Какие частицы располагаются в узлах кристаллической решетки металлов и какой заряд они имеют

Обновлено: 07.01.2025

Тип урока: Комбинированный.

Цель урока: Создать условия для формирования умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от вида химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Задачи урока:

  • Сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества.
  • Продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого-структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.
  • Развивать познавательный интерес школьников, используя проблемные ситуации;

Оборудование: Периодическая система Д.И. Менделеева, коллекция «Металлы», неметаллы: сера, графит, красный фосфор, кристаллический кремний, йод; Презентация «Типы кристаллических решёток», модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, компьютер, проектор.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

2. Проверка знаний по темам” Химическая связь. Степень окисления”.

Самостоятельная работа (15 минут)

3. Изучение нового материала.

Учитель озвучивает тему урока и цель урока. (Слайд 1,2)

Учащиеся записывают в тетради дату, тему урок.

Актуализация знаний.

Учитель задаёт вопросы классу:

  1. Какие виды частиц вы знаете? Имеют ли заряды ионы, атомы и молекулы?
  2. Какие виды химических связей вы знаете?
  3. Какие вам известны агрегатные состояния веществ?

Учитель: «Любое вещество может быть газом, жидкостью и твёрдым веществом. Например, вода. При обычных условиях – это жидкость, но она может быть паром и льдом. Или кислород при обычных условиях представляет собой газ, при температуре -1940 C он превращается в жидкость голубого цвета, а при температуре -218,8°C затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. На этом уроке мы рассмотрим твёрдое состояние веществ: аморфное и кристаллическое». (Слайд 3)

Учитель: аморфные вещества не имеют чёткой температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относят, например шоколад, который тает и в руках и во рту; жевательную резинку, пластилин, воск, пластмассы (показываются примеры таких веществ). (Слайд 7)

Кристаллические вещества имеют чёткую температуру плавления и, главное, характеризуются правильным расположением частиц в строго определенных точках пространства. (Слайды 5,6) При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

Учащиеся записывают в тетрадь определение: «Кристаллической решёткой называют совокупность точек пространства, в которых располагаются частицы, образующие кристалл. Точки, в которых размещаются частицы кристалла, называют узлами решётки».

В зависимости от того, какие виды частиц находятся в узлах этой решётки, различают 4 типа решёток. (Слайд 8) Если в узлах кристаллической решётки находятся ионы, то такая решётка называется ионной.

Учитель задаёт учащимся вопросы:

– Как будут называться кристаллические решётки, в узлах которых находятся атомы, молекулы?

Но есть кристаллические решётки, в узлах которых находятся и атомы, и ионы. Такие решётки называются металлическими.

Сейчас мы будем заполнять таблицу: «Кристаллические решётки, вид связи и свойства веществ». В ходе заполнения таблицы мы будем устанавливать взаимосвязь между типом решётки, видом связи между частицами и физическими свойствами твёрдых веществ.

Далее на экране появляется таблица. (Слайд 9). Её заполнение идёт в ходе диалога учителя с учащимися.

Рассмотрим 1-й тип кристаллической решётки, которая называется ионной. (Слайд 9)

– Какие частицы располагаются в узлах этой решётки?

– Какая химическая связь в этих веществах?

Посмотрите на ионную кристаллическую решётку (показывается модель такой решётки). В её узлах находятся положительно и отрицательно заряженные ионы. Например, кристалл хлорида натрия построен из положительных ионов натрия и отрицательных хлорид-ионов, образующих решётку в форме куба. К веществам с ионной кристаллической решёткой относятся соли, оксиды и гидроксиды типичных металлов. Вещества с ионной кристаллической решёткой обладают высокой твёрдостью и прочностью, они тугоплавкие и нелетучие.

Учитель: Физические свойства веществ с атомной кристаллической решёткой те же, что и у веществ с ионной кристаллической решёткой, но часто в превосходной степени – очень твёрдые, очень прочные. Алмаз, у которого атомная кристаллическая решётка – самое твёрдое вещество из всех природных веществ. Он служит эталоном твёрдости, которая по 10-бальной системе оценивается высшим баллом 10.(Слайд 10). По этому типу кристаллической решётки вы сами внесёте необходимые сведения в таблицу, самостоятельно поработав с учебником.

Учитель: Рассмотрим 3-й тип кристаллической решётки, которая называется металлической. (Слайды 11,12) В узлах такой решётки находятся атомы и ионы, между которыми свободно перемещаются электроны, связывая их в единое целое.

Далее учащиеся по учебнику рассматривают модель металлической кристаллической решётки.

Такое внутреннее строение металлов и определяет их характерные физические свойства.

Учитель: Какие физические свойства металлов вы знаете? (ковкость, пластичность, электро- и теплопроводность, металлический блеск).

Учитель: На какие группы делятся все вещества по строению? (Слайд 12)

Рассмотрим тип кристаллической решётки, которой обладают такие хорошо известные нам вещества как вода, углекислый газ, кислород, азот и другие. Она называется молекулярной. (Слайд14)

Далее учащиеся по учебнику рассматривают модель молекулярной кристаллической решётки.

Химическая связь в молекулах, которые находятся в узлах решётки, может быть и ковалентная полярная, и ковалентная неполярная. Несмотря на то, что атомы внутри молекулы связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярной кристаллической решёткой имеют малую твердость, низкие температуры плавления и летучие. Когда газообразные или жидкие вещества при особых условиях превращаются в твёрдые, тогда у них появляется молекулярная кристаллическая решётка. Примерами таких веществ может быть твёрдая вода – лёд, твёрдый углекислый газ – сухой лёд. Такую решётку имеет нафталин, который применяют для защиты шерстяных изделий от моли.

– Какими свойствами молекулярной кристаллической решётки обусловлено применение нафталина? (летучестью). Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H2,O2, N2, I2, O3, белый фосфор Р4, но и сложные: твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза,сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи.

Вопрос: Какой процесс называется возгонкой или сублимацией?

Ответ: Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией.

Демонстрация опыта: возгонка йода

Потом учащиеся по очереди называют сведения, которые они записали в таблицу.

Кристаллические решетки, вид связи и свойства веществ.

Тип решетки Виды частиц в узлах решетки Вид связи
между частицами
Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA, IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная не полярная – связь очень прочная
2. Ковалентная полярная – связь очень прочная
Простые вещества: алмаз (C), графит (C) , бор (B), кремний (Si).
Сложные вещества: оксид алюминия (Al2O3), оксид кремния (IV) – SiO2
Очень твердые, очень тугоплавкие, прочные, нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекулами – слабые силы
межмолекулярного притяжения, а вот
внутри молекул – прочная ковалентная связь
Твердые вещества при особых условиях, которые при обычных – газы или жидкости
2, Н2, Cl2, N2, Br2, H2O, CO2, HCl);
сера, белый фос фор, йод; органические вещества
Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическая – разной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Учитель: Какой мы можем сделать вывод из проделанной работы по таблице?

Вывод 1: От типа кристаллической решётки зависят физические свойства веществ. Состав вещества → Вид химической связи → Тип кристаллической решетки → Свойства веществ. (Слайд 18).

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ – металлов – металлическая кристаллическая решетка; для неметаллов – атомная или молекулярная.

Работа с Периодической системой Д.И. Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IV A,V A, VI A, VII A, VIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O, галогены и благородные газы)

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA(кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IV A и бора в простом веществе кристаллическая решетка атомная; а у элементов V A, VI A, VII A, VIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод. Вывод 2 (слайд 17)

4. Закрепление материала.

Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a)Тугоплавки и хорошо растворимы в воде
б) Легкоплавки и летучи
в) Тверды и электропроводны
г) Теплопроводны и пластичны

Понятия «молекула» не применимо по отношению к структурной единице вещества:
a) Вода
б) Кислород
в) Алмаз
г) Озон

Атомная кристаллическая решётка характерна для:
a) Алюминия и графита
б) Серы и йода
в) Оксида кремния и хлорида натрия
г) Алмаза и бора

Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:
а) Молекулярная
б) Атомная
в) Ионная
г) Металлическая

5. Рефлексия.

6. Домашнее задание.

Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры .

По формулам приведённых веществ: SiC, CS2, NaBr, C2H2 – определите тип кристаллической решётки(ионная, молекулярная) каждого соединения и на основе этого опишите предполагаемые физические свойства каждого из четырёх веществ.

Типы кристаллических решеток и свойства веществ

По характеру структуры кристаллические решетки всех веществ относят к одному из четырех основных типов:

а) молекулярная решетка,

В основу этой классификации положен род структурных частиц (молекулы-атомы-ионы), находящихся в узлах кристаллической решетки.

Молекулярная решетка

В узлах молекулярной решетки находятся полярные или неполярные молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Молекулы в кристалле способны совершать незначительные колебания различного характера. Вещества с молекулярным типом решетки, например, органические вещества, кристаллы инертных газов и большинства неметаллов, сухой лед (СО2 тверд.) обладают малой твердостью, низкими температурами плавления и кипения. Эти характеристики объясняются тем, что при приложении незначительной энергии межмолекулярные связи разрываются и кристалл разрушается с образованием отдельных молекул, что и наблюдается при плавлении и при испарении кристаллов. Внутри отдельных молекул атомы связаны значительно более прочными связями (ковалентными полярными или неполярными). Эти связи разрушаются при более высокой температуре, и молекулы распадаются на составляющие их атомы (происходит термическая диссоциация).

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы. Роль сил межмолекулярного взаимодействия здесь играют достаточно прочные ковалентные связи. Выделить из общей массы атомов один невозможно. Вещества с атомным типом кристаллической решетки (алмаз, бор, кремний, карборунд SiC, нитрид алюминия и другие) характеризуются очень большой твердостью, иногда сочетающейся с хрупкостью, нерастворимостью в обычных растворителях, очень высокими температурами плавления и кипения. Все связи в кристалле равноценны. При разрыве этих связей, достигаемом лишь при высокой температуре, кристалл диссоциирует на отдельные атомы: плавление, кипение и термическая диссоциация практически совпадают.

Ионная (координационная) решетка

В узлах ионной кристаллической решетки находятся чередующиеся положительные и отрицательные ионы, связанные между собой силами кулоновского взаимодействия. Особенностью этих сил является их ненасыщаемость. Это приводит к тому, что отдельный ион координирует вокруг себя несколько ионов противоположного заряда. Ионы в кристаллах совершают упорядоченные колебания. Энергия связей между противоположно заряженными ионами очень велика, и такие кристаллы, казалось бы, должны обладать наиболее высокой твердостью и высокими температурами плавления и кипения. На самом деле эти свойства у них ниже, чем у кристаллов с атомной структурой. Причина заключается в том, что наряду с силами притяжения в кристалле действуют силы отталкивания между одноименно заряженными ионами, причем соотношение этих сил приводит к определенному равновесному состоянию. Вещества с ионной решеткой растворимы в той или иной степени в полярных растворителях.

Металлическая решетка

В узлах металлической решетки находятся положительно заряженные ионы металлов, окруженные электронами. Эти электроны, связанные отчасти с ионами силами электростатического взаимодействия, являются «полусвободными», иначе говоря «не прикреплены» к отдельным ионам, а более или менее свободно перемещаются между ними. Этот «электронный газ» обусловливает типичные для металлов свойства: тепло- и электропроводность, серовато-серебристый (у большинства металлов) цвет, металлический блеск (отражательную способность), способность отражать радиоволны, пластичность, ковкость и в то же время достаточную прочность (результат обволакивания ионов «электронным газом»). Подходя к катиону металла, электроны образуют с ним на мгновение электронейтральную частицу, которая быстро разрушается и через мгновение такой же непрочный «атом» образуется с этим или другим электроном и другим ионом металла. Между «атомами» возникают мгновенные ковалентные связи. Это и приводит к возникновению особой металлической связи, промежуточной по характеру между ионной и ковалентной, качественно отличающейся от той и другой и наблюдаемой лишь в куске металла. Энергия электронов в металле недостаточна, чтобы они могли «оторваться» от катионов металла и самопроизвольно покинуть металлическую решетку. Но при подведении энергии извне выход электронов наблюдается: фотоэлектрический эффект, термоэлектронная эмиссия. Прочность и температуры плавления и кипения у металлов не всегда имеют промежуточные значения между этими же свойствами у веществ с атомными и ионными решетками. Это зависит от природы металла. Интересно, что заряд ионов в металлах не всегда отвечает номеру группы периодической системы, в которой металл находится. Например, в кристаллической решетке алюминия ионы имеют средний заряд +2. Это можно объяснить двумя способами:

а) все атомы алюминия отдали по два электрона в «электронный газ»;

б) все атомы отдали по три электрона, но в среднем одна треть образовавшихся ионов Al +3 снова образует «атомы», поэтому средний заряд всех структурных частиц +2.

Таким образом, металлическое состояние в упрощенном представлении подобно атомарному ввиду его суммарной электронейтральности; это сосуществование и взаимосвязь «атомов»-ионов-электронов.

Кристаллические решетки

Основная цель урока: Дать учащимся конкретные представления об аморфных и кристаллических веществах, типах кристаллических решеток, установить взаимосвязь между строением и свойствами веществ.

Образовательная: сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества, дать учащимся представление о законе постоянства состава.

Воспитательная: продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого- структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.

Развивающая: развивать познавательный интерес школьников, используя проблемные ситуации; совершенствовать умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Оборудование: Периодическая система Д.И.Менделеева, коллекция “Металлы”, неметаллы: сера, графит, красный фосфор, кислород; Презентация “Кристаллические решетки”, модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, смолы, воск, жевательная резинка, шоколад, компьютер, мультимедийная установка, видеопыт “Возгонка бензойной кислоты”.

1. Организационный момент.

Затем сообщает тему урока и цель урока. Учащиеся записывают тему урока в тетрадь. (Cлайд 1, 2).

2. Проверка домашнего задания

(2 ученика у доски: Определить вид химической связи для веществ с формулами:

1) NaCl, CO2, I2 ; 2) Na, NaOH, H2S (записывают ответ на доске и включаются в опрос).

3. Анализ ситуации.

Учитель: Что изучает химия? Ответ: Химия - это наука о веществах, их свойствах и превращениях веществ.

Учитель: Что же такое вещество? Ответ: Вещество - это то, из чего состоит физическое тело. (Cлайд 3).

Учитель: Какие агрегатные состояния веществ вы знаете?

Ответ: Существует три агрегатных состояния: твердое, жидкое и газообразное. (Cлайд 4).

Учитель: Приведите примеры веществ, которые при различных температурах могут существовать во всех трех агрегатных состояниях.

Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 0 0 С вода переходит в твердое состояние - лед, а при повышении температуры до 100 0 С мы получим водяной пар (газообразное состояние).

Учитель (дополнение): Любое вещество можно получить в твердом, жидком и газообразном виде. Кроме воды – это металлы, которые при нормальных условиях находятся в твердом состоянии, при нагревании начинают размягчаться, и при определенной температуре(tпл) переходят в жидкое состояние - плавятся. При дальнейшем нагревании, до температуры кипения, металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно перевести в жидкое и твердое состояние, понижая температуру: например, кислород, который при температуре (-194 0 С) превращается в жидкость голубого цвета, а при температуре (-218,8 0 С) затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества.

Учитель: Назовите, какие твердые вещества находятся у вас на столах.

Ответ: Металлы, пластилин, поваренная соль: NaCl, графит.

Учитель: Как вы думаете? Какое из этих веществ лишнее?

Делаются предположения. Если ученики затрудняются, то с помощью учителя приходят к выводу, что пластилин в отличие от металлов и хлорида натрия не имеет определенной температуры плавления - он (пластилин) постепенно размягчается и переходит в текучее состояние. Таков, например, шоколад, который тает во рту, или жевательная резинка, а также стекло, пластмассы, смолы, воск (при объяснении учитель демонстрирует классу образцы этих веществ). Такие вещества называют аморфными. (слайд 5), а металлы и хлорид натрия - кристаллические. (Cлайд 6).

Таким образом, различают два вида твердых веществ: аморфные и кристаллические. (слайд7).

1) У аморфных веществ нет определенной температуры плавления и расположение частиц в них строго не упорядочено.

Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены: атомов, молекул и ионов. Эти частицы расположены в строго определенных точках пространства, и, если эти узлы соединить прямыми линиями, то образуется пространственный каркас - кристаллическая решетка.

Учитель задает проблемные вопросы

Как объяснить существование твердых веществ со столь различными свойствами?

2) Почему кристаллические вещества при ударе раскалываются в определенных плоскостях, а аморфные вещества этим свойством не обладают?

Выслушать ответы учеников и подвести их к выводу:

Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено типом химической связи в данном веществе.

Проверка домашнего задания:

1) NaCl – ионная связь,

СО2 – ковалентная полярная связь

I2 – ковалентная неполярная связь

2) Na – металлическая связь

NаОН - ионная связь между Na + иОН - (О и Н ковалентная)

Н2S - ковалентная полярная

    Какая связь называется ионной?
  • Какая связь называется ковалентной?
  • Какая связь называется ковалентной полярной? неполярной?
  • Что называется электроотрицательностью?

Вывод: Прослеживается логическая последовательность, взаимосвязь явлений в природе: Строение атома—>ЭО—>Виды химической связи—>Тип кристаллической решетки—>Свойства веществ. (слайд 10).

Учитель: В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток: ионные, молекулярные, атомные и металлические. (Cлайд 11).

Далее идет рассмотрение типов кристаллических решеток. Особое внимание уделяется взаимосвязи типа кристаллической решетки, вида химической связи и свойств твердых веществ.

Результаты оформляются в следующую таблицу-образец таблицы у учеников на парте. (см. Приложение 1). (Cлайд 12).

Ионные кристаллические решетки

Учитель: Как вы думаете? Для веществ с каким видом химической связи будет характерен такой вид решетки?

Ответ: Для веществ с ионной химической связью будет характерна ионная решетка.

Учитель: Какие частицы будут находиться в узлах решетки?

Учитель: Какие частицы называются ионами?

Ответ: Ионы-это частицы, имеющие положительный или отрицательный заряд.

Учитель: Какие ионы бывают по составу?

Ответ: Простые и сложные.

Демонстрация - модель кристаллической решетки хлорида натрия (NaCl).

Объяснение учителя: В узлах кристаллической решетки хлорида натрия находятся ионы натрия и хлора.

В кристаллах NaCl отдельных молекул хлорида натрия не существует. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , NanCln, где n – большое число.

Связи между ионами в таком кристалле очень прочные. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки, нелетучи, хрупки. Расплавы их проводят электрический ток (Почему?), легко растворяются в воде.

Ионные соединения - это бинарные соединения металлов (I А и II A), соли, щелочи.

Атомные кристаллические решетки

Демонстрация кристаллических решеток алмаза и графита.

У учеников на столе образцы графита.

Учитель: Какие частицы будут находиться в узлах атомной кристаллической решетки?

Ответ: В узлах атомной кристаллической решетки находятся отдельные атомы.

Учитель: Какая химическая связь между атомами будет возникать?

Ответ: Ковалентная химическая связь.

Действительно, в узлах атомных кристаллических решеток находятся отдельные атомы, связанные между собой ковалентными связями. Так как атомы, подобно ионам, могут по-разному располагаться в пространстве, то образуются кристаллы разной формы.

Атомная кристаллическая решетка алмаза

В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Вопрос: Какие эти вещества по составу? Ответ: Простые по составу.

Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 3500 0 С), прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки

Учитель: Ребята, у вас на столах коллекция металлов, рассмотрим эти образцы.

Вопрос: Какая химическая связь характерна для металлов?

Ответ: Металлическая. Связь в металлах между положительными ионами посредством обобществленных электронов.

Вопрос: Какие общие физические свойства для металлов характерны?

Ответ: Блеск, электропроводность, теплопроводность, пластичность.

Вопрос: Объясните, в чем причина того, что у такого числа разнообразных веществ одинаковые физические свойства?

Ответ: Металлы имеют единое строение.

Демонстрация моделей кристаллических решеток металлов.

Вещества с металлической связью имеют металлические кристаллические решетки

В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки

Учитель демонстрирует и называет вещества: йод, сера.

Вопрос: Что объединяет эти вещества?

Ответ: Эти вещества являются неметаллами. Простые по составу.

Вопрос: Какая химическая связь внутри молекул?

Ответ: Химическая связь внутри молекул ковалентная неполярная.

Вопрос: Какие физические свойства для них характерны?

Ответ: Летучие, легкоплавкие, малорастворимые в воде.

Учитель: Давайте сравним свойства металлов и неметаллов. Ученики отвечают, что свойства принципиально отличаются.

Вопрос: Почему свойства неметаллов сильно отличаются от свойств металлов?

Ответ: У металлов связь металлическая, а у неметаллов ковалентная неполярная.

Учитель: Следовательно, и тип решетки другой. Молекулярная.

Вопрос: Какие частицы находятся в узлах решетки?

Демонстрация кристаллических решеток углекислого газа и йода.

Молекулярная кристаллическая решетка

Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H2,O2,N2, I2, O3, белый фосфор Р4, но и сложные: твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи, способны к возгонке.

Вопрос: Какой процесс называется возгонкой или сублимацией?

Ответ: Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией.

Демонстрация опыта: возгонка бензойной кислоты (видеоопыт).

Работа с заполненной таблицей.

Приложение 1. (Слайд 17)

Кристаллические решетки, вид связи и свойства веществ

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ-металлов- металлическая кристаллическая решетка; для неметаллов - атомная или молекулярная.

Работа с Периодической системой Д.И.Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IY A,Y A, YI A, YII A, YIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O, галогены и благородные газы).

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA (кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IY A и бора в простом веществе кристаллическая решетка атомная; а у элементов Y A, YI A, YII A, YIII A в простых веществах кристаллическая решетка молекулярная.

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод:

Существует следующая закономерность: если известно строение веществ, то можно предсказать их свойства, или наоборот: если известны свойства веществ, то можно определить строение. (Cлайд 18).

Учитель: Посмотрите внимательно на таблицу. Какую еще классификацию веществ вы можете предложить?

Если ученики затрудняются, то учитель объясняет, что вещества можно разделить на вещества молекулярного и немолекулярного строения. (Cлайд 19).

Вещества молекулярного строения состоят из молекул.

Вещества немолекулярного строения состоят из атомов, ионов.

Закон постоянства состава

Учитель: Сегодня мы познакомимся с одним из основных законом химии. Это закон постоянства состава, который был открыт французским химиком Ж.Л.Прустом. Закон справедлив только для веществ молекулярного строения. В настоящее время закон читается так:”Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства”. Но для веществ с немолекулярным строением этот закон не всегда справедлив.

Теоретическое и практическое значение закона состоит в том, что на его основе состав веществ можно выразить с помощью химических формул(для многих веществ немолекулярного строения химическая формула показывает состав не реально существующей, а условной молекулы).

Вывод: химическая формула вещества заключает в себе большую информацию. (Cлайд 21)

1. Конкретное вещество - серный газ, или оксид серы (YI).

2.Тип вещества - сложное; класс - оксид.

3. Качественный состав - состоит из двух элементов: серы и кислорода.

4. Количественный состав - молекула состоит из1 атома серы и 3 атомов кислорода.

5.Относительная молекулярная масса - Mr(SO3)= 32 + 3 * 16 = 80.

6. Молярная масса - М(SO3) = 80 г/моль.

7. Много другой информации.

Закрепление и применение полученных знаний

Игра в крестики-нолики: зачеркните по вертикали, горизонтали, диагонали вещества, имеющие одинаковую кристаллическую решетку.

§ 34. Электрический ток в металлах

Металлы в твёрдом состоянии, как известно, имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку.

В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов (рис. 53).

Кристаллическая решётка металла

Рис. 53. Кристаллическая решётка металла

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.

Итак, электрический ток в металлах представляет собой упорядоченное движение свободных электронов.


Мандельштам Леонид Исаакович (1879—1944)
Российский физик, академик. Внёс существенный вклад в развитие радиофизики и радиотехники.

Папалекси Николай Дмитриевич

Папалекси Николай Дмитриевич (1880—1947)
Российский физик, академик. Занимался исследованиями в области радиотехники, радиофизики, радиоастрономии.

Доказательством того, что ток в металлах обусловлен электронами, явились опыты физиков нашей страны Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмена.

Скорость движения самих электронов в проводнике под действием электрического поля невелика — несколько миллиметров в секунду, а иногда и еще меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/с), распространяется по всей длине проводника.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.

Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля — с распространением давления воды. При подъёме воды в водонапорную башню давление (напор) воды очень быстро распространяется по всей водопроводной системе. Когда мы открываем кран, то вода уже находится под давлением и сразу начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, так как движение воды происходит с меньшей скоростью, чем распространение давления.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Электрический ток в металлах

Электрический ток в металлах

Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.

Вопросы

  1. Как объяснить, что в обычных условиях металл электрически нейтрален?
  2. Что происходит с электронами металла при возникновении в нём электрического поля?
  3. Что представляет собой электрический ток в металле?
  4. Какую скорость имеют в виду, когда говорят о скорости распространения электрического тока в проводнике?

Задание

Используя Интернет, найдите, с какой скоростью движутся электроны в металлах. Сравните её со скоростью света.

1. Типы кристаллических решёток

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц.

Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой .

Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

crystal-955935_640.jpg

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

4.png

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния(\(IV\)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом.

У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма — \(1728\) °С, а у графита она выше — \(4000\) °С.

2.png

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения .

Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние.

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами ( He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8 ).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд , иод , твёрдые аммиак , кислоты , оксиды большинства неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы ( нафталин , сахар , глюкоза ).

9.png

Iod_kristall.jpg

Попробуем определить, каковы примерно температуры плавления у фторида натрия , фтороводорода и фтора .

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF , HF и F 2 составляют соответственно \(995\) °С, \(–83\) °С, \(–220\) °С.

Читайте также: