарь

КАЛЬЦИЙ — (символ Са), широко распространенный серебристо белый металл из группы ЩЕЛОЧНОЗЕМЕЛЬНЫХ, впервые выделен в 1808 г. Содержится во многих горных породах и минералах, особенно в известняке и гипсе, а также в костях. В организме способствует… … Научно-технический энциклопедический словарь

Кальций — Ca (от лат. Calx, род. падеж calcis известь *а. calcium; н. Kalzium; ф. calcium; и. calcio), хим. элемент II группы периодич. системы Mенделеева, ат.н. 20, ат. м. 40,08. Cостоит из шести стабильных изотопов: 40Ca (96,97%), 42Ca (0,64%),… … Геологическая энциклопедия

КАЛЬЦИЙ — КАЛЬЦИЙ, кальция, мн. нет, муж. (от лат. calx известь) (хим.). Химический элемент металл серебристо белого цвета, содержащийся в извести. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

КАЛЬЦИЙ — КАЛЬЦИЙ, я, муж. Химический элемент, мягкий серебристо белый металл. | прил. кальциевый, ая, ое. Кальциевые соли. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

КАЛЬЦИЙ — муж. металл, составляющий химическую основу извести. Кальцинировать что, пережигать металл, соль или камень. Кальцинация жен. действие это, пережиг, перекалка. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

КАЛЬЦИЙ — (Calcium), Ca, хим. элемент II группы периодич. системы элементов, ат. номер 20, ат. масса 40,08, относится к щелочноземельным металлам. ПриродныйК. состоит из смеси 6 стабильных изотопов с массовыми числами 40, 42 44, 46 и 48, среди к рых наиб.… … Физическая энциклопедия

КАЛЬЦИЙ

КАЛЬЦИЙ
Ca (calcium),
химический элемент, относится к семейству щелочноземельных металлов Be, Mg, Ca, Sr, Ba, Ra, составляющих IIA подгруппу периодической системы элементов. Открыт Х.Дэви в 1808. Кальций - третий после алюминия и железа из наиболее распространенных металлов в земной коре, его получают преимущественно из известняка (карбонат кальция). Ведущими производителями кальция являются Австрия, Бразилия, Канада, Финляндия, Израиль и Норвегия. СВОЙСТВА КАЛЬЦИЯ
Атомный номер 20 Атомная масса 40,08 Изотопы


Температура плавления, ° С 842 Температура кипения, ° С 1495 Плотность, г/см3 1,55 Твердость (по Моосу) 1,5 Содержание в земной коре, % (масс.) 3,63 Степени окисления +2
Свойства. Кальций имеет в разрезе серебристо-белый цвет, но на воздухе тускнеет из-за образования оксида на его поверхности. Это пластичный металл тверже свинца. Кальций при нагревании в вакууме подвергается сублимации при температурах ниже точки плавления. Он умеренно растворим в воде, но плохо растворяется в этиловом спирте. При горении на воздухе образует оксид CaO и нитрид Ca3N2; нагретый металл непосредственно реагирует с галогенами. В соединениях кальций всегда двухвалентен.
Применение. Главное применение кальция - это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.
Соединения. Кальций образует множество соединений. В отличие от ограниченного применения металлического кальция, его соединения широко применяются с тех пор, как первобытный человек использовал в качестве убежища известняковые пещеры. Оксид кальция CaO - наиболее важный промышленный продукт, служащий исходным сырьем для производства других полезных соединений кальция. CaO имеет несколько коммерческих названий: известь, жженая известь, негашеная известь. Чистый оксид кальция - белое кристаллическое вещество, термостойкий (т.пл. 2630° С). Оксид получают обжигом известняка и мела, при котором удаляют выделяющийся углекислый газ; процесс ведут в шахтных печах с использованием в качестве топлива древесины, угля, нефти или газа; в результате получаются пористые куски жженой извести. При хранении на влажном воздухе жженая известь поглощает углекислый газ и влагу, превращаясь в рыхлую гашеную известь (пушонку). При добавлении воды к CaO выделяется много тепла и образуется гашеная известь (гидроксид кальция). При нагревании оксида кальция с диоксидом кремния или силикатами образуется силикат кальция (см. ниже). Жженую известь широко используют в строительстве для приготовления кладочных и штукатурных растворов, для получения хлорной извести, при выделке кожи, медицинских препаратов и кормов. Гидроксид кальция Ca(OH)2 в виде белого порошка образуется при гашении извести. Он слабо растворим в воде, насыщенный раствор известен под названием "известковая вода", а при избытке гидроксида кальция образуется белая взвесь - "известковое молоко". Ca(OH)2 является основанием и поглощает углекислый газ из воздуха. Гидроксид кальция используется в медицине (в основном для понижения кислотности), в производстве штукатурки, кладочных строительных растворов, цемента, клеевых красок и удаления волоса со шкур при выделке кожи. Известковый кладочный раствор готовят смешением гашеной извести с песком при добавлении воды до получения пластичной массы. Раствор служит вяжущим веществом при возведении стен, так как на воздухе происходит реакция гашеной извести с углекислым газом воздуха с образованием карбоната кальция и выделением воды, поэтому раствор твердеет. Штукатурный раствор ведет себя аналогично. Карбонат кальция CaCO3 в природе распространен в форме минералов известняка или мрамора. Он является основой кальцита, мела, кораллов, яичной скорлупы, раковин морских животных. Доломит - смешанный карбонат кальция и магния. Карбонат кальция используют для приготовления цемента и бетона. Цемент готовят прокаливанием тонкой смеси карбоната кальция (известняк, мел или мергель) с силикатом (глина, сланец) или доменным шлаком. Если цемент смешать с песком и гравием или щебнем и добавить воды до получения пластичной массы, то образуется бетон. Этот материал твердеет и в отсутствие углекислого газа. Карбонат кальция нерастворим в чистой воде, но растворяется в воде, насыщенной углекислым газом, так как при этом образуется растворимая кислая соль Ca(HCO3)2. При кипячении раствора происходит выделение углекислого газа и нерастворимый карбонат кальция выпадает в осадок. Этими реакциями объясняется образование накипи при использовании жесткой воды в чайниках, отопительных системах или бойлерах. Аналогичные реакции происходят в природе, приводя к образованию карстовых промоин в известняке и росту сталактитов и сталагмитов. Жесткая вода содержит бикарбонат или сульфат кальция и (или) магния. При стирке и кипячении в жесткой воде на мыле образуется осадок, блокируя способность мыла к удалению грязи.
Сульфат кальция CaSO4 существует в природе в виде минерала ангидрита. Дигидрат CaSO4*2H2O является важным промышленным минералом, известным под названиями гипс, алебастр, селенит и шелковистый шпат. Гипс добавляют в цемент для уменьшения скорости схватывания, его используют для изготовления пишущих мелков, сельскохозяйственной побелки, в качестве наполнителя красок, полировального порошка и для глянцевания бумаги. При 165-200° C гипс теряет 75% гидратной воды и образует штукатурный гипс. При увлажнении происходит поглощение воды и схватывание массы. Поскольку при затвердевании гипс слегка расширяется, он воспроизводит все тонкие детали любого объекта, на который нанесен, образуя слепок, и поэтому широко используется в изготовлении скульптур, хирургических и зубных слепков, производстве штукатурки и стеновых покрытий. Гипс, прокаленный до полного удаления гидратной воды, используется как высокотвердый поделочный материал. Специально приготовленный безводный сульфат кальция применяется для осушки газов и органических жидкостей, причем он легко регенерируется при нагревании.
Другие серусодержащие соединения. Сульфит кальция CaSO3 и бисульфит кальция Ca(HSO3)2 используются для отбеливания древесной массы в целлюлозно-бумажной промышленности, для предотвращения закисления при ферментации и вместо тиосульфата натрия для отбеливания тканей. Сульфид кальция CaS получают прокаливанием смесей сульфата кальция с углеродом или карбоната кальция с серой. Сульфид применяется для приготовления люминофоров и для удаления волосяного покрова со шкур в кожевенной промышленности.
Галогениды. Хлорид кальция CaCl2 получают из природных насыщенных соляных вод (рапы) или как побочный продукт производства соды по методу Сольве. Его можно получить также по реакции оксида или карбоната кальция с соляной кислотой. При комнатной температуре из раствора кристаллизуется бесцветный расплывающийся на воздухе гексагидрат CaCl2Ч6H2O. При прокаливании гексагидрат теряет воду и переходит последовательно в дигидрат, моногидрат и безводную соль. Эти соединения легко поглощают влагу и поэтому используются как осушители, а также в качестве соляной добавки для плавления снега и льда или для рассеяния тумана. Раствор хлорида кальция используют как антифриз для опрыскивания дорог и в шахтах, как хладагент в холодильных установках, при изготовлении цемента, огнестойких тканей и в огнетушителях. Фармакопейный хлорид кальция широко применяется в медицине, например для остановки кровотечения и увеличения свертываемости крови. Бромид CaBr2 и иодид CaI2 по химическим свойствам похожи на хлорид и применяются в фотографии и медицине. Фторид кальция, встречающийся в природе в виде минерала флюорита, или плавикового шпата, является основным сырьем для получения фтора. Фторид практически нерастворим в воде в отличие от других галогенидов.
Хлорная (белильная) известь. Состав этого вещества в основном соответствует формуле CaOCl2 (сложная смесь хлорида и гипохлорита кальция). Это вещество получают, подавая газообразный хлор снизу через раствор гашеной извести, непрерывно впрыскиваемый во вращающийся аппарат сверху. Хлорная известь - беловатый порошок с сильным запахом хлора. При выдерживании на воздухе он поглощает влагу и углекислый газ и выделяет хлор. Обычный коммерческий продукт содержит около 35% активного хлора (количество хлора, выделяющееся при взаимодействии с соляной кислотой). Хлорная известь используется для отбеливания тканей и древесной массы, для дезинфекции питьевой воды и обезвреживания сточных вод. Еще недавно ее применяли вместо хлора и гипохлорита кальция для отбеливания тканей. Гипохлорит кальция Ca(ClO)2, часто называемый просто гипохлоритом, - белый негигроскопичный порошок с запахом хлора, содержит около 99% активного хлора и поэтому вдвое эффективнее хлорной извести. Он прост в употреблении и хорошо сохраняется. Применяется так же, как и хлорная известь.
Фосфаты. Средний фосфат кальция Ca3(PO4)2 существует в природе в виде минерала фосфорита и является важным компонентом костей животных. Фосфат кальция служит сырьем для получения других фосфатов, фосфора, его соединений, используется в производстве фарфора, эмалей, молочного стекла. Гидрофосфат кальция CaHPO4 применяется как кормовая добавка скоту, в качестве цемента и пасты в стоматологии, как удобрение. Дигидрофосфат кальция Ca(H2PO4)2, или суперфосфат, лучше растворим в воде, чем другие, трех- или двухосновные соли, и поэтому пригоден для быстрой подкормки растений. Карбид кальция CaC2 получают восстановлением CaO коксом, древесным углем или антрацитом в электрической печи. При добавлении воды карбид разлагается с выделением ацетилена. При нагревании карбида кальция в среде азота можно получить цианамид кальция.
См. также УГЛЕРОД. Цианамид кальция CaCN2 - прежде одно из важнейших соединений для фиксации атмосферного азота, теперь в основном используется как удобрение и для цементации стали. При парофазном гидролизе в автоклаве цианамид выделяет аммиак; если его прокаливать в смеси с хлоридом натрия и углеродом, то образуется цианид натрия NaCN, широко используемый для извлечения золота из руд. Арсенат кальция Ca3(AsO4)2 - белый порошок, образующийся по реакции между хлоридом кальция, гидроксидом кальция и арсенатом аммония. Это вещество - распространенный инсектицид, широко применяемый при опылении хлопковых полей для уничтожения вредных насекомых. Силикат кальция CaSiO3 широко распространен в природе в виде минерала волластонита. Он является основным содержимым шлака, образующегося в металлургическом процессе при выплавке металлов из руд. Если в руде имеется избыток песка, то при выплавке добавляют известняк и, наоборот, при избытке известняка в руде добавляют песок; соответственно образующийся силикат кальция в виде шлака собирается на поверхности расплавленного металла и удаляется из печи. В природе существуют также силикаты кальция иного состава.
См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.
ЛИТЕРАТУРА
Родякин В.В. Кальций, его соединения и сплавы. М., 1967 Фрумина Н.С. и др. Аналитическая химия кальция. М., 1974

Энциклопедия Кольера. — Открытое общество . 2000 .

Щелочные и щелочноземельные металлы


Наиболее активными среди металлической группы являются щелочные и щелочноземельные металлы. Это мягкие лёгкие металлы, вступающие в реакции с простыми и сложными веществами.

Общее описание

Активные металлы занимают первую и вторую группы периодической таблицы Менделеева. Полный список щелочных и щелочноземельных металлов:

Электронная конфигурация щелочных металлов – ns 1 , щелочноземельных металлов – ns 2 .

Соответственно, постоянная валентность щелочных металлов – I, щелочноземельных – II. За счёт небольшого количества валентных электронов на внешнем энергетическом уровне активные металлы проявляют мощные свойства восстановителя, отдавая внешние электроны в реакциях. Чем больше энергетических уровней, тем меньше связь с внешних электронов с ядром атома. Поэтому металлические свойства возрастают в группах сверху вниз.

Из-за активности металлы I и II групп находятся в природе только в составе горных пород. Чистые металлы выделяют с помощью электролиза, прокаливания, реакции замещения.

Физические свойства

Щелочные металлы имеют серебристо-белый цвет с металлическим блеском. Цезий – серебристо-жёлтый металл. Это наиболее активные и мягкие металлы. Натрий, калий, рубидий, цезий режутся ножом. По мягкости напоминают воск.

Разрезание натрия ножом

Рис. 2. Разрезание натрия ножом.

Щелочноземельные металлы имеют серый цвет. По сравнению со щелочными металлами являются более твёрдыми, плотными веществами. Ножом можно разрезать только стронций. Самый плотный металл – радий (5,5 г/см 3 ).

Наиболее лёгкими металлами являются литий, натрий и калий. Они плавают на поверхности воды.

Химические свойства

Щелочные и щелочноземельные металлы реагируют с простыми веществами и сложными соединениями, образуя соли, оксиды, щёлочи. Основные свойства активных металлов описаны в таблице.

Взаимодействие

Щелочные металлы

Щелочноземельные металлы

Самовоспламеняются на воздухе. Образуют надпероксиды (RO2), кроме лития и натрия. Литий образует оксид при нагревании выше 200°C. Натрий образует смесь пероксида и оксида.

На воздухе быстро образуются защитные оксидные плёнки. При нагревании до 500°С самовоспламеняются.

Реагируют при нагревании с серой, водородом, фосфором:

С азотом реагирует только литий, с углеродом – литий и натрий:

Реагируют при нагревании:

Бурно реагируют с образованием галогенидов:

Образуются щёлочи. Чем ниже металл расположен в группе, тем более активно протекает реакция. Литий взаимодействует спокойно, натрий горит жёлтым пламенем, калий – со вспышкой, цезий и рубидий взрываются.

Менее активно, чем щелочные металлы, реагируют при комнатной температуре:

Со слабыми и разбавленными кислотами реагируют с взрывом. С органическими кислотами образуют соли.

Из всех металлов реагирует только бериллий:

Вступают в реакцию все металлы, кроме бериллия. Замещают менее активные металлы:

2Mg + ZrO2 → Zr + 2MgO

Реакция калия с водой

Рис. 3. Реакция калия с водой.

Щелочные и щелочноземельные металлы можно обнаружить с помощью качественной реакции. При горении металлы окрашиваются в определённый цвет. Например, натрий горит жёлтым пламенем, калий – фиолетовым, барий – светло-зелёным, кальций – тёмно-оранжевым.

Что мы узнали?

Щелочные и щелочноземельные – наиболее активные металлы. Это мягкие простые вещества серого или серебристого цвета с небольшой плотностью. Литий, натрий, калий плавают на поверхности воды. Щелочноземельные металлы более твёрдые и плотные, чем щелочные. На воздухе быстро окисляются. Щелочные металлы образуют надпероксиды и пероксиды, оксид образует только литий. Бурно реагируют с водой при комнатной температуре. С неметаллами реагируют при нагревании. Щелочноземельные металлы вступают в реакцию с оксидами, вытесняя менее активные металлы. Со щелочами реагирует только бериллий .

Кальций – полезные свойства и особенности металла

Этот химический элемент жизненно важен в буквальном смысле: из него состоят наши кости и зубы. Кальций – это также морские раковины, цветные мелки, сталактиты и сталагмиты в пещерах.

Кальций

Что представляет собой

Кальций – это химический элемент периодической системы Д. И. Менделеева под №20. Мягкий серебристо-белый металл блестит, но затем тускнеет под пленкой-оксидом.

Состоит из шести стабильных изотопов, при этом 97% состава приходится на Ca40.

Относится к щелочноземельным металлам.

Международное обозначение – Calcium (Ca).

История

Применение кальциевых минералов – мрамора, гипса, известняка – исчисляется тысячелетиями.

Гипс

Гипс

Чистый металл первым в истории получил британский химик Гемфри Дэви (1808 год). Для этого он применил электролиз к смеси из оксида ртути и мокрой гашеной извести. Получив амальгаму, отделил ртуть.

Он же предложил латинское название элемента: calcis означает мягкий камень, известка.

Физико-химические характеристики

Кальций представлен двумя модификациями кубической решетки: с гране- и объемноцентрированной структурой.

Кальций металл

Металл наделен многими достоинствами: пластичен, режется ножом, обрабатывается прессованием, прокаткой.

Химические свойства проявляются при нагревании:

  • Взаимодействие с горячей водой приводит к образованию водородного «фонтана». Но реакция проходит без взрывов или горения.
  • Взаимодействует с кислотами, неметаллами, образуя соединения.
  • Даже при комнатной температуре во влажном микроклимате покрывается пленкой.

Нагреваясь в кислороде либо на воздухе, кальций, его растворимые соли горят. Пламя получается красно-оранжевым. По цвету его легко отличить от других металлов.

Кальций в атмосфере аргона

Кальций в атмосфере аргона

Химическая активность вещества зашкаливает. Для устранения этого недостатка металл хранят в керосине, растопленном парафине либо закупоренном сосуде.

Уникальные свойства кальция как металла проявляются при усилении давления.

Под давлением он ведет себя как полупроводник, затем как металл, потом подобно сверхпроводнику. По проводимости в разы превосходит все химические элементы (например, ртуть – вшестеро).

Присутствие в природе

Кальций – третий по распространенности в земной коре среди металлов, пятый среди всех элементов. Четвертый по количеству минералов (385).

Однако высокая химическая активность исключает присутствие элемента в свободном виде:

    Это компонент минералов и соединений. Самые распространенные минералы – гипс, кальцит, алебастр, флюорит, апатит, доломит.

Вещество с формулой СаСО3 – обычный мел.

  • Щелочноземельный металл обнаружен в каменных метеоритах – как почти ненаходимые на земле сульфиды.

Тонна земной коры содержит 32,7 кг кальция, литр морской воды – 410 мг.

Из морской воды кальций как строительный материал вытаскивают моллюски, кораллы.

Концентрацией кальция в составе определяется степень жесткости воды.

Технология получения

Конечный продукт промышленного производства – металлический кальций.

Металлический Кальций

Металлический Кальций

Получение металла проходит двумя методами:

  1. Электролиз. Расплавляют CaCl2, задействуя медно-кальциевый анод. Из полученного медно-кальциевого сплава (2:1) отгоняют металл.
  2. Алюминотермия. Прокаливается смесь CaO и порошковый алюминий. Конденсат из кальциевых паров аккумулируется на охлаждаемой поверхности.

Для обоих способов получения металла требуется вакуум и 960-1900°С.

Единственный производитель кальция в Европе – Чепецкий механический завод. Его открыли в 1949 году для нужд отечественной урановой промышленности. Уже тогда СССР отработал процесс восстановления урана кальцием. Сегодняшний ассортимент шире.

Где используется

Утилитарные характеристики металла обусловили сферы применения.

Применение Кальция

Применение Кальция

Промышленность

Львиная доля продукции металлургических комбинатов достается промышленному комплексу.

Здесь миссия кальция многогранна:

  • Восстановление редкоземельных, тугоплавких элементов из соединений. Речь о хроме, никеле, меди, тории, уране.
  • Удаление серы из бензина, керосина, других нефтепродуктов.
  • Раскисление стали и сплавов цветных металлов.
  • Получение антифрикционных сплавов.
  • Очистка электровакуумных приборов от воздуха, других газов.
  • Обезвоживание органических растворителей.

Металл используется при производстве аккумуляторных батарей, подшипников, оболочек кабелей.

Наука

Изотоп Ca-48 – материал с высоким КПД для производства сверхтяжелых элементов.

Кальцием восстанавливают уран.

С его помощью ученые пополняют таблицу Менделеева.

Другие сферы

Кальциевые материалы нашли применение на бытовом уровне:

  • Строительный материал (известняк, гипс, мрамор).
  • Сырье при производстве гипса, включая медицинский.
  • Дезинфектор (хлорка).
  • Мелки для рисования.
  • Аптечные препараты, БАДы (особенно с витамином D).

Эстетично выглядящие образцы (флюорит, кальцинит, мрамор) попадают в минералогические коллекции.

Биологическое влияние

Кальций – важный для биологических организмов макроэлемент (1,6-2,1% по массе): он есть в растениях, организме животных, человека.

Жизненные процессы

Макроэлемент аккумулируется костями и зубами.

Известь (карбонат кальция) – строительный материал ракушек, кораллов, яичной скорлупы, накипи в чайнике.

Вещество задействовано в следующих процессах:

  • Свертывание крови.
  • Сокращение мышц.
  • Секреция гормонов.

Тело человека массой 60 кг содержит полтора килограмма кальция.

Достаточное количество металла критично для детей и подростков: их скелет растет каждую минуту. У младенцев может проявиться рахитичность.

Питание

Макроэлемент поступает в организм во время еды. В детском возрасте продукт номер один – молоко.

Рацион взрослых разнообразнее. Веществом насыщены продукты всех групп:

  • Цельнозерновой хлеб, гречка.
  • Морепродукты, рыба (особенно мягкие кости).
  • Бобовые.
  • Орехи, свежий кунжут.
  • Листовой салат, укроп, петрушка, спаржа.

Всасыванию кальция содействует лактоза, препятствуют кофе, углеводы, пальмовое масло, животные жиры (кроме сала).

Нормы

Суточная потребность в макроэлементе определяется возрастом (г):

Возраст (лет) Количество кальция (мг)
0-6 1490
7-9 750
10-12 (мальчики) 910
10-12 (девочки) 1250
13-19 1250
20-49 1050
49+ 1150-1350

Беременным и кормящим матерям требуется повышенная норма вещества.

Симптомы нехватки/переизбытка

Дефицит металла в организме проявляется многопланово:

  • судороги, онемение конечностей, суставная боль;
  • тахикардия;
  • гипертония;
  • расслоение, ломкость ногтей.

На ментальном плане это депрессия, нервозность.

Хроническая нехватка макроэлемента ведет к хрупкости костей (остеопорозу).

Об избытке макроэлемента сигнализируют отвращение к еде, неутолимая жажда, расстройство ЖКТ (тошнота, рвота), повышенное мочеотделение, слабость.

Избыток вещества опасен: организм «цементируется».

Максимальная суточная доза кальция для взрослых – 2,5 г.

На российском рынке представлена промышленная и аптечная продукция.

Цены на промышленный кальций (руб. / кг):

  • металлический – 450;
  • кусковой (чистота: 99,82%) – 1500;
  • хлористый технический – 47;
  • хлористый пищевой – 95.

Аптечный сегмент представлен отечественной и зарубежной продукцией. Упаковка глюконата кальция (10 таблеток) российского производства стоит 15-25 руб., препарата «Кальций-Д3 Никомед» – 300 – 700 руб.

Щелочные металлы. Химия щелочных металлов и их соединений


Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .


Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.


Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.


Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия


Сильвин KCl — хлорид калия


Сильвинит NaCl · KCl


Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия


Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:


Способы получения

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .


Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K + P = K3P

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например , калий реагирует с водой очень бурно:

2K 0 + H2 + O = 2 K + OH + H2 0


Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирует с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Пероксиды щелочных металлов

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Гидроксиды щелочных металлов (щелочи)

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфор — диспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

Читайте также: