Линейные дефекты кристаллического строения металлов

Обновлено: 07.01.2025

Искажения в кристаллической решётке – это несовершенство правильного геометрического расположения атомов в кристаллическом твердом теле. Дефекты в кристаллах возникают в результате деформации твердого тела, быстрого охлаждения из-за высокой температуры или излучения высокой энергии (например, рентгеновских лучей или или нейтронов, падающих на твёрдое тело. Расположенные в отдельных точках - вдоль линий или на всей поверхности – эти искажения влияют на его механические, электрические и оптические свойства материала.

Различают точечные и линейные дефекты. Первые, в свою очередь, могут быть типу Френкеля, Шоттки или примесными. Дефект Френкеля состоит из одного иона, который смещается из своей нормальной точки решетки, перемещаясь в ближайший промежуток или пространство между атомами решётки. В дефекте Шоттки решётку покидают два иона противоположного знака. Примесные искажения - это чужеродные атомы, которые замещают некоторые из атомов, которые либо составляют твёрдое тело, либо проталкиваются в пустоты.

Линейные несовершенства или дислокации являются линиями, вдоль которых проходят целые ряды атомов в твердом теле. Результирующая неравномерность зазора наиболее заметна вдоль линии, называемой линией дислокации. Линейные дефекты могут ослаблять или укреплять твёрдые тела, поэтому они даже создаются искусственно методом хонингования.

Изучение искажений кристаллической решётки важно для моделирования электрического поведения полупроводников, материалов, используемых в компьютерных микросхемах и других электронных устройствах, а также для оценки их влияния на механические свойства.

Точечные дефекты (нульмерные)

Точечные дефекты в кристаллах представляют собой искажения решётки с нулевой размерностью, т.е. ни в какой размерности они не обладают структурой решётки.

Точечные дефекты в кристаллах

Типичные точечные несовершенства подразделяются на три группы:

примесные атомы в чистом металле;

Вакансии получают путём нагревания в концентрациях, достаточно высоких для количественных исследований. Для получения аналогичных концентраций межузельных атомов точечные искажения можно получить, выполняя внешнюю работу с кристаллом. Такая работа выполняется в атомном масштабе за счет облучения энергоёмкими частицами. Столкновения между посторонними атомами и атомами решётки вызывают смещения последних от мест замещения к местам внедрения. Таким образом, вакансии и междоузлия производятся в равных количествах. Поскольку одна вакансия и одно междоузлие вместе образуют дефект Френкеля, облучение, по сути, является процессом образования такого дефекта. Это невыгодно по сравнению с экспериментальным исследованием межузельных свойств, поскольку радиационно-индуцированные изменения свойств кристаллов всегда включают роль вакансий.

При пластической деформации также образуются вакансии и межузельные частицы. Хотя деформация обходится намного дешевле, чем облучение частицами, метод не стал общепринятой процедурой для создания точечных дефектов, поскольку не позволяет производить контролируемое образование искажений независимо от сложных сетей дислокаций.

Аномально высокие концентрации точечных несовершенств встречаются в некоторых нестехиометрических интерметаллических соединениях. Здесь вакансии и внедрения уже играют роль дополнительных легирующих элементов и имеют в этом смысле термодинамическое значение.

Другие методы получения точечных дефектов - быстрая закалка, испарение на холодных подложках или лазерный отжиг - зависят от термически активированного производства.

В чистых металлах и в большинстве сплавов вакансии обеспечивают термически активированный перенос атомов и, следовательно, свойства вакансий напрямую влияют на перенос атомов. Свойства вакансии дают информацию о межатомных силах с помощью особых возмущений, которые зависят от вакантного узла решётки.

Линейные (одномерные)

Дефекты кристаллического строения металлов могут проявляться в форме линейных дефектов или дислокаций. Дислокации - это линии, вдоль которых аномально расположены целые ряды атомов твёрдого тела. Результирующая неравномерность зазора наиболее заметна вдоль линии, называемой линией дислокации. Линейные искажения могут ослаблять или упрочнять твердые тела.

линейные дефекты в кристаллах

Поверхностные (или одномерные) дефекты могут возникать на границе между двумя зёрнами или небольшими кристаллами внутри кристалла большего размера. Ряды атомов в двух разных зёрнах могут проходить в отличающихся направлениях, что приводит к несоответствию на границе зерна. Внешняя поверхность кристалла фактически также является дефектом, потому что атомы вынуждены корректировать свое положение, чтобы приспособиться к отсутствию соседних атомов вне поверхности.

Линейные несовершенства, или, точнее, краевые дислокации, возникают тогда, когда последний слой остается незавершённым, так что в слоях, которые располагаются выше и ниже него, образуется своего рода ступенька. Поскольку длина линейных дефектов в определённом объёме стали или сплава может составлять в сумме один световой год, это открытие должно иметь большое практическое значение, поскольку структура стали зависит, среди прочего, от того, насколько она ковкая, жёсткая и пластичная. - свойства, которые материаловеды хотят постоянно оптимизировать.

Поверхностные (двухмерные)

Основная часть исследований в области химии поверхности связана с механизмами реакций на поверхности и идентификацией адсорбированных и реагирующих частиц.

поверхностные дефекты в кристаллах

Однако небольшое количество исследователей интересуются влиянием поверхности на возникновение и развитие дефектов. Структура поверхности на атомарном уровне может определять свойства материала.

Известно, что несовершенства структуры кристаллов, являясь активными центрами, контролируют многие механические и химические свойства твёрдых тел. С увеличением общего количества поверхностных дефектов растёт число атомов с различным числом разорванных связей.

Двухмерные искажения подразделяются на три группы:

Возникающие на границах зёрен.

Границы зон двойникования.

Все поверхностные структуры получаются в результате различной ориентации смежных кристаллических решёток.

Объемные (трехмерные)

Междуузельные соединения являются наиболее распространенным представителем объёмных дефектов.

объемные дефекты в кристаллах

Трёхмерные искажения решётки образуются из-за большого возмущения её размеров. Следствием такого возмущения являются изменения, которые связаны с динамическими и статическими свойствами материалов.

Объёмные несовершенства играют ключевую роль в развитии типичных структур повреждений, которые определяют не только микроструктуру, но и микрохимию сплавов.

Дефекты кристаллического строения металлов

Под атомно-кристаллической структурой понимают взаимное расположение атомов, существующее в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях. Для описания атомно-кристаллической структуры пользуются понятием пространственной или кристаллической решетки. Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узлах которой располагаются атомы (ионы), образующие металл (твердое кристаллическое тело).

Металлы образуют одну из следующих высокосимметричных сложных решеток с плотной упаковкой атомов: кубическую объемно-центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно-центрированной решетке атомырасположены в узлах ячейки и один атом – в центре объема куба. Кубическую объемно-центрированную решетку имеют следующие металлы: Rb, К, Na, Li, Та, W, V, Feα, Cr, Nb, Ba и др.

В кубической гранецентрированной решетке атомы расположены в углах куба и в центре каждой грани.Этот тип решетки имеют металлы Pb, Sc, Ni, Ag, Au, Pd, Pt, Rh, Cu и др.

В гексагональной решетке атомы расположены в углах и центре шестигранных оснований призмы и три атома в средней плоскости призмы. Эту упаковку атомов имеют металлы Hf, Mg, Cd, Re, Os, Ru, Zn, Be, La, и др.

Размеры кристаллической решетки характеризуются величинами периодов, под которыми понимают расстояние между ближайшими параллельными атомными плоскостями, образующими элементарную ячейку. Период решетки металлов находится в пределах от 1 до 7 Å.

Дефекты кристаллического строения подразделяют по геометрическим признакам на точечные (нуль-мерные), линейные (одномерные) и поверхностные (двухмерные).

Точечные дефекты. Эти дефекты малы во всех трех измерениях, и размеры их не превышают нескольких атомных диаметров. К точечным дефектам относятся вакансии, или «дырки» (дефекты Шотки), т. е. узлы решетки, в которых атомы отсутствуют. Вакансии чаще образуются в результате перехода атомов из узлов решетки на поверхность (границу зерна, пустоты, трещины и т. д.) или их полного испарения с поверхности кристалла и реже в результате перехода в междоузлие. В кристалле всегда имеются атомы, кинетическая энергия которых значительно выше средней, свойственной данной температуре нагрева. Такие атомы, особенно расположенные вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находящиеся дальше от поверхности, а принадлежавшие им узлы окажутся свободными, т. е. возникнут тепловые вакансии. С повышением температуры концентрация вакансий возрастает. Количество вакансий при температуре, близкой к плавлению, может достигать 1% по отношению к числу атомов в кристалле. (Быстрым охлаждением от данной температуры можно зафиксировать эти вакансии при нормальной температуре (закалка вакансий)). Возможно образование не только одиночных вакансий, но и двойных, тройных и более крупных.


Кристаллическая решетка: а - кубическая объемно-центрированная (о. ц. к.); б - кубическая гранецентрироаанная (г. ц. к.); в — гексагональная плотноупакованная (г. п. у.)

Точечные дефекты

Вакансии образуются и в процессе пластической деформации, а также при бомбардировке металла атомами или частицами высоких энергий (облучение в циклотроне или нейтронное облучение в ядерном реакторе).

Межузсльные атомы(дефекты Френкеля). Эти дефекты образуются в результате перехода атома из узла решетки в междоузлие. На месте атома, вышедшего из узла решетки в междоузлие, образуется вакансия. В плотноупакованных решетках, характерных для большинства металлов, энергия образования межузельных атомов в несколько раз больше энергии образования тепловых вакансий. Вследствие этого в металлах очень трудно возникают межузельные атомы, и тепловые вакансии в таких кристаллах являются основными точечными дефектами. (в меди при 1000°С концентрация межузельных атомов на 35 порядков меньше концентрации вакансий.)

Точечные несовершенства кристаллической решетки появляются и в результате действия атомов примесей, которые, как правило, присутствуют даже в самом чистом металле. Точечные дефекты вызывают местное искажение кристаллической решетки. Смещения (релаксация) вокруг вакансий возникают только в первых двух слоях соседних атомов и составляют доли межатомного расстояния. Вокруг межузельного атома в плотноупакованных решетках смещение соседей значительно больше, чем вокруг вакансий.

Линейные дефекты. Линейные несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Эти несовершенства называются дислокациями. Краевая дислокация представляет собой локализованное искажение кристаллической решетки, вызванное наличием в ней «лишней» атомной полуплоскости или экстраплоскости, перпендикулярной к плоскости чертежа.


Наиболее простой и наглядный способ образования дислокаций в кристалле – сдвиг (рис. 9, а). Если верхнюю часть кристалла сдвинуть относительно нижней на одно межатомное расстояние, причем зафиксировать положение, при котором сдвиг охватывает не всю плоскость скольжения, а только часть ее ABCD, то граница АВ между участком, где скольжение уже произошло, и не нарушенным участком в плоскости скольжения и будет дислокацией. Линия краевой дислокации перпендикулярна вектору сдвига.

Кроме краевых различают еще винтовые дислокации. Винтовые дислокации в отличие от краевых располагаются параллельно направлению сдвига (линия AD). При наличии винтовой дислокации кристалл можно рассматривать как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности. Дислокации окружены полями упругих напряжений, вызывающих искажение кристаллической решетки. В краевой дислокации выше края экстраплоскости межатомные расстояния меньше нормальных, а ниже края – больше.

Дислокации не могут обрываться внутри кристаллита. Они могут прерываться на других дислокациях или на границах раздела (границы зерен, поверхность кристалла и т. д.). В связи с этим внутри кристалла дислокации образуют замкнутые петли или взаимосвязанные сетки.

Под плотностью дислокаций понимают суммарную длину дислокации l, приходящуюся на единицу объема V кристалла n = Σl/V. Таким образом, размерность плотности дислокаций (см -2 ).

Поверхностные дефекты. Представляют собой поверхности раздела между отдельными зернами или их блоками (субзернами) поликристаллического металла. Каждое зерно металла состоит из отдельных блоков, или субзерен, образующих так называемую мозаичную структуру, или субструктуру. Зерна металла обычно разориентированы относительно друг друга на величину, достигающую от нескольких долей градуса (малоугловые границы) до нескольких градусов или нескольких их десятков (высокоугловые границы).

Блоки, или субзерна, повернуты по отношению друг к другу на угол от нескольких секунд до нескольких минут (малоугловые границы), имеют размеры на три-четыре порядка величины меньше размеров кристаллитов (10 -6 – 10 -4 см). В пределах каждого блока, или субзерна, решетка почти идеальная, если не учитывать точечных несовершенств.

(1′ = 1/60 угловых градусов; α[°] = (180 / π ) × α[рад], где: α[рад] — угол в радианах, α[°] — угол в градусах).

Границы между отдельными кристаллитами (зернами) представляют собой переходную область шириной в 5–10 межатомных расстояний, в которой решетка одного кристалла, имеющего определенную кристаллографическую ориентацию, переходит в решетку другого кристалла, имеющего иную кристаллографическую ориентацию.


схема зерна и блочной структуры

На границе зерна атомы расположены менее правильно, чем в объеме зерна. По границам зерен в технических металлах концентрируются примеси, что еще больше нарушает правильный порядок расположения атомов.

Границы блоков, а также малоугловые границы зерен образованы дислокациями. В реальном поликристаллическом металле протяженность границ блоков и зерен очень велика, количество дислокаций в таком металле огромно (10 4 – 10 12 см -2 ). Атомы на границах зерен (или субзерен) имеют повышенную потенциальную энергию. Такую повышенную энергию имеют и атомы, расположенные на поверхности кристалла, вследствие нескомпенсированности сил межатомного взаимодействия.

Точечные, линейные и поверхностные дефекты в кристаллах, влияние на прочность

Идеального кристаллического строения в природе не бывает. Экспериментально установлено наличие трех типов дефектов микроструктуры на атомном уровне в металлах и сплавах: точечных, линейных и поверхностных.

Рис. 18.1. Точечные дефекты: а)вакансия,

б) межузельный (дислоцированный) атом

1. Точечные дефекты – вакансии[21] и межузельные атомы (рис. 18.1) малы во всех трех измерениях и искажают кристаллическую решетку только на расстояниях порядка 10 –10 м. Концентрация точечных дефектов в металлах при комнатной температуре составляет порядка 10 –13 ат. %; при нагреве до температур близких к плавлению и особенно при облучении нейтронами в ядерном реакторе она может достигать 1…3 ат. %, что приводит к разбуханию и потере прочности металлоконструкций.

2. Линейные дефекты – краевые и винтовые дислокации[22] имеют большую протяженность в одном измерении и проявляются в нарушении правильного расположения атомных плоскостей – рис. 18.2. От числа, характера расположения и подвижности дислокаций в кристаллах сильно зависят механические и многие физические свойства монокристаллических и поликристаллических материалов.

Рис. 18.2. Линейные дефекты: а) краевая, б) винтовая дислокация

Плотность дислокаций – суммарная длина всех линий дислокаций в единице объема составляет у чистых неупрочненных металлов 10 6 …10 8 см –2 , а у деформированных – достигает 10 12 …10 13 см –2 , дальше появляются трещины и металл разрушается. Наличие достаточного числа дислокаций облегчает движение атомов, а, следовательно, и деформацию неупрочненных металлов – рис. 18.3. Из-за большого числа дислокаций прочность реальных (дефектных) кристаллических материалов во много раз меньше теоретической прочности, рассчитанной на основании сил взаимодействия между атомами для идеальных (бездефектных) структур.


Рис. 18.3. Зависимость сопротивления деформации от плотности дислокаций: 1 – теоретическая прочность; 2–4 – техническая прочность (2 – «усы»; 3 – чистые неупрочненные металлы; 4 – сплавы, упрочненные легированием, наклепом, термической или термомеханической обработкой)

Плотностью дислокаций, а, следовательно, и свойствами материала можно управлять в очень широком диапазоне (рис. 18.3). Исходя из вида кривой на рис. 18.3, возможны два принципиально различных способа повышения прочности материалов:

· Традиционными методами повышения прочности материалов за счет повышения числа дислокаций являются: легирование, холодная деформация, термическая или термомеханическая обработка. Самая эффективная из них – термомеханическая обработка позволяет повысить прочность до 1 /3 от теоретической.

· Во второй половине ХХ в. нанотехнологи научились выращивать нитевидные монокристаллыусы[23](длиной до 2…10 мм и диаметром 0,5…2 мкм) с одной винтовой дислокацией, прочность которых приближается к теоретической[24]. Такие «усы» используются для армирования высокопрочных волокнистых композиционных материалов, в приборостроении (для микроподвесок), в микроэлектронике и т. п.

3. Поверхностные дефекты имеют большую протяженность в двух измерениях; наиболее существенными из них являются большеугловые и малоугловые границы, дефекты упаковки и границы двойников.

Границы между зернами обусловлены поликристаллическим строением металлов (см. рис. 16), они представляют собой узкую переходную область шириной до 5…10 межатомных расстояний, в которой атомы расположены менее правильно, чем в объеме зерна. По границам зерен в технических металлах концентрируются примеси, что еще больше нарушает правильный порядок расположения атомов. Атомные решетки (плоскости) соприкасающихся зерен металла разориентированы на величину до нескольких десятков градусов, что приводит к образованию, так называемых, большеугловых границ.

Каждое зерно металла, как правило, состоит из отдельных субзерен – блоков, образующих субструктуру – рис. 18.4. Поперечные размеры субзерен (блоков) составляют 0,1…1 мкм, т. е. блоки на один – три порядка меньше размеров кристаллитов. Если не учитывать точечные дефекты, то в пределах каждого блока кристаллическая решетка почти идеальна. Субзерна повернуты один по отношению к другому на угол от малых долей до единиц градусов, образуя субграницы (малоугловые границы). Установлено, что малоугловые границы образованы упорядоченными скоплениями (так называемыми, стенками) большого количества краевых дислокаций () – см. рис. 18.4.

Рис. 18.4. Субструктура зерна: 1 – границы между зернами (большеугловые границы), 2 – границы между субзернами (малоугловые границы), 3 – субзерна (блоки)

Дефект упаковки представляет собой часть атомной плоскости, ограниченную дислокациями, в пределах которой нарушен нормальный порядок чередования атомных слоев.

Все поверхностные дефекты, включая дефекты упаковки и границы двойников*, представляют собой рассогласования в расположении пакетов атомных плоскостей.

Поверхностные дефекты также влияют на механические и физические свойства ма­териалов. Особенно большое значение имеют границы зерен. Предел текучести σт связан с размером зерен d уравнением Холла-Петча: σт = σо + kd –1/2 , где σо и k – по­стоянные для данного материала. Чем мельче зерно, тем выше предел текуче­сти, вязкость и меньше опасность хруп­кого разрушения. Аналогично, но более слабо влияет на механические свойства размер субзерен.

Помимо перечисленных микродефектов в технических металлах и сплавах могут быть макродефекты объемного характера: газовые пузыри, микротрещины, поры, неметаллические включения и т. п., которые также снижают прочность, являясь концентраторами напряжений.

19(8). Деформация и разрушение металла. Упругая и пластическая деформация. Механизм пластической деформации. Наклёп

При приложении к твердому телу усилий происходит его деформация – изменение формы, обусловленное отклонением атомов от равновесного положения.

Если напряжения невелики, то деформация носит упругий характер. В этой области выполняется закон Гука – абсолютная деформация Δl прямо пропорциональна приложенному усилию Р – рис. 19.1. Сопротивляемость упругой деформации, т. е. жесткость материала при растяжении характеризует модуль нормальной упругости (модуль Юнга) Е, прямо пропорциональный tga (Е = (l0/F0)tga – см. п. 8). Модуль упругости практически не зависит от структуры металла и определяется силами межатомных связей в кристаллической решетке, например, для сталей он составляет 170…206 ГПа, для чугунов – 113…150 ГПа, титана – 116 ГПа, алюминия – 63…70 ГПа.

Рис. 19.1. Схема деформирования металла при растяжении: участки упругой (а) и пластической (б) деформации, × – разрушение

При упругой деформации после снятия нагрузки атомы возвращаются в исходное положение и тело восстанавливает исходную форму и размеры.

Если при внешнем нагружении напряжения достигают критической величины, то деформация становится пластической вследствие интенсивного размножения и движения дислокаций. После снятия нагрузки тело не восстанавливает свою форму и размеры.


Механизм пластической деформациипроще всегорассмотреть на примере деформации монокристалла. Пластическая деформация осуществляется путем сдвига одной части монокристалла относительно другой. Сдвиг атомных плоскостей вызывают внешние касательные напряжения τ, когда их значение превышает критическое τк. Различают две разновидности сдвига – скольжение и двойникование. При скольжении одна часть кристалла смещается параллельно другой части вдоль плоскости, называемой плоскостью скольжения или сдвига (рис. 19.2). Скольжение существенно облегчается за счет присутствия дислокаций, которые в большом количестве имеются в реальных металлах.

Рис. 19.2. Схема скольжения за счет движения краевой дислокации

Скольжение – основной вид сдвига в металлах и сплавах. Деформация двойникованием представляет собой перестройку части кристалла в новое положение, зеркально симметричное к его недеформированной части – рис. 19.3. Плоскость зеркальной симметрии называют плоскостью двойникования.

Рис. 19.3. Схема образования двойника (I–I – плоскость двойникования)


По сравнению со скольжением, двойникование в металлах с ОЦК и ГЦК решетками имеет второстепенное значение. Роль двойникования возрастает, когда скольжение затруднено. У менее пластичных металлов с ГПУ решеткой деформация обычно развивается как скольжением, так и двойникованием.

По мере развития пластической деформации металл наклёпывается. Под наклёпом понимают совокупность изменений структуры и связанных с ними изменений свойств, вызванных пластической деформацией металла[25].

При достаточно большой степени деформации все зерна становятся напряженными; равноосные до деформации зерна поликристаллических металлов вытягиваются, образуя волокнистую структуру – рис. 19.4. Количество дефектов кристалллической решетки и, прежде всего, дислокаций возрастает на несколько порядков (см. рис. 18.3). Внутри зерен за счет роста числа дислокаций происходит интенсивное образование малоугловых границ и увеличение углов разориентировки субзерен, что приводит к развитию блочной структуры.

Рис. 19.4. Изменение формы зерен в результате деформации: а – до деформации; б – после деформации


При большой степени деформации возникает преимущественная ориентация решеток зерен – текстура деформации, проявляющаяся в анизотропии свойств деформированных поликристаллических металлов и сплавов.

С увеличением степени деформации увеличиваются твердость, предел текучести, электросопротивление, коэрцитивная сила и др.; уменьшаются пластичность, вязкость, коррозионная стойкость, магнитная проницаемость и др.

При дальнейшем увеличении приложенных напряжений процесс деформации заканчивается разрушением, которое может быть вязким или хрупким. Вязкое разрушение происходит после значительной пластической деформации; сопровождается поглощением большого количества энергии; проходит по телу зерен; имеет волокнистый, матовый излом. Хрупкое разрушение имеет малую энергоемкость; деформация мала и носит в основном упругий характер; излом светлый, грубокристаллический.

Читайте также: