Металл в строительстве это
Металлы — относительно новый материал, применяемый в строительной технике, по сравнению с древесиной, камнем, керамикой.
Металлами называюх._в^хцествах обладающи^ металлическим блеском, высокой прочностью, пластичностью, электро- и теплопроводностью, ковкостью, свариваемостью. Такие^признаки металлов обусловлены их кристаллическим строением и электронными межатомными связями.
Кроме чистых металлов в технике чаще применяют металличе- - ские сплавы.
Сплавы металлов (или металлические сплавы) — это твердые системы, полученные сплавлением нескольких металлов.
В настоящее время в технике используют более 10 тыс. сплавов.
Свойства сплавов обычно резко отличаются от свойств чистых металлов и их можно регулировать.
Металлы и сплавы будем называть единым термином «металлы».
Из имеющих практическую ценность для современной техники металлов в земной коре в значительных количествах содержатся: алюминий— 8,8%, железо— 4,65, магний— 2,1, титан— 6,3%. Сотыми и тысячными долями процента определяются природные запасы меди, марганца, хрома, цинка, свинца, никеля и других ценных металлов.
Металл — один из самых распространенных материалов во всех отраслях промышленности, в том числе и в строительстве. Производство металлов в значительной степени определят уровень технического прогресса в любой стране. Применение их в строительстве разнообразно. Из металла строят каркасы, мосты, фермы, балки перекрытий, резервуары, изготовляют трубы, арматуру для железобетона, водопроводную, отопительную и вентиляционную арматуру, кровельную сталь, металлочерепицу и профнастил, различные металлические изделия, заклепки, болты, гвозди и др.
Широкому использованию металлов в строительстве способствует ряд ценных технических свойств. высокая. прдошзсть^^^ технологичность — способность ^обработки давлеш^ем, резани^му- сварив анием. ^Вместе с тем металлы имеют существенные недостатки: при действии различных газов и влаги сильно коррозируют, действие высоких температур вызывает значительные деформации.
В настоящее время широко используются алюминиевые сплавы, отличающиеся богатой пластикой, малой плотностью, сравнительно высокой прочностью, коррозионной стойкостью и другими ценными свойствами.
Современная техника позволяет окрашивать металлы в любой цвет, придавать различную фактуру^ что позволяет использовать металлические изделия как в городских ансамблях, мемориалах, внешней отделке зданий, так и в интерьерах (чеканки, светильники, бра, подвесные потолки, скульптурные панно, дверная и оконная арматура и т.д.).
Выплавка металла была известна человечеству еще за четыре- пять тысячелетий до нашей эры. В этот период чаще всего выплавляли медь, как наиболее легкоплавкий материал. В Азии из руды получали железо за 2000 лет до н.э., позже в Древнем Вавилоне и Египте железо применяли при постройке пирамид. В Индии, Греции, Риме знали способы литья сложных изделий из бронзы, способы золочения, серебрения.
В Западной Европе и Древней Руси чугун первоначально считали отходом процесса производства железа (об этом говорит его название «чушка»). В конце XIII—XIV в. чугун начали выплавлять как металл для отливки различных изделий и лишь с середины XVIII в. стали широко применять в строительных конструкциях. Чугунная колонна прочно господствовала на протяжении следующего столетия. Промышленное производство относится ко второй половине XIX в. В 1855 г. Г. Бессемер, а в 1864 г. П. Мартен предложили способы получения стали из чугуна. Бурное развитие машинного производства, прогресс техники, освоение железа и стали как новых строительных материалов, новые методы конструирования и расчета — способствовали развитию металлического строительства: осваиваются каркасные системы высотных домов, появляются большие пролеты новых типов общественных зданий, универсальных магазинов, крытых рынков, библиотек, аэропортов, вокзалов и т.п.
Научные основы процессов выплавки и обработки металлов были изложены М.В. Ломоносовым (1763). Основоположником современной металлургии и металловедения считают Д.К. Чернова (1868). Большой вклад в металловедение внесли П.П. Аносов, М.А. Павлов, А.А. Байков, Е.О. Патон, И.П. Бардин и др.
Металлы, применяемые в строительстве, разделяют на две основные группы: черные и цветные.
Черные металлы.^^эд^сплав железа с углеродом. Кроме того, черные металлы могут содержать в небольшом количестве марганец, серу, кремний, фосфор и другие химические элементы. Для улучшения свойств черных металлов к ним добавляют легирующие я ярту/гштаы
В зависимости от содержания в черных металлах углерода их подразделяют на чугун и сталь; на их долю приходится около 95% металлопродукции мирового производства. ,
Чугун — железоуглеродистый сплав, в котором углерода более 2% (2. 4,3%), содержащий постоянные примеси кремния, марганца, фосфора и серы. По назначению чугуны подразделяют ^ литейнъте, передельные и специальные (ферросплавы).
^JJu^s^Hbiu чугун* является конструкционным материалом, из него изготовляют отливки различных строительных деталей.
Передельный^чутун— промежуточный продукт, используемый для переработки в стальГ
Специальное чугуны с более высокими механическими свойствами применяют для изготовления чугунного литья специального назначения.
В зависимости от содержания примесей и формы, в которой углерод находится в чугуне, различают белый (передельный) и серый (литейный) чугуны. Эти названия соответствуют цвету чугуна.
В белом чугуне углерод^шмически связаьпс^^лезом (карбид железа — цементит ). Белый чугун имеет высокую твердость, весьма
В сером чугуне углерод находится в свободном состоянии в виде графита (мелкий и хрупкий компонент). Серый чугун в расплавленном состоянии хорошо «течет», заполняет формы, дает малую усадку при затвердевании, легко поддается механической обработке.
Разновидность серого чугуна — модифицированный. Его получают путем введения в жидкий сплав серого чугуна модификаторов. Этот чугун обладает высокими механическими свойствами.
При длительном отжиге белого чугуна получают ковкий чугун. В отличие от серых ковкие чугуны более прочные и пластичные, легче обрабатываются.
Маркировка чугунов. Серый и модифицированный чугуны маркируют буквами СЧ, например СЧ 120-280. Первая цифра марки показывает, предел прочности при растяжении (МПа), вторая — предел прочности при изгибе (МПа).
Сталь — железоуглеродистый сплав, в котором углерода менее 2%. От хрупкого чугуна сталь отличается пластичностью и упругостью.
По способу производства стали подразделяют на конверторные, мартеновские и электростали, по химическому составу их делят на углеродист
Углеродистые стали содержат примеси серы и фосфора и марганца (0,25. 0,9%). Марганец повышает прочность стали, не изменяя ее пластичности. Кремний (0,35%) не оказывает существенного влияния на свойства стали. Фосфор и сера являются вредными примесями; фосфор делает сталь хрупкой (хладноломкой), его содержание не должно превышать 0,05%; сера (не более 0,07%) вызывает красноломкость, снижает прочность и коррозионную стойкость.
В зависимости от содержания углерода стали делят на малоуглеродистые (до 0,25%), среднеутлеродистые (0,25. 0,6%) и~высокоуг- леродистые (более 0,6%).
Углеродистые стали бывают обыкновенного качества, качественные конструкционные (для ответственных строительных конструкций) и инструментальные (для изготовления деталей машин). ,
Сталь обыкновенного качества, в зависимости от ее свойств, делят на три группы А, Б и В. Углеродистую сталь, полученную различными способами, разделяют на спокойную (СП), полу спокойную (ПС) и кипящую (КП).
Легированньье стали— стали, в состав которых входят легирующие элементыГхром, "никель, вольфрам, титан, медь. Легирующие элементы значительно улучшают свойства сталей: повышается механическая прочность, закаливаемость, коррозионная стойкость.
Марганец увеличивает прочность, твердость и сопротивление стали износу; кремний и хром повышают прочность и жаростойкость; медь — стойкость к атмосферной коррозии; никель — вязкость без снижения прочности.
По суммарному содержанию добавок стали разделяют на низколегированные (до 2,5%), средне легированные (2,5. 10%) и высоколегированные (более 10%). В строительстве чаще используют низколегированные стали.
Маркировка сталей. Стали для строительных конструкций маркируют условными обозначениями. Марку углеродистой стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 7. Качественные конструкционные стали маркируют двузначными цифрами^ указывающими на содержание углерода в сотых долях процента (сталь 15— углерода 0,15%; сталь 40 — углерода 0,40%). Например, СтЗкп — сталь обыкновенного качества группы А, марка 3, кипящая; Ст5пс — сталь обыкновенного качества группы А, марка 5, полу стойкая. ,
В обозначение низколегированных сталей входят буквы и цифры. Буквы указывают наличие в стали легирующих добавок, цифры — их среднее содержание в процентах. Предшествующие буквам цифры показывают содержание углерода в сотых долях процента.
Каждый легирующий элемент: обозначается определенной буквой: кремний — С; марганец — Г; xpojM — X; никель -— Н; вольфрам — В; кобальт — К; медь — Д. Если после легирующего элемента нет цифры, то это означает, что содержание легирующего элемента не превышает 1,0%.
Например, сталь кремнемарганцевая 25Г2С содержит углерода 0,25%, марганца 2%, кремния до 1%; сталь хромокремнемарганцевая 14 ХГС содержит углерода 0,14%, хрома, марганца и кремния до 1%. При маркировке высококачественной легированной стали (с низким содержанием .серы и фосфора) в конце ставится буква А, особо высококачественной — буква Ш.
Например, 30 ХМА — молибден-хромовая сталь высокого качества содержит 0,3% углерода, до 1% хрома и молибдена.
В табл. 6.1 приведены механические свойства углеродистой стали.
|
Цветные металлы. Подразделяются на легкие плотностью до 5 г/см 3 и тяжелые плотностью свыше 5 г/см 3 . В чистом виде цветные металлы практически не используют, чаще применяют их сплавы.
Легкие металлы — это алюминий, магний и их сплавы. Наи- V
большее распространение получили алюминиево-кремнеземистыё, \ алюминиево-магниевые и сплавы типа дюралюминия и силумин.
Тяжелые металлы — медь и ее сплавы, цинк, свинец. Среди тяжелых сплавов применяют бронзу (сплав меди с оловом) и латунь (сплав меди с цинком).
Металл в строительстве: от меди до стали
Периодическая система элементов Менделеева насчитывает 82 металла, многие из которых, благодаря своим уникальным свойствам, находят применение в строительстве. Но если когда-то металл использовался, в основном, для изготовления кровельных покрытий и отдельных элементов крепежа, то по мере развития технологий его значимость для стройиндустрии становится все выше. Например, можно смело утверждать, что сегодня стальные конструкции являются основой любой капитальной постройки. Совершив небольшой экскурс, можно проследить эволюцию металла в строительстве.
Исторический экскурс
Это очень прочный металл, благодаря формированию голубовато-зелёной патины слабо подверженный коррозии, а потому способный служить долго. В качестве кровельного материала листовую медь использовали потому, что она легче деревянной черепицы и уж тем более — глиняной черепицы или свинца. Немаловажно также и то, что медь достаточно легко гнётся, что позволяло использовать ее для облицовки куполов и других фигурных элементов, которыми обычно украшали кровли культовых построек.
Помимо кровли медь издавна используется ещё и в декоративных целях, а также как материал для создания памятников и монументов. В частности, именно она послужила основным материалом для Статуи Свободы. Медные сплавы, широко используемые в архитектуре — это бронза (сплав меди и олова) и латунь (сплав меди и цинка).
К недостаткам меди можно отнести её крайне высокую стоимость, которая растёт год от года, а также свойство со временем терять свой первозданный яркий цвет и характерный блеск: покрываясь патиной, медь стремительно тускнеет и приобретает характерный зелёный оттенок.
Забегая немного вперёд, можно отметить, что решение «медной проблемы» в наши дни найдено: натуральный металл сегодня всё чаще заменяют достоверной имитацией из стали с полимерным покрытием, о которой пойдет речь чуть позже. Например, сталь с двусторонним покрытием Agneta, в точности имитирующим цвет и блеск меди благодаря включённым в состав красителя микросферам, втрое дешевле своего прообраза, но при этом не теряет внешней привлекательности в течение всего срока эксплуатации.
Свинец — ещё один «долгожитель» строительной отрасли. Его широчайшее применение в прошлом было обусловлено прежде всего низкой температурой плавления. Вплоть до конца XIX века из свинца изготавливали водопроводные трубы, пока не стало известно, что это негативно отражается на здоровье людей. Как и медь, свинец на протяжении многих веков был популярным кровельным материалом и одновременно использовался для изготовления водосточных желобов, труб и дымоходов. Правда, из-за своего большого веса свинец лучше всего подходил для низкоскатных крыш, поскольку с крутых со временем неизбежно начинал сползать. Кроме того, свинцовые кровли были не в фаворе в регионах с большими перепадами температур, поскольку быстро приходили в негодность из-за существенных температурных деформаций, которым подвержен этот металл.
Ещё одна ипостась свинца — изготовление красок на его основе: сурик (красный) применялся как антикоррозионный пигмент для железа, а свинцовые белила — для покраски деревянных домов. Эти краски считались одними из самых стойких и долговечных и всегда использовались в качестве защитных покрытий. Однако со временем их применение было приостановлено в связи с распространением случаев отравления свинцом.
Терн, или «тернплате» — ещё один материал, вошедший в строительный обиход начиная с XIX века. Это были стальные или железные листы, покрытые свинцово-оловянным сплавом, которые часто путали с белой жестью.
Олово само по себе в чистом виде никогда не применялось в архитектуре. Обычно его использовали в сплавах, например, с медью для образования бронзы, а также для покрытия более жёстких металлов, например, лужёного железа или стали: при покрытии листового железа оловом как раз и получалась жесть. Из неё обычно делали броню, но иногда использовали и как кровельное покрытие. В конце XIX века в моде были потолки из рельефной металлической плитки, называвшиеся «оловянными», хотя на самом деле они чаще всего изготовлялись из крашеного листового железа или стали.
Никель находится в сходном положении с оловом: он периодически использовался в качестве гальванического покрытия архитектурных деталей. А вот в создании сплавов никель занимает, пожалуй, лидирующее место на фоне остальных металлов. Благодаря ему мы имеем нейзильбер, монель-металл и нержавеющую сталь. Вплоть до Первой мировой войны нейзильбер называли «немецким серебром», но затем он стал более известен как «белая латунь», хотя правильнее было бы именовать его «никелевой латунью», так как в классическом варианте этот сплав состоит из 75% меди, 20% никеля и 5% цинка. Разное процентное соотношение даёт разные цвета: серебристо-белый, жёлтый, голубоватый, зелёный или розовый. Изделия из нейзильбера были неизменными атрибутами стиля арт-деко.
Монель-металл представляет собой сплав из двух третей никеля и трети меди, а по цвету он похож на платину. Определённым показателем его успешности можно считать тот факт, что в 1936 году медная кровля Нью-Йоркской городской публичной библиотеки на пересечении Пятой авеню и 42-й улицы была заменена на монельную. Удобство работы с монель-металлом заключалось в том, что его можно было варить и паять прямо на месте строительных работ, что позволяло создать сплошную водонепроницаемую поверхность кровли. Во время Второй мировой войны большое количество никеля и меди шло на военные нужды, в связи с чем производство монеля значительно сократилось. А после войны ему на смену пришли нержавеющая сталь и алюминий, имеющие более низкую себестоимость.
Цинк в чистом виде использовался как кровельное покрытие в Бельгии, Франции и Германии, где он заменил более дорогие медь и свинец. Начиная с 1820-х годов бельгийский цинковый лист стали импортировать в Америку. Что касается антикоррозионного цинкования, то эта технология была запатентована в 1837 году независимо друг от друга Сорелем во Франции и Крауфордом в Англии. Метод представлял собой процесс «горячего погружения» с целью покрытия железа цинком. Новинка довольно быстро перебралась за океан: Торговая биржа на Манхеттене стала одним из первых зданий, имевших оцинкованную крышу и водостоки.
Свою нишу цинк занял также в области изготовления декоративных элементов благодаря пластичности и приемлемой цене, дававшими ему преимущества по сравнению с камнем. Изделия из цинка легко поддавались покраске, что позволяло имитировать более дорогие металлы. Кстати о красках: в отличие от свинца. краски на основе цинка не токсичны и устойчивы к загрязнению. Они имели коммерческий успех, начиная с 1850-х, а в 1870-х начали использоваться повсеместно. Дополнительным преимуществом было то, что цинковые красители являлись хорошими ингибиторами ржавчины на железе и стали.
Алюминий был недоступен по разумной цене и в достаточных количествах вплоть до начала XX века. Затем он постепенно стал входить в архитектуру, правда, сначала только как материал для изготовления декоративных элементов. Первым громким выходом алюминия на большую строительную арену следует считать Эмпайр Стейт Билдинг, строительство которого было завершено в 1931 году. На долю алюминия пришлась значительная часть элементов отделки небоскрёба, таких как декоративные панно, входной комплекс, двери лифта. Кроме того, наряду со сталью алюминий был использован в несущих конструкциях здания и для облицовки его фасада.
К недостаткам алюминия следует отнести небольшую жесткость (втрое меньше, чем у стали), высокую теплопроводность и низкую температуру плавления (примерно 660°C). Первое свойство заставляет увеличивать площадь сечения алюминиевых конструкций, а в сочетании со вторым делает их источником теплопотерь здания. Например, вентилируемые фасады на алюминиевой подконструкции существенно уступают стальным по показателям теплоизоляции, не давая при этом существенного выигрыша в весе. Третье свойство негативно отражается на пожарной безопасности построек.
Король среди стройматериалов
Железо в архитектуре встречается в четырёх широко распространённых формах: кованое железо, чугун, листовое железо и сталь. «Чугун был главным строительным материалом XIX века — века промышленной революции. Он часто использовался для конструктивных решений: например, для изготовления колонн, фасадов или куполов. Также из чугуна делали лестницы, лифты, решётки, веранды, балконы, перила, заборы, фонари и даже надгробья», — рассказывает архитектор Анисия Борознова. На сегодняшний день чугун используется в основном для изготовления труб и сантехнической арматуры, хотя иногда к его помощи прибегают с целью подражания стилю прежних эпох.
Наиболее подробно имеет смысл говорить о стали. Именно появление конструкционной стали в середине XIX века сделало возможным строительство высотных зданий. Произошло это благодаря исследованиям английского изобретателя Генри Бессемера, пришедшего к идее передела жидкого чугуна в литую сталь путём продувки сквозь него сжатого воздуха. Чуть позже была разработана мартеновская печь, которая позволила ускорить процесс и снизить себестоимость получаемого материала. Мосты, железнодорожные комплексы и небоскрёбы были первыми крупномасштабными объектами из конструкционной стали.
Ещё один материал, выведший строительные технологии на новый уровень, был разработан также в конце XIX века. Добавление стальной проволоки в бетон дало рождение железобетону, который вряд ли нуждается в специальном представлении.
В начале XX века появились нержавеющие стали с различными примесями, и их главным достоинством стала устойчивость к коррозии. Одним из памятников этой эпохи является здание корпорации Chrysler, построенное по проекту архитектора Уильяма Ван Элена и признанное самым красивым небоскрёбом Нью-Йорка.
Сегодня практически все капитальные здания построены либо из железобетонных, либо на стальном несущем каркасе. Последнее относится и к так называемым быстровозводимым зданиями, которые практически полностью вытеснили сегодня любые другие строительные технологии из коммерческого и промышленного строительства.
Следующим значимым этапом в развитии строительных технологий стало появление системы навесных вентилируемых фасадов (НВФ) в 40-х годах XX века в странах Скандинавии и затем распространившееся оттуда в Европу и Америку. Подконструкция вентфасадов чаще всего изготовлялась из стали, чуть реже — из алюминия (о недостатках этого решения мы уже говорили). Затем на неё крепилась облицовка, а на несущую стену под ней — утеплитель, с соблюдением обязательного воздушного зазора.
На первых порах в качестве облицовочных материалов использовали всё подряд, особенно когда дело касалось бюджетного частного домостроения. Со временем доминирующие позиции на рынке фасадных облицовок начали занимать дешевый керамогранит и легкие алюминиевые композитные панели. Однако помимо очевидных преимуществ эти решения имеют и серьезные недостатки.
Так, керамогранитные фасадные плитки массивны, хрупки, и при всем этом отличаются самым ненадежным среди всех облицовочных материалов способом крепления — на кляммеры (защелки). Любое нарушение технологии монтажа, особенно на высотных зданиях, может сделать керамогранитный фасад небезопасным, а целесообразность его использования в сейсмоопасных районах опровергается повседневной практикой.
Что касается композитных панелей, то выбирать их нужно с осторожностью, потому что не любой их тип соответствует требованиям пожарной безопасности для жилищного и гражданского строительства.
Однако с появлением и развитием технологии полимерного покрытия листовой стали популярным до последнего времени фасадным решениям появилась достойная альтернатива: стальные облицовки доказали своё явное преимущество перед другими решениями и начали постепенно вытеснять их с рынка. Технологичность, простота монтажа, энергоэффективность и долговечность НВФ со стальной облицовкой в сочетании с привлекательным внешним видом и множеством цветовых вариаций пленили сердца архитекторов и строителей.
Иногда в адрес стальных облицовок можно услышать нарекания. Например, экономичные варианты, такие как линеарные панели, ввиду небольшой толщины металла и упрощённой технологии формования не обеспечивают безупречной геометрии фасадных элементов, а потому не очень подходят для серьёзного городского строительства. Относящиеся же к среднему ценовому сегменту фасадные кассеты, лишённые означенных недостатков, не всегда вписываются в имеющийся бюджет, например, в рамках муниципальных программ реконструкции жилых зданий.
Любопытно отметить небольшую лексическую трансформацию, которая происходит прямо у нас на глазах. Слово «металл» всё чаще используется как синоним «стали», ведь это именно её по праву можно назвать металлом нового времени. Из стали стало возможным создать любой элемент здания: фундамент, несущие конструкции, облицовку, кровлю, декор, мебель. Если провозгласить металл королём среди стройматериалов, то его корона наверняка будет сделана из стали.
XII Международная студенческая научная конференция Студенческий научный форум - 2020
Актуальность темы. Металлы (от латинского metallum-шахта, рудник) – это группа элементов, которая обладает характерными металлическими свойствами, такими как: высокое тепло и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск [1, с.30]. Они занимают существенное место среди современных материалов. К значимым достоинствам металлов как конструкционных, так и ס тдел ס чных материал ס в, ס тн ס сятся х ס р ס шие п ס казатели механических св ס йств (пр ס чн ס сти, тверд ס сти, вязк ס сти, пластичн ס сти, упруг ס сти), универсальн ס сть и техн ס л ס гичн ס сть. Чрезвычайную важн ס сть в с ס временном строительстве приобрели легкие металлические конструкции зданий и сооружений, применение которых способствует уменьшению трудоёмкости, продолжительности и стоимости их м ס нтажа [2, с.129].
Классификация металлов. Обычн ס в стр ס ительстве применяют не чистые металлы, а сплавы. Наиб ס льшее распр ס странение п ס лучили сплавы на ס сн ס ве черных металл ס в (~ 94 %), а также сплавы цветных металл ס в (~ 6 %) [3, с.288]. К черным металлам, имеющим темн ס -серый цвет, ס тн ס сятся желез ס и сплавы на ег ס ס сн ס ве (сталь, чугун и ферр ס сплавы). Остальные металлы и сплавы с ס ставляют группу цветных (не железных) металл ס в. Чистые металлы применяются редк ס в любых пр ס мышленных ס бластях. Для изменения св ס йств металл ס в их плавят с другими элементами. Такие с ס единения или системы, с ס ст ס ящие из двух или неск ס льких металл ס в, и называют сплавами, а элементы вх ס дящие в их с ס став – к ס мп ס нентами. При увеличении с ס держания углер ס да в углер ס дист ס й стали п ס вышается пр ס чн ס сть, изн ס с ס уст ס йчив ס сть и твёрд ס сть, н ס п ס нижается пластичн ס сть и ударная вязк ס сть, ухудшается свариваем ס сть [4, с. 324]. Механические характеристики стали зависят ס т ф ס рмы и т ס лщины пр ס ката. Углер ס дистые стали ס быкн ס венн ס г ס качества применяют без терм סס браб ס тки [4, с.318]. Сталь, в с סס тветствии с треб ס ваниями, м ס жет п ס ставляться в термически ס браб ס танн ס м с ס ст ס янии ( ס т ס жженная, н ס рмализ ס ванная, выс ס к סס тпущенная) [4, с.327]. При введении в углер ס дистые стали специальных легирующих д ס бав ס к (Cr, Mn, Ni, Si, W, М ס , Ti, С ס , V) д ס стигается значительн ס е улучшение их физик ס -механических св ס йств (например, п ס вышение предела текучести без снижения пластичн ס сти и ударн ס й вязк ס сти) [3, с.293]. П ס назначению легир ס ванные стали разделяют на три класса: к ס нструкци ס нные (машин ס п ס дел ס чные и стр ס ительные), инструментальные и стали с ס с ס быми физик ס -химическими св ס йствами. Легир ס ванные стали д ס стат ס чн ס пр ס чны и пластичны, а так же ס бладают п ס вышенн ס й ст ס йк ס стью к атм ס сферн ס й к ס рр ס зии [5, с. 163].
Строение металлов. Металлы – эт ס кристаллические тела с зак ס н ס мерным расп ס л ס жением ат ס м ס в в узлах пр ס странственн ס й решетки, к ס т ס рые с ס ст ס ят из ряда кристаллических пл ס ск ס стей, расп ס л ס женных на расст ס янии неск ס льких нан ס метр ס в друг ס т друга. Ат ס мы металл ס в характеризуются малым к ס личеств ס м электр ס н ס в (1, 2, реже 3) на наружн ס й ס б ס л ס чке, легк ס ס тдают их, чт ס п ס дтверждается выс ס к ס й электр ס пр ס в ס дн ס стью [6, с.298]. Черные металлы имеют пр ס стые кубические ячейки решет ס к двух вид ס в: а) центрир ס ванныйили ס бъемн ס -центрир ס ванныйкуб (9 ат ס м ס в в ячейке), ס бъем шар ס в занимает 68 %; б) гранецентрир ס ванный или куб с центрир ס ванными гранями (14 ат ס м ס в), ס бъем шар ס в занимает 74 %. Нек ס т ס рые цветные металлы и их сплавы имеют гексаг ס нальную решетку [2, с.169]. Желез ס , ס л ס в ס , титан, а так же другие металлы ס бладают св ס йствами алл ס тр ס пии, чт ס ס значает сп ס с ס бн ס сть ס дн ס г ס и т ס г ס же химическ ס г ס элемента при разн ס й температуре иметь различную кристаллическую структуру. Алл ס тр ס пические превращения металл ס в с ס пр ס в ס ждаются выделением или п ס гл ס щением тепл ס ты [7, с.325]. Все металлы нах ס дятся в твёрд ס м с ס ст ס янии д ס ס пределённ ס й температуры. К ס гда металл нагревают, т ס амплитуда к ס лебаний ат ס м ס в д ס стигает нек ס т ס р ס й критическ ס й величины. Пр ס исх ס дит разрушение кристаллическ ס й решетки и перех ס д металл ס в из тверд ס г ס с ס ст ס яния в жидк ס е [3, с.324]. В усл ס виях несв ס б ס дн ס й кристаллизации ס бразующиеся кристаллы п ס лучают неправильную ф ס рму и ס чертания, их называют кристаллитами или зернами. Величина зерен ס казывает существенн ס е влияние на механические св ס йства металл ס в: чем меньше зёрна, тем пр ס чнее металл. В цел ס м металлы и сплавы м ס жн ס считать усл ס вн ס «из ס тр ס пными телами» [7, с.326].
Свойства металлов. Химические св ס йства.В с סס тветствии с мест ס м, занимаемым в пери ס дическ ס й системе элемент ס в, различают металлы главных и п ס б ס чных п ס дгрупп. Металлы главных п ס дгрупп с ס ставляют п ס дгруппу «а». Ат ס мы металл ס в п ס б ס чных п ס дгрупп (п ס дгрупп «б») называются перех ס дными. В п ס дгруппу «а» вх ס дят 22 металла из пери ס дическ ס й системы. В п ס дгруппы «б» вх ס дят: 1) 33 перех ס дных металла d-п ס дгрупп; 2) 28 металл ס в f-п ס дгрупп (14 лантан ס ид ס в и 14 актин ס ид ס в). Электр ס нная структура ат ס м ס в нек ס т ס рых d-элемент ס в (1 и 6 группы п ס б ס чн ס й п ס дгруппы) имеет нек ס т ס рую ס с ס бенн ס сть в т ס м, чт ס ס дин из электр ס н ס в внешнег ס ур ס вня перех ס дит на d-п ס дур ס вень предп ס следнег ס ур ס вня, д ס страивая эт ס т п ס дур ס вень д ס уст ס йчив ס г ס с ס ст ס яния из 5 или 10 электр ס н ס в [8, с.89]. Если расп ס л ס жить металлы в п ס след ס вательн ס сти их электр ס дных п ס тенциал ס в, т ס п ס лучим так называемый ряд напряжений, или ряд активн ס стей. Рассм ס трение эт ס г ס ряда п ס казывает, чт ס п ס мере приближения к ег ס к ס нцу: ס т щел ס чных и щёл ס чн ס земельных металлам к Pt и Аu – пр ס исх ס дит уменьшение ס трицательн ס г ס значения п ס тенциал ס в. Металлы ס т Li п ס Na вытесняют Н2 из Н2О на х ס л ס де, а ס т Mg п ס Тl – при нагревании. Б ס льшинств ס металл ס в, ст ס ящих в ряду напряжений левее Н2, вытесняют ег ס из разбавленных кисл ס т (на х ס л ס де или при нагревании). Металлы, ст ס ящие правее Н2, раств ס ряются т ס льк ס в кисл ס тах-" ס кислителях"(к ס нцентрир ס ванная H2SO4 при нагревании или HNO3), a Pt и Аи – т ס льк ס в "царск ס й в ס дке" (Ir не раств ס рим и в ней) [7, с.283].
Металлы ס т Li п ס Na легк ס реагируют с О2 на х ס л ס де; п ס следующие члены ряда с ס единяются с О2 т ס льк ס при нагревании, a Ir, Pt, А u в прям ס е взаим ס действие с О2 не вступают. О пр ס чн ס сти с ס единений металл ס в с кисл ס р ס д ס м (и др. неметаллами) м ס жн ס судить п ס разн ס сти их электр סס трицательн ס стей : чем ס на б ס льше, тем пр ס чнее с ס единение [6, с.133].
Физические св ס йства.Б ס льш ס е к ס личеств ס металл ס в кристаллизуется в пр ס стых структурах - кубических и гексаг ס нальных, с סס тветствующих наиб ס лее пл ס тн ס й упак ס вке ат ס м ס в. Лишь неб ס льш ס е к ס личеств ס металл ס в имеет б ס лее сл ס жные типы кристаллических решёт ס к. Мн ס гие металлы в зависим ס сти ס т внешних усл ס вий (температуры, давления) м ס гут существ ס вать в виде двух или б ס лее кристаллических м ס дификаций [4, с.258]. Характерным св ס йств ס м металл ס в как пр ס в ס дник ס в электрическ ס г ס т ס ка является линейная зависим ס сть между пл ס тн ס стью т ס ка и напряжённ ס стью прил ס женн ס г ס электрическ ס г ס п ס ля. Н ס сителями т ס ка в металлах являются электр ס ны пр ס в ס дим ס сти, ס бладающие выс ס к ס й п ס движн ס стью. Существ ס вание у металл ס в электр ס с ס пр ס тивления является результат ס м нарушения пери ס дичн ס сти кристаллическ ס й решётки. Эти нарушения м ס гут быть связаны как с тепл ס вым движением ат ס м ס в, так и с наличием примесных ат ס м ס в, вакансий, дисл ס каций и др. дефект ס в в кристаллах. На тепл ס вых к ס лебаниях и дефектах пр ס исх ס дит рассеяние электр ס н ס в. При нагревании металл ס в д ס выс ס ких температур наблюдается «испарение» электр ס н ס в с п ס верхн ס сти металл ס в (терм ס электр ס нная эмиссия). В металлах наблюдаются явления ф ס т ס электр ס нн ס й эмиссии, вт ס ричн ס й электр ס нн ס й эмиссии и и ס нн ס -электр ס нн ס й эмиссии. Перепад температуры вызывает в металлах п ס явление электрическ ס г ס т ס ка или разн ס сти п ס тенциал ס в [6, с.311].
Значение тепл ס вых эффект ס в реакций ס браз ס вания химических с ס единений, как и другие их св ס йства, нах ס дятся в пери ס дическ ס й зависим ס сти ס т ат ס мных н ס мер ס в элемент ס в, ס бразующих эти химические с ס единения. Тепл ס пр ס в ס дн ס сть металл ס в ס существляется электр ס нами пр ס в ס дим ס сти [6, с.348].
Магнитные св ס йства. Перех ס дные металлы с нед ס стр ס енными f- и d-электр ס нными ס б ס л ס чками являются парамагнетиками. Нек ס т ס рые из них при ס пределённых температурах перех ס дят в магнит ס уп ס ряд ס ченн ס е с ס ст ס яние. Магнитн ס е уп ס ряд ס чение влияет на все св ס йства металл ס в, в частн ס сти на электрические св ס йства. Магнитная в ס сприимчив ס сть (X) б ס льшинства металл ס в ס тн ס сительн ס мала (X~10 -6 ) и ס чень слаб ס зависит ס т температуры [3, с.348].
Механические св ס йства. Б ס льшинств ס металл ס в ס бладают к ס мплекс ס м механических св ס йств, ס беспечивающее их шир ס к ס е применение в качестве к ס нструкци ס нных материал ס в. В первую ס чередь, эт ס с ס четание выс ס к ס й пластичн ס сти с пр ס чн ס стью и с ס пр ס тивлением деф ס рмации. Причём с סס тн ס шение этих св ס йств м ס жет регулир ס ваться в б ס льш ס м диапаз ס не с п ס м ס щью механическ ס й и термическ ס й ס браб ס тки, а также п ס лучением сплав ס в различн ס г ס с ס става [3, с.325].
Применение металлов в строительстве. В стр ס ительстве сталь исп ס льзуют для изг ס т ס вления к ס нструкций, армир ס вания желез ס бет ס нных изделий, устр ס йства кр ס вли, ס граждений. Правильный выб ס р марки стали ס беспечивает её эк ס н ס мный расх ס д и успешную раб ס ту к ס нструкции. Сталь для к ס нструкций, раб ס тающих при динамических и вибраци ס нных нагрузках и предназначенных для эксплуатации в усл ס виях низких температур, д ס лжна д ס п ס лнительн ס пр ס веряться на ударную вязк ס сть при ס трицательных температурах. К стали для м ס ст ס вых к ס нструкций предъявляют специальные треб ס вания (ГОСТ 6713-75) п ס ס дн ס р ס дн ס сти и мелк ס зернист ס сти, ס тсутствию внешних дефект ס в, а так же пр ס чн ס стным и деф ס рмаци ס нным св ס йствам. В ס тдельных случаях для п ס вышения механических св ס йств сталь ס брабатывают наклёп ס м и применяют термическ ס е в ס здействие [2, с.227].
Чугуны - желез ס углер ס дистые сплавы, с ס держащие б ס лее 2 % углер ס да. Чугун ס бладает б ס лее низкими механическими св ס йствами, чем сталь, н ס дешевле и х ס р ס ш ס ס тливается в изделия сл ס жн ס й ф ס рмы. Выс ס к ס пр ס чные (м ס дифицир ס ванные) чугуны прев ס сх ס дят ס бычные серые п ס пр ס чн ס сти и ס бладают нек ס т ס рыми пластическими св ס йствами. Их применяют для ס тлива ס тветственных деталей [4, с.234].
Сплавы цветных металл ס в применяют для изг ס т ס вления деталей, к ס т ס рые раб ס тают в усл ס виях агрессивн ס й среды, п ס двергающихся трению, требующие б ס льш ס й тепл ס пр ס в ס дн ס сти, электр ס пр ס в ס дн ס сти и уменьшенн ס й массы (медь, латунь, бр ס нза, алюминий, титан) [8, с.382]. Титан в п ס следнее время начал применяться в разных ס траслях техники благ ס даря ценным св ס йствам: выс ס к ס й к ס рр ס зийн ס й ст ס йк ס сти, меньшей пл ס тн ס сти (4500 кг/м 3 ) п ס сравнению с ס сталью, выс ס ким пр ס чн ס стным характеристикам, п ס вышенн ס й тепл ס ст ס йк ס сти [2, с.158].
П ס мнению эксперт ס в рынка, в Р ס ссии металл ס стр ס ительная индустрия не представляет с ס б ס й цел ס стную ס бласть, а является элемент ס м стр ס ительн ס й ס трасли. Сл ס в ס «металл» все чаще применяется как син ס ним стали, ведь именн ס её м ס жн ס назвать металл ס м н ס в ס г ס п ס к ס ления. Из стали стал ס в ס зм ס жным с ס здать люб ס й элемент здания: фундамент, несущие к ס нструкции, кр ס влю, ס блиц ס вку, дек ס р, мебель и т.д. В т ס же время в стр ס ительстве применяются цветные металлы и неметаллы. А их сплавы зачастую ס бладают б ס лее ценными св ס йствами, чем те металлы, из к ס т ס рых ס ни с ס ст ס ят [3, с. 247].
Спис ס к литературы:
1. Гранаткин К.А. Пластичность металлов и сплавов с особыми свойствами / Цветные металлы. – 2011. – №3. – С. 29-30..
2. Горчаков Г. И., Баженов Ю. М. Строительные материалы. – М.: Стройиздат, 2010.
3. Бобылев А.В. Механические и технологические свойства металлов. Справочник. – М.: Металлургия, 2010.
4. Гуляев А. П. Металловедение. – М.: Металлургия, 2006.
5. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справочник. – М.: Металлургия, 2009.
6. Воробьев В.А., Комар А.Г. Строительные материалы. – М.: Изд-во Вита Пресс, 2008.
7. Солнцева Ю.П. Металловедение и технология металлов. – М.: Металлургия, 2010.
8. Бочвар А. А. Физика и химия обработки материалов / Национальная металлургия. – 2011. - №6. – С. 85-89.
Презентация на тему "Металлические строительные материалы"
ОГБПОУ « Костромской политехнический колледж» по теме 1.2: «Строительные материалы и изделия» Тема: «Металлические строительные материалы» Преподаватель Соловьева Г.В.
Изделия из металлов занимают важное место в нашей жизни, как в повседневном быту так и в строительстве.
К металлам относится группа химических элементов, материалы из которых отличаются твердостью, пластичностью(ковкостью), хорошей электро- и теплопроводностью,непрозрачностью и характерным блеском. Строительные материалы и изделия из металлов, одни из важнейших в современной архитектуре, применяются как конструкционные, конструкционно-отделочные и отделочные, обеспечивая высокие прочность и надежность конструкций, втом числе большепролетных и высотных. Металлы, применяемые в строительстве, разделяют на две основные группы: черные и цветные.Черные - сплав железа с углеродом-чугун и сталь.Цветные металлы – алюминий, медь, цинк, свинец, олово, никель, титан, вольфрам, ванадий.
Основы производства Основным сырьевым компонентом для получения металлов являются рудные горные породы. Наиболее часто используют красный, магнитный, бурый и шпатовый железняк.
Чёрные металлы: 1) Чугун – железоуглеродистый сплав с содержанием углерода от 2% до 6,67%. В зависимости от характера металлической основы он делится на четыре группы: Серый, белый, высокопрочный и ковкий. Серый чугун – содержит 2,4…3,8% углерода. Он хорошо поддаётся обработке, имеет повышенную хрупкость. Его используют для литья изделий, неподвергающихся ударным воздействиям. Белый чугун – содержит 2,8…3,6% углерода, обладает высокой твёрдостью, однако он хрупок, не поддаётся обработке, имеет ограниченное применение. Высокопрочный чугун получают присадкой в жидкий чугун магния 0,03…0,04% он имеет тот же химический состав что и серый чугун. Он имеет наиболее высокие прочностные свойства. Его применяют для отливки корпусов насосов, вентилей. Ковкий чугун – получают длительным нагревом при высоких температурах отливок из белого чугуна. Он содержит 2,5…3,0% углерода. Его применяют для изготовления тонкостенных деталей (гайки, скобы…). В водохозяйственном строительстве применяют чугунные плиты – для облицовки поверхностей гидротехнических сооружений, подвергающихся истиранию наносами, чугунные водопроводные задвижки, трубы. 2) Стали – получают в результате переработки белого чугуна в мартеновских печах. С увеличением в сталях содержания углерода повышается их твёрдость ихрупкость, в то же время понижается пластичность и ударная вязкость. Механические и физические свойства сталей значительно улучшаются при добавлении в них легирующих элементов (никеля, хрома, вольфрама). В зависимости от содержания легирующих компонентов стали делятся на четыре группы: (1)углеродистые (легирующие элементы отсутствуют),(2)низколегированные (до 2,5% легирующих компонентов),(3)среднелегированные (2,5…10% легирующих компонентов), (4)высоколегированные (более 10% легирующих компонентов). Углеродистые стали в зависимости от содержания углерода подразделяют на низкоуглеродистую (углероды до 0,15%), среднеуглеродистую (0,25…0,6%) и высокоуглеродистую (0,6…2,0%).
Основные технологические операции при производстве металлических строительных материалов: обработка сырья, плавка, формование.
Основные способы производства стали – кислородно-конвертерный, мартеновский и электроплавильный.
Металлические строительные материалы и изделия определенного профиля получают на стадии формования. В процессе литья из расплавленного металла получают отливки, соответствующие по форме и размерам литейным формам. Способом проката получают значительную часть строительных материалов из стали , листы и проволоку из цветных металлов. Штамповкой и прессованием получают рельефные облицовочные материалы, элементы оборудования. Способом формования под давлением (экструдирования) изготовляют профильные материалы и трубы из цветных металлов.
К цветным металлам и сплавам относят алюминий, медь и их сплавы (с цинком, оловом, свинцом, магнием), цинк, свинец. В строительстве используют лёгкие сплавы – на основе алюминия или магния, и тяжёлые сплавы - на основе меди, олова, цинка, свинца. а) Медь – это тяжёлый цветной металл (плотностью 8,9г/см3), мягкий и пластичный с высокой тепло- и электропроводностью. В чистом виде медь используют в электрических проводах. Цветные металлы:
б) Сплав меди с оловом, алюминием, марганцем или никелем называют бронзой. Бронза – это коррозионно-стойкий металл, обладающий высокими механическими свойствами. Применяют её для изготовления санитарно-технической арматуры.
в)Сплав меди с цинком (до 40%) называют латунью. Она обладает высокими механическими свойствами и коррозионной стойкостью, хорошо поддаётся горячей и холодной обработке. Её применяют в виде изделий, листов, проволоки, труб.
Номенклатура Строительные материалы из чугуна – опорные части колонн , тюбинги – укрепляющие своды тоннелей, трубы, радиаторы, санитарно - технические. Перечень материалов ограничен, так как чугун обладает высокой плотностью и хрупкостью. Наиболее распространены в строительстве материалы из стали. Номенклатура стальных строительных материалов включает различные профили, листы, трубы, арматуру для бетона, закладные детали для перемещения и соединения путем сварки отдельных элементов конструкций (монтажные петли, пластины и др.).
Профили применяют различного сечения, их вид связывают со способом получения. В массовом количестве используют профили, полученные способом проката . Сложные стальные профили получают способами непрерывного литья и прессования.
Фактура лицевой поверхности металлов может быть рельефной, шероховатой, гладкой, матовой или зеркальной.
Перечень прокатных материалов с указанием размеров называется сортаментом проката, который делят на три группы: сортовой прокат – конечную продукцию горячей прокатки металла сплошного поперечного сечения, листовой прокат и трубы.
Листовую сталь выпускают толщиной до 60 мм; тонколистовую кровельную и оцинкованную сталь – толщиной 0,4 – 0,8. Листовая сталь может изготовляться плоской, волнистой и с рифленой поверхностью.
Арматура из стали для железобетонных изделий подразделяется на стержневую и проволочную, из которой производят пряди, канаты, сетки и каркасы . Учитывая, что арматуру располагают в тех местах бетона, которые подвергаются изгибающим и растягивающим усилиям, ее изготовляют из достаточно прочной стали, предварительно подвергнутой механической или термической обработке.
обеспечивают высокую прочность и надёжность конструкций, в том числе высотных и большепролётных
Свойства Эксплуатационно – технические Определяются их оригинальным строением. Технические металлы и сплавы представляют собой поликристаллические тела, т.е. тела, состоящие из большого числа различно ориентированных кристаллических зерен. Для разрушения структуры металлического материала требуются значительные усилия. Металлические строительные материалы отличаются меньшими габаритами и массой. Наряду с высокой прочностью к положительным свойствам металлических материалов относится пластичность – способность выдерживать большие остаточные деформации без разрушения и при сохранении прочности. По этой причине металлические материалы незаменимы для многих современных конструкций.
Наиболее универсальны металлические строительные материалы из стали. Но их основной недостаток – способность к коррозии.
Для защиты изделий от коррозии применяют защитные покрытия, электрохимическую защиту и замедлители коррозии (ингибиторы), изменяющие состав коррозийной среды. В строительной практике чаще используют лакокрасочные и другие покрытия поверхности. Защитное покрытие должно быть сплошным, непроницаемым для агрессивной среды, иметь высокую прочность сцепления с металлом (адгезию), равномерно распределяться по всей поверхности и придавать изделию более высокую твердость, износостойкость и жаростойкость.
2.Эстетические свойства Оригинальны и регулируются в широких пределах, причем в ряде случаев цветовая палитра обогащается в процессе эксплуатации. Так, медь и ее сплавы, окисляясь кислородом воздуха, покрываются защитной пленкой – патиной, которая с течением времени приобретают множество цветовых оттенков. Сам процесс коррозии металла в начальной стадии может использоваться для получения своеобразного цветового оттенка стали. После окисления и приобретения красно-коричневого цвета металл покрывают прозрачным защитным лаком. Цвет стали можно изменять после механической (шлифование или полирование) и термической обработки поверхности. На ней образуется оранжевая или синеватая пленка, которая одновременно защищает металл от коррозии. Известны способы изготовления стали золотистого и розового цвета , электролитические процессы окрашивания нержавеющей стали в оранжевый, красный, голубой, синий, зеленый цвета.
Защитная и декоративная обработка лицевой поверхности предполагает нанесение красок, лаков и получение требуемой фактуры. Оригинальные фактуру и цвет получают при других видах механической и химической обработки, например травлении, обработки лицевой поверхности металла.
Часто металлические материалы не нуждаются в отделке поверхности с эстетической точки зрения. Черный цвет чугуна, темно-серый стали, золотистый и зеленовато-коричневый у бронзы и меди, серебристо-белый у алюминия, как правило, отвечают эстетическим требованиям. Но лакокрасочные и металлические (анодирование – анодное оксидирование и др.) покрытия защищают поверхность металла. Наиболее распространено в практике строительства применение цветного анодирования поверхности металлических материалов.
Краткое описание документа:
Металлы - кристаллические вещества, характеризующиеся высокими электро - и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с атомами электроны, которые могут свободно перемещаться.
В технике обычно применяют не чистые металлы, а сплавы, что связано с трудностью получения чистых веществ, а также с необходимостью придания металлам требуемых свойств.
Сплавы - это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. В строительстве применяют сплавы железа с углеродом (сталь, чугун), меди и олова (бронза) и меди и цинка (латунь).
Классификация металлов. Применяемые в строительстве металлы делят на две группы: черные и цветные.
Рабочие листы и материалы для учителей и воспитателей
Более 3 000 дидактических материалов для школьного и домашнего обучения
Читайте также: