Цветные металлы их сплавы и применение в машиностроении
В современном машиностроении цветные металлы и сплавы имеют широкое применение, а в некоторых отраслях, например самолетостроении, радиотехнике, приборостроении и электротехнике, являются основными материалами.
К цветным металлам относятся: медь, алюминий, магний, никель, свинец, олово, цинк и др., а также сплавы на их основе.
Медь и ее сплавы. Медь имеет красный цвет. Низкое электросопротивление сделало медь одним из основных материалов для изготовления проводников электрического тока. Высокая пластичность меди позволяет получать из нее обработкой давлением в холодном и горячем состоянии тонкую проволоку (диаметром 0,02—0,03 мм) и фольгу толщиной 0,05—0,06 мм. Большое применение имеют сплавы на медной основе — латуни и бронзы. Сплавы меди с цинком называются латунями; сплавы меди
с оловом, свинцом, алюминием, марганцем, никелем, бериллием и другими элементами называют бронзами.
7. Химический состав литейных латуней, %
Латуни. Добавка в медь цинка повышает прочность и удешевляет стоимость изделий. В зависимости от назначения различают латуни, применяемые для изготовления отливок, и латуни для обработки давлением (прокаткой, штамповкой, ковкой). Некоторые марки и назначение литейных латуней приведены в табл. 7 (ГОСТ 17711—72).
Латунные изделия, полученные холодной обработкой давлением, необходимо подвергать отпуску при температуре 200° С в течение 1,5—2 ч для частичного снятия внутренних напряжений. Без этой обработки в деталях обнаруживается изменение размеров и самопроизвольное растрескивание, в особенности при наличии газовой среды, седержащей аммиак.
Бронзы. В зависимости от химического состава бронзы делятся на оловянистые и безоловянистые (специальные). Добавка в медь олова улучшает литейные свойства сплава (повышает жидкотекучесть и уменьшает усадку) и обрабатываемость, повышает его коррозионную стойкость и механические свойства. В бронзах, кроме олова, содержатся цинк, свинец и другие элементы, улучшающие их свойства. Марки и назначение литейных бронз приведены в табл. 8 (ГОСТ 613—65).
Деформируемые оловянистые бронзы (ГОСТ 5017—74) выпускаются в виде листа, прутков, трубок, ленты, проволоки различных толщин и сечений. Многие детали из них изготавливаются штамповкой и прессовкой.
Алюминий и его сплавы. Алюминий является распространенным металлом; он почти в три раза легче железа. Алюминий имеет удовлетворительную коррозионную стойкость благодаря образующейся на поверхности пленки окислов, которая защищает от окисления нижележащие слои металла. Из-за высокой электропроводности и пластичности алюминий является одним из наиболее употребительных материалов для изготовления токоведущих шин, проводов и кабелей, труб и специальных про-филей. Большое применение нашел алюминий для изготовления посуды.
Алюминиевые сплавы делятся на литейные и деформируемые.
Алюминиевые сплавы имеют хорошие литейные свойства, легко обрабатываются и обладают высокими механическими свойствами после термической обработки. Наибольшее распространение получили сплавы алюминия с кремнием, медью и магнием (силумины). Эти сплавы, подвергнутые операции модифицирования (с помощью натрия или его фтористой соли), приобретают мелкокристаллическую структуру и более высокие механические свойства. Марки и химический состав некоторых литейных алюминиевых сплавов приведены в табл. 9 (ГОСТ 2685—75).
Магний и его сплавы. Магний обладает большой активностью при взаимодействии с кислородом, а в виде порошка и тонкой ленты сгорает на воздухе. Широкое распространение магний получил для изготовления сверхлегких сплавов (типа электрон). Магниевые сплавы легки, обладают сравнительно большой прочностью, при механической обработке допускают высокие скорости резания. В табл. 10 приведены некоторые магниевые сплавы и указано их назначение (ГОСТ 2856—68 *).
Какие материалы используются в машиностроении?
Не все материалы пригодны ля изготовления машиностроительных изделий. Например, гранит характеризуется высокой твёрдостью, но чрезвычайно сложен в обработке, а керамика обладает повышенной хрупкостью. Материалы в машиностроении – это вещества искусственного или естественного происхождения, которые способны обрабатываться любыми способами без нарушения своей целостности.
Металлы и сплавы, используемые в машиностроении
Материалы, которые находят применение в качестве сырья для любого вида строительства или производства организованным способом инженерного применения, известны как инженерные материалы. Например, компьютер, соковыжималка, станок или ручка, которые мы используем, производятся с помощью контролируемых инженерных процессов. При этом используются такие материалы, как разнообразные пластмассы, медь, алюминий, олово и т. д.
Всё, что мы используем в повседневной жизни, может быть адаптировано для использования в конкретных случаях. Это можно сделать эффективно, если нам заранее известны свойства каждого материала. Таким образом, любое вещество тщательно тестируется на предмет характерных ему свойств, после чего может быть отнесено к одной из следующих групп:
- металлы;
- неметаллы;
- полимеры;
- нановещества;
- композиты.
По совокупным свойствам представителей этих групп можно узнать о сферах их целесообразной применимости. Преобладающее положение в этой структуре занимают металлы – чёрные и цветные, а также их сплавы.
Металлы обычно характеризуются чётко выраженной кристаллической структурой и связаны между собой характерными связями, устойчивость которых поддерживается электронным облаком. Оно, в частности, определяет высокую электро- и теплопроводность, блеск, твёрдость и, в большинстве случаев – высокую пластичность.
Чугун
Чугун - это сплав железа с углеродом, при содержании последнего в металлической матрице свыше 2,14 %. Кроме углерода, в чугуне содержится также 1…3% кремния и ряд второстепенных элементов. Чугун также можно модифицировать путём легирования небольшими количествами марганца, молибдена, церия, никеля, меди, ванадия и титана, которые добавляются в исходное сырьё перед литьём.
В зависимости от содержания кремния в чугуне он подразделяется на белый или серый чугун, а также ковкий чугун, который отличается повышенной механической обрабатываемостью.
Широкое применение чугуна обусловлено его отличными литейными характеристиками и дешевизной. Кроме того, свойства чугуна можно легко изменить, регулируя состав и скорость охлаждения без значительных изменений в технологии производства.
Чугун имеет ряд преимуществ перед обычной сталью, среди которых:
- простота обработки;
- виброустойчивость;
- стойкость против коррозии;
- прочность на сжатие.
Для увеличения коррозионной стойкости чугун легируют кремнием, никелем, хромом, молибденом и медью.
Машиностроительные материалы на основе серого чугуна используются при изготовлении блоков цилиндров двигателей внутреннего сгорания, массивных маховиков, картеров коробок передач, трубопроводов, роторов дисковых тормозов, кухонной посуды.
Из белого чугуна производят шламовые насосы, шаровые мельницы, подъемные штанги, экструзионные форсунки, миксеры для цемента, фитинги, фланцы, дробилки и пр. Благодаря хорошему пределу прочности на разрыв, вязкости и пластичности ковкий чугун используется для изготовления электрической арматуры и оборудования, ручных инструментов, шайб, кронштейнов, сельскохозяйственного оборудования, оборудования для горнодобывающей промышленности и т.п.
Сталь
Сталь - общий термин для большого семейства железоуглеродистых сплавов, которые являются пластичными в определённом температурном диапазоне сразу после затвердевания из расплавленного состояния.
Основное сырье, используемое в сталеплавильном производстве, - это железная руда, уголь и известняк. Эти материалы в доменной печи превращаются в продукт, называемый «чушковым чугуном». Он содержит значительные количества углерода, марганца, серы, фосфора и кремния, а потому, хотя и твёрд, но также и весьма хрупок, что делает его непригодным для прямой переработки готовую продукцию.
Сталеплавильное производство - это процесс рафинирования передельного чугуна, а также чугунного лома путём удаления нежелательных элементов из расплава.
Первичной реакцией в большинстве сталеплавильных производств является соединение углерода с кислородом с образованием газа. Если растворённый кислород не удалить из расплава, то газообразные продукты продолжат выделяться во время затвердевания. Чтобы избежать этого, сталь раскисляют добавляя необходимые раскисляющие элементы. Тогда газ не выделяется, и такую сталь называют спокойной. Соответственно при неполном раскислении стали называют полуспокойными. Степень раскисления влияет на некоторые свойства стали.
Помимо кислорода жидкая сталь содержит соизмеримые количества растворённого водорода и азота. Для некоторых марок сталей могут использоваться специальные методы раскисления, а также вакуумная обработка, уменьшающие количество и состав растворённых газов.
Стали также содержат различные количества других элементов, в основном марганец (который действует как раскислитель и облегчает обработку), кремний, фосфор и серу. Последние два химических элемента считаются примесями, и их количество при выплавке ограничивают.
Все марки сталей отличаются отличными литейными характеристиками и деформируемостью. Поэтому технология машиностроения, материалы в которой изучаются наиболее тщательно, считает сталь наиболее универсальным продуктом.
Твердые сплавы
Твёрдые сплавы - это металлические композиции на основе Fe, Ni или Co, которые содержат до 50 % твёрдой фазы. Это делает их идеальными для изготовления изделий, которые подвергаются значительным эксплуатационным нагрузкам, например, рабочих деталей металлорежущего и штампового инструмента.
Твёрдые сплавы получают методами порошковой металлургии, что позволяет в широких пределах изменять гранулометрический состав и фракционирование конечного продукта.
Алюминий и алюминиевые сплавы
Уникальное сочетание свойств делает алюминий и его сплавы одним из самых универсальных инженерных и строительных материалов. Простое перечисление эксплуатационных характеристик впечатляют: лёгкость, прочность, коррозионная стойкость, нетоксичность.
Алюминий и его сплавы обладают хорошей электро- и теплопроводностью, а также высокой отражательной способностью для тепла и света. Данные металлы пластичны и легко принимают широкий спектр отделки поверхности.
Прочность чистого алюминия относительно невысока, поэтому для отвественных применений используют сплавы алюминия с марганцем, цинком, медью и кремнием, а также упрочняют полуфабрикат в процессе его пластической деформации или термообработки.
Другие металлы
Из остальных металлов применение в машиностроении находят:
- Медь и её сплавы (электротехническое и электронное машиностроение).
- Свинец (атомная энергетика).
- Олово (точное приборостроение).
- Хром, никель, молибден (производство нержавеющих сталей, энергетическое машиностроение).
- Титан (аэрокосмическая промышленность).
- Вольфрам (оборонная промышленность).
В качестве легирующих добавок используют также ванадий, ниобий, кобальт и ряд других металлов.
Неметаллические материалы в машиностроении
В основном, используются искусственно созданные композиции, например, полимеры. Они аморфны по природе, поэтому не имеют кристаллической структуры, отличаются низкой теплопроводностью, являются диэлектриками.
Полимеры термостойки и эластичны, при высокой молекулярной массе имеют низкую плотность. Находят применение в электротехнике, машиностроительных узлах, действующих в условиях повышенного трения, при производстве приборов.
Из материалов естественного происхождения необходимо выделить слюду, которая широко используется в радиоприборостроении.
Важно: все материалы, применяемые в машиностроении, должны отвечать экологическим нормам.
Цветные металлы и сплавы. Марки, свойства и применение
Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и дру гие метадгы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.
1. Медь и ее сплавы
В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, ради- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.
ГОСТ 859-2001 предусматривает следующие марки меди:
- катодная — МВ4к, МООк, МОку, МОк, М1к;
- бескислородная — М006, М06, М1б;
- катодная переплавленная — Mly, Ml;
- раскисленная — М1р, М1ф, М2р, МЗр, М2, М3 (для раскисления используется фосфористая медь).
Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.
По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.
2. Латунь
Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.
В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 — 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникель- кремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 -75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное — цинк.
По сравнению с медью латуни обладают большей прочностью, коррозионной стойкостью и упругостью. Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки- молнии, подшипники скольжения и разную фурнитуру. В табл. 27 приводятся марки этих латуней, их основные свойства и области применения.
Таблица 27. Латуний, их основные свойства и применение
Литейные латуни поставляются в виде чушек ( ГОСТ 1020-97) и служат сырьем для получения латуней определенных марок для фасонных отливок (ГОСТ 17711-93) — это различная арматура, работающая при температурах до 250°С и подвергающаяся гидровоздушным испытаниям; детали, работающие в морской воде (при условии их протекторной защиты); подшипники и втулки неответственного назначения, гайки нажимных винтов, детали без притираемых поверхностей, сепараторы подшипников, шестерни, детали, подвергающиеся лужению или заливке баббитом; детали судо- и автомобилестроения и др. (табл. 28).
Таблица 28. Марки литейных латуней
ГОСТ 17711-80 кроме химического состава нормирует механические свойства медноцинковых сплавов: предел прочности σв — от 146 до 705 МПа (от 15 до 72 кгс/мм 2 ), относительное удлинение δ — от 6 до 20%, твердость — от 587 до 1600 МПа (от 60 до 165 кгс/мм 2 ).
Цветные металлы и сплавы. Cвойства, марки и их применение
Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.
В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.
В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 – 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникелькремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 – 75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное – цинк.
Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки-молнии, подшипники скольжения и разную фурнитуру.
3. Бронза
Бронза — сплав на основе меди, в котором в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяются на литейные и деформируемые. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляются буквы Бр, означающие — «бронза».
Основные составы сплавов бронз, применяемых в качестве исходного материала для изготовления деталей:
Безоловянные литейные бронзы
- БрА9Мц2Л, БрА10Мц2Л – антифрикционные детали и арматура, работающая в пресной воде, жидком топливе и паре при температурах до 250о С; и др.
Оловянные литейные бронзы
- БрОЗЦ12С5 – арматура общего назначения;
- БрОЗЦ7С5Н1 – детали, работающие в масле, паре и в пресной воде;
- БрО4Ц7С5 – арматура и антифрикционные детали и др.
- БрА5 – деформируется в холодном и горячем состояниях, коррозионностойкая, жаропрочная, стойкая к истиранию; предназначена для изготовления монет, деталей машин, работающих в морской воде и в химических средах;
- БрА7 – деформируется в холодном состоянии, жаропрочная, стойкая к истиранию, коррозионностойкая к серной и уксусной кислотам; применяется для изготовления деталей химического машиностроения и скользящих контактов;
- БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1 – деформируются в горячем состоянии, обладают высокой прочностью при повышенных температурах, хорошей эрозионной, кавитационной и коррозионной стойкостью; из этих бронз производят трубные доски конденсаторов и детали химической аппаратуры; БрАМц9-2 – характеризуется высоким сопротивлением при знакопеременной нагрузке; рекомендуется для изготовления износостойких деталей, винтов, валов, деталей гидравлических установок и трубных досок конденсаторов;
- БрАМц10-2 – имеет высокое сопротивление при знакопеременной нагрузке; пригодна для выполнения заготовок и фасонного литья в судостроении;
- БрАЖ9-4 – обладает высокими механическими и антифрикционными свойствами, коррозионностойкая; рекомендуется для производства шестерен, втулок и седел клапанов для авиапромышленности, отливки массивных деталей для машиностроения.
- БрБ2 ,БрБНТ1,7, БрБНТ1,9, БрБНТ1,9Мг – обладают высокой прочностью и износостойкостью, хорошими пружинящими и антифрикционными свойствами, средней электропроводностью и теплопроводностью, деформируются в закаленном состоянии. Из этих бронз изготовляют пружины и пружинящие детали ответственного назначения, износостойкие детали всех видов, неискрящий инструмент.
- БрКМц3-1 — коррозионностойкая, жаропрочная, имеет высокое сопротивление сжатию, пригодна для сварки; применяется для изготовления деталей для химических аппаратов, пружин и пружинящих деталей, сварных конструкций и деталей для судостроения;
- БрКШ-3 – обладает высокими механическими, технологическими и антифрикционными свойствами, коррозионностойкая; предназначена для производства ответственных деталей в моторостроении, а также направляющих втулок.
- БрМц6 – имеет высокие механические свойства, хорошо деформируется в горячем и холодном состояниях, коррозионностойкая, жаропрочная. Из этой бронзы изготовляют детали, работающие при повышенных температурах.
Кадмиевая и магниевая бронзы
- БрКд1 и БрМг0,3 – отличаются высокой электропроводностью и жаропрочностью. Их используют при производстве коллекторов электродвигателей и деталей машин контактной сварки.
- БрСр0,1 – предназначена для изготовления коммутаторов, коллекторных колец и обмотки роторов турбогенераторов.
- CuCrl – предназначена для производства сварочных электродов, электродеталей и оборудования сварочных машин.
- CuFeP – выполняют детали, обрабатываемые на автоматах, элементы телетехнических, радиотехнических, электротехнических и электронных устройств.
4. Алюминий и его сплавы
Алюминий по распространенности в природе занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа.
Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая надежно защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия — небольшая плотность — 2,7 г/см3, т.е. он в три раза легче железа. Температура плавления его 660°С, теплоемкость — 0,222 кал/г, теплопроводность при 20°С – 0,52 кал/(см·с·оС), удельное электрическое сопротивление при 0°С – 0,286 Ом/(мм2·м). Механические свойства алюминия невысоки: сопротивление на разрыв – 50– 90 МПа (5–9 кгс/мм2), относительное удлинение – 25–45%, твердость – 13–28 НВ. Высокая пластичность (максимальная пластичность достигается отжигом при температурах 350–410°С) этого металла позволяет прокатывать его в очень тонкие листы (фольга имеет толщину до 0,005 мм). Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8%. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Кристаллическая решетка алюминия — куб с центрированными гранями, а=0,404 Нм (4,04 А).
Алюминий и его сплавы необходимы для самолето- и машиностроения, строительства зданий, линий электропередач, подвижного состава железных дорог. В металлургии алюминий служит для получения чистых и редких металлов, а также для раскисления стали. Из него изготовляют различные емкости и арматуру для химической промышленности. В пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое применение получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют как декоративный материал.
Исходным материалом для получения алюминиевых сплавов является первичный алюминий. Марки первичного алюминия: особой чистоты — А999, высокой чистоты — А995, А99, А97, А95, технической чистоты — А85, А8, А7, А7Е, А6, А5 ,А5Е, А0.
Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например: сплав АК7М2п – 7% кремния, 2% меди, остальное – алюминий, АК21М2,5Н2,5 – 21% кремния, 2,5% меди, 2,5% никеля, остальное – алюминий.
Для изготовления фасонных отливок предусмотрено пять групп алюминиевых литейных сплавов:
- на основе алюминий — кремний — АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9- 1, АЛ34, АК9, АК7;
- на основе алюминий — кремний — медь — АЛЗ, АЛ5, АЛ5-1, АЛ6, АЛ32, АК5М2, АК5М7, АК7М2, АК4М4;
- на основе алюминий — медь — АЛ7, АЛ19,АЛЗЗ;
- на основе алюминий — магний — АЛ8, АЛ13, АЛ22, АЛ23, АЛ23- 1, АЛ27, АЛ27-1, АЛ28;
- на основе алюминий — прочие компоненты — АЛ1, АЛ11, АЛ21, АЛ24, АЛ25, АЛЗ0, АК21М2,5Н2,5, АК4М2Ц6.
Сплав алюминия с кремнием — силумин (в чушках), используемый для производства литейных и обрабатываемых давлением алюминиевых сплавов.
Силумин изготовляется четырех марок — СИЛ-00, СИЛ-0, СИЛ-1 и СИЛ-2. Увеличение номера в обозначении марки сплава указывает на рост примесей в нем.
На поверхность чушек силумина несмываемой и невыцветаемой цветной краской наносится буква С, цвет которой соответствует определенной марке: синий – СИЛ-00, белый – СИЛ-0, красный – СИЛ-1, черный – СИЛ-2.
Алюминий и алюминиевые деформируемые сплавы, предназначенные для изготовления полуфабрикатов (листов, лент, полос, плит, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) методом горячей и холодной деформации, а также слитков и слябов.
Алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья, а также монометаллических и биметаллических лент и полос путем прокатки с последующей штамповкой из них вкладышей, нормируются ГОСТ 14113-78. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов с указанием назначения каждого сплава:
- АОЗ-7, АО9-2 – отливки монометаллических вкладышей и втулок;
- АО6-1, АО9-1, АО20-1 – биметаллические ленты и вкладыши; толщина антифрикционного слоя — 1 мм;
- АН2-5 – отливки вкладышей, монометаллические и биметаллические ленты; толщина антифрикционного слоя — менее 0,5 мм;
- АСМ, АМСТ – биметаллические ленты и вкладыши; толщина антифрикционного слоя — менее 0,5 мм.
5. Цинк и его сплавы
Сплав цинка с медью — латунь. Цинк — металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.
Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:
- ЦАМ4-10 — особо ответственные детали;
- ЦАМ4-1 — ответственные детали;
- ЦАМ4-1в — неответственные детали;
- ЦА4о — ответственные детали с устойчивыми размерами;
- ЦА4 — неответственные детали с устойчивыми размерами.
Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:
- ЦАМ9-1,5Л — отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка — 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
- ЦАМ9-1,5 — получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка — до МПа (250 кгс/см2), скорость скольжения — до 15 м/с, температура 100о С;
- ЦАМ10-5Л — отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80о С;
- ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения — до 8 м/с, температура 80о С.
6. Титан и его сплавы
Титан — металл серебристо-белого цвета, один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61%) он занимает десятое место. Титан легок (плотность его 4,5 г/см3), тугоплавок (температура плавления 1665°С), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. Титан устойчив против кавитационной коррозии и под напряжением. При температурах до 882°С он имеет гексагональную плотно упакованную решетку, при более высоких температурах — объемно-центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300–1200 МПа (30–120 кгс/мм2), относительное удлинение – 4–30%. Предел прочности титановых сплавов – 350–1000 МПа (35–100 кгс/мм2), относительное удлинение – 4–10%.
Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Двуокись титана применяется при производстве белил и эмалей.
Для изготовления полуфабрикатов предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава предусмотрены следующие марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВT3-1, ВТ9, ВТ14, ВТ16, ВТ20, ВТ22, ПТ-7М, ПТ-ЭВ, ПT-1M. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.
7. Припои
Припои — металл или сплав, предназначенный для соединения деталей пайкой. Температура плавления припоев должна быть ниже температуры плавления материалов паяемых деталей.
Припои разделяют на мягкие (tпл≤400 °С) и твердые (tпл >400 °С). Основные материалы мягких припоев — сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П — припой, ОС — оловянно-свинцовый, 61 — содержание олова в процентах. Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 — содержание серебра, %) или на медно-латунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе — для пайки углеродистых и легированных сталей, никеля и его сплавов.
Таблица 4. Области применения оловянно-свинцовых припоев
Цветные металлы: сплавы, свойства, применение
Цветные металлы и их сплавы применяют в качестве конструкционных материалов, от которых требуются ценные эксплуатационные свойства – коррозионная стойкость, низкий коэффициент трения, жаропрочность и жаростойкость.
К этой группе не принадлежат железо и сплавы на его основе – стали и чугуны, которые называют черными металлами. К цветным металлам, широко востребованным в промышленности, относятся медь, алюминий и титан. В чистом виде они используются редко, в основном их применяют в виде сплавов.
Медь – обозначение, виды по чистоте, характеристики
Медь – цветной металл, имеет поверхность красноватого оттенка, излом – розового. Символ – Cu. В природе встречается в составе сернистых соединений, оксидов, реже – в чистом виде. Физические характеристики чистого Cu:
- высокие – пластичность, электропроводность, теплопроводность;
- хорошая устойчивость к коррозионному разрушению;
- удельный вес – 8940 кг/м3;
- температура плавления – +1083 °C.
Присутствие примесей может значительно снижать показатели электро- и теплопроводности.
Кратко перечислим важные технологические характеристики:
- хорошая обрабатываемость давлением, что позволяет получать различные типы медного проката;
- затрудненная обрабатываемость резанием из-за повышенной пластичности;
- низкие литейные качества из-за протекания значительных усадочных процессов;
- возможность соединять отдельные медные элементы сваркой или пайкой.
В маркировке медь обозначается буквой М, после которой стоят цифры, характеризующие чистоту металла. Самая чистая медь содержит 99,99 % Cu. После цифр могут стоять буквы: к – катодная, р – раскисленная, б – бескислородная. Марки и состав меди регламентирует ГОСТ 859-2014.
Основная область применения меди различных степеней чистоты – электротехника, изготовление электрических проводов и кабелей.
Сплавы на основе меди – виды, краткие сведения
Основные сплавы на основе меди, широко используемые в различных отраслях промышленности, – латуни и бронзы.
Латуни – виды, характеристики
К латуням относятся медные сплавы с цинком, процентное содержание которого составляет 5-45 %. При содержании Zn 5-10 % сплавы сохраняют красноватый цвет. Их часто используют в ювелирном деле для имитации золота. Эти разновидности латуни иначе называются: томпак, симилор, хризохалк, хризорин, ореид. При содержании цинка более 20 % латуни имеют желтый цвет.
По количеству компонентов латунные сплавы разделяют на:
- Двухкомпонентные – содержат медь, цинк и примеси в незначительных количествах. Обозначаются буквой Л и цифровой группой, характеризующей содержание Cu в процентах. Такие сплавы, благодаря хорошей обрабатываемости давлением, используют при производстве прокаткой или прессованием различных полуфабрикатов: листового латунного металлопроката, труб, прутков, профилей, проволоки. Химический состав деформируемых латуней (предназначенных для обработки давлением) приведен в таблицах ГОСТа 15527-2004.
- Многокомпонентые – в качестве дополнительных элементов используются алюминий,марганец, никель, свинец, олово. В маркировке после буквы Л указывается наименование дополнительного компонента и цифровые группы, характеризующие количество в процентах меди и легирующих компонентов. Многокомпонентные латуни часто относятся к категории литейных, используемых при производстве отливок. Их марки определяет ГОСТ 17711-93.
Бронзы – определение, разновидности, характеристики
Бронзами называют сплавы на основе меди, в которых цинк не относится к основным компонентам. К этой категории также не принадлежат медно-никелевые сплавы (мельхиоры). В маркировке ставят буквы Бр, после которых указывают элементы, присутствующие в составе, и их содержание в процентах. Легирующие компоненты в бронзах: олово, бериллий, свинец, кремний, алюминий.
Большинство бронз отличается хорошими литейными качествами, что позволяет применять их при производстве фасонных отливок. Часто эти сплавы востребованы при производстве деталей, к которым предъявляются высокие требования по коррозионной стойкости и антифрикционным характеристикам. Это зубчатые и червячные колеса, седла клапанов, втулки.
Алюминий – обозначение, виды по чистоте, характеристики
Алюминий – пластичный металл серебристо-белого цвета. В чистом виде в природе не встречается. Его получают по технологии электролиза из алюминиевой руды – бокситов. Он легкий, инертный по отношению к окружающей среде, обладает хорошей электропроводностью, которая составляет 60 % от аналогичного показателя меди. На поверхности этого металла появляется оксидная пленка, которая предотвращает коррозионное разрушение полуфабрикатов и изделий. Оксид алюминия безвреден. Этот металл легко подвергается деформации, хорошо сваривается, но из-за высокой пластичности плохо подвергается обработке режущим инструментом. Имеет высокий коэффициент линейной усадки. Температура плавления: +660 °C.
Первичный алюминий обозначается буквой А и числом, которое характеризует степень чистоты: особую, высокую и техническую. В химическом составе металла самой высокой чистоты содержится 99,9996 % Al. Требования к этому металлу, выпускаемому в виде чушек, слитков, ленты, катанки, определяет ГОСТ 11069-2019. Требования к материалам, предназначенным для изготовления полуфабрикатов способами горячей и холодной деформации – листов, плит, полос, профилей, регламентирует ГОСТ 4784-2019.
Алюминий чаще всего используют при производстве электрических проводов, кабелей, испарителей.
Сплавы на основе алюминия – виды, их характеристики
На базе этого металла производят две основные группы сплавов – деформируемые и упрочняемые.
Деформируемые
Деформируемыми называют сплавы, используемые при производстве алюминиевого металлопроката и прессованных металлоизделий. Деформируемые материалы делят на упрочняемые и неупрочняемые. Упрочняемые разновидности разделяют на:
- Дюралюмины, содержащие помимо Al, медь и магний. Обозначаются буквой Д и числом, характеризующим состав.
- Высокопрочные – в их составе имеются медь, магний и цинк. Обозначаются буквой В и числом.
Характерная черта этих материалов – сочетание хороших механических характеристик и небольшой массы. Она делает их незаменимыми при производстве деталей в авиа- и машиностроении. Из высокопрочных разновидностей изготавливают изделия сложной формы, вертолетные лопасти, детали, запланированные для восприятия существенных нагрузок.
Неупрочняемые разновидности содержат в составе, помимо AL, марганец или магний. Выпускаются чаще всего в виде листового проката. Его выбирают для деталей сложной формы, которые в процессе изготовления подвергаются прокатке, вытяжке, штамповке при комнатных и повышенных температурах.
Литейные
Свойства литейных марок регламентирует ГОСТ 1583-93. Широкой популярностью пользуются литейные материалы на основе алюминия и кремния, называемые силуминами. Они маркируются буквами АК, после которых указывается номер марки. Силумины, сочетающие небольшую плотность с хорошими литейными и механическими характеристиками, часто востребованы при изготовлении бытовых приборов, авто- и мотодеталей, функционально-декоративных предметов интерьера.
Титан и сплавы на его основе
Из технически чистого титана и сплавов на его основе производят цветной металлопрокат и отливки с ценными техническими свойствами:
- сочетание относительно невысокой удельной массы с прекрасными прочностными качествами;
- устойчивость к различным видам коррозии, химическая инертность по отношению ко многим агрессивным средам;
- способность к обработке давлением;
- возможность эксплуатации титановых деталей и конструкций при повышенных температурах.
Основной недостаток титана и его производных – высокая стоимость, которая ограничивает их применение в бытовой технике. Основные области их использования – авиатехника, машино-, судостроение, при изготовлении газовых баллонов, эксплуатируемых под высоким давлением, в космической технике.
Читайте также: