Производство керамического кирпича курсовая
Производство керамического кирпича пластическим способом формования
Павлодарский государственный университет им. С. Торайгырова
Кафедра архитектуры и дизайна
Курсовой проект по дисциплине "Строительная керамика 2"
На тему: "Производство керамического кирпича пластическим способом формования"
Павлодар 2019
Исходные данные
Производительность 50 млн штук условного кирпича в год, пластическим способом формования
В данной курсовой работе разработан завод по производству керамического кирпича. Работа включает в себя пояснительную записку (35 страниц) и чертеж технологической схемы и плана производства ( лист А1)
Содержание
1.1 Пояснительная записка
Введение
1 Номенклатура выпускаемой продукции
2 Технологическая часть
2.1 Выбор способа производства
2.2 Режим работы цеха
2.3 Производительность цеха
2.4 Характеристика сырьевых материалов и расчет потребности в них
2.5 Схема технологического процесса. Построение и описание
2.6 Расчет и выбор основного технологического оборудования
2.7 Штатная ведомость
3 Контроль качества продукции
4 Технико-экономическая часть
5 Экономия электроэнергии и топлива
4 Охрана труда и окружающей среды
Заключение
1.2 Графическая часть
технологическая схема производства, план основного производственного корпуса
Состав: Технологическая схема производства керамического кирпича, план основного производственного корпуса
Курсовая работа. Курсовая работа "Производство керамического кирпича"
Введение
Отрасль промышленности - это совокупность предприятий, специализированных на выпуске однородной продукции.
Технология - это наука о методах и способах переработки сырья в предметы потребления.
Любой технологический процесс - совокупность взаимосвязанных основных, вспомогательных и обслуживающих процессов.
Основным технологическим процессом является такой, в результате которого предметы труда превращаются в готовую продукцию, характерную для данного предприятия (кирпич, ЖБИ и др.).
Вспомогательные процессы, характеризуются получением продукции, не являющейся основой данного предприятия (воздух, пар, ремонт оборудования и др.).
Обслуживающие процессы создают условия для осуществления основных и вспомогательных процессов (транспорт, технический контроль и др.).
Процесс производства материала состоит из отдельных стадий или переделов, которые в свою очередь подразделяются на ряд технологических операций, выполняемых в строго определенной последовательности.
Технологическая операция состоит из отдельных элементов, представляющих собой законченное трудовое действие, и характеризуется неизменностью объекта обработки, рабочего места и исполнителей. Операции могут быть ручные, машинные, автоматические и аппаратные.
Последовательность основных переделов в промышленности строительных материалов осуществляется через подготовку исходных компонентов, смешивание этих компонентов, формование полуфабрикатов, тепловую обработку.
Дополнительные процессы: механическая обработка, отделка, резка и т.д.
Классификация основных процессов в технологии строительных материалов может быть приведена на основе различных признаков.
В зависимости от основных законов, определяющих скорость протекания процессов, различают:
- механические процессы, основой которых является механическое воздействие на исходные материалы, описываемые законами механики твердых тел (измельчение, сортировка, смешение и транспортировка твердых компонентов);
- гидромеханические процессы, скорость которых определяется законами гидродинамики - наукой о движении жидкостей и газов; движущей силой процесса является гидростатическое и гидродинамическое давление. К ним относятся перемещения и перемешивание жидкостей и газов. Разделение жидких неоднородных систем под действием сил тяжести и центробежных сил. Движение твердых тел в жидкости или газе;
- тепловые и массообменные процессы, скорость которых определяется законами теплопередачи - наука о способах распространения теплоты, и законами молекулярной диффузии;
- химические процессы, протекающие со скоростью, определяемой законами химической кинетики (гидратации цемента, реакции полимеризации и поликонденсации и др.).
По способу организации основных процессов подразделяются на периодические и непрерывные.
Периодические процессы проводятся в установках, характеризуемых тем, что все стадии процесса протекают в одном месте, но в разное время. Пример: автоклавная обработка: изделие на месте в автоклаве, но процессы нагрева, изотермы, спада температуры в разное время.
Непрерывные процессы, характеризуются единством времени протекания отдельных стадий процесса, но осуществляются в разных местах установки, выполняющего одну технологическую операцию. Пример: тепловлажностная обработка бетона в щелевых проточных камерах.
Продолжительность процесса (t) - время, необходимое для завершения всех стадий процесса, начиная от момента загрузки и кончая выгрузкой готового продукта или полуфабриката.
Период процесса (Т) - время от начала загрузки исходного материала данной партии до начала загрузки материала последующей партии.
t /Т -- степень непрерывности процесса.
Для периодического процесса Т > 0 и t /Т ? 1.
Для непрерывного - период процесса Т > 0, и степень непрерывности >?.
При разработке данной курсовой работы были поставлены цели:
- описать техническую характеристику выпускаемой продукции;
- представить характеристику сырья и полуфабрикатов;
- показать структурные, технологическую схемы производства;
- выполнить расчёт состава и материальный расчёт компонентов;
- произвести выбор технического оборудования, а также расчёт заданного оборудования и дать его характеристику;
- разработать правилаохраны труда и техники безопасности.
1. Техническая характеристика выпускаемой продукции
Кирпич -- искусственный камень правильной формы, используемый в качестве строительного материала, произведенный из минеральных материалов, обладающий свойствами камня, главное прочностью, водостойкостью, морозостойкостью. Наиболее известны три вида кирпича: гиперпрессованный кирпич, красный кирпич - из обожжённой глины и силикатный, состоящий из песка, извести и цемента.
Основные требования к качеству кирпича изложены в действующих в настоящее время стандарте ГОСТ 530-2007, пришедшем на смену ГОСТ 530-95 «Кирпич и камни керамические. Технические условия», и стандарт ГОСТ 7484-78 «Кирпич и камни керамические лицевые. Технические условия».
Глиняный обыкновенный кирпич имеет размеры 250*120* *65 мм; модульный --250*120*88 мм; поскольку масса модульного кирпича не должна превышать 4 кг, его изготовляют со сквозными или несквозными пустотами. В соответствии с существующим ГОСТ кирпич подразделяют на семь марок: 300, 250, 200, 150, 125, 100 и 75. (Марка кирпича характеризуется пределом прочности кирпича при сжатии, кгс/см 2 .).
Объемная масса кирпича находится в пределах 1700--1900 кг/м 3 , теплопроводность -- 0,81--0,87 Вт/(м*°С). Высушенный до постоянной массы кирпич должен иметь водопоглощение не менее 8%. По морозостойкости его подразделяют на четыре марки: 15, 25, 35 и 50. Глиняный обыкновенный кирпич применяют для кладки стен, изготовления кирпичных блоков, панелей и др.
Глиняный пустотелый кирпич производится из легкоплавких глин при более тщательной обработке глиняной массы (чем для обычного кирпича) методом пластического или полусухого прессования. Кирпич бывает пустотелый и пористо-пустотелый, изготовляется со сквозными или несквозными круглыми и щелевидными пустотами. Количество круглых пустот составляет от 13 до 115, а щелевых-- от 10 до 31.
Одинарный кирпич имеет размеры 250x120x65 и полуторный - 250x120 x88 мм. При пластическом формовании кирпича для получения пустот внутри мундштука ленточного пресса устанавливают специальные приспособления --керны. При полусухом прессовании керны крепятся в нижней части пресс-формы пресса.
Пустотелый и пористо-пустотелый кирпич в зависимости от предела прочности при сжатии и изгибе бывает различных марок: 150, 125, 100 и 75. По объемной массе кирпич пластического формования делится на классы: А -- с объемной массой до 1300 кг/м 3 и Б -- с объемной массой в пределах 1300--2450 кг/м 3 . Водопоглощение такого кирпича должно быть не менее 6 %.
Кирпич легкий строительный изготовляют из диатомитов (трепелов), а также из смесей их с глинами, с выгорающими добавками или без них путем обработки сырьевой массы, формования, сушки и обжига. Характерной особенностью его является меньшая объемная масса и пониженная теплопроводность по сравнению с обычным глиняным кирпичом. Легковесный кирпич выпускают размерами сторон 250x120x65 мм.
В зависимости от предела прочности при сжатии кирпич делится на марки: 100, 75, 50 и 35. Объемная масса кирпича находится в пределах 700--1450 кг/м 3 . Морозостойкость легковесного кирпича невелика, он должен выдерживать не меньше 10 циклов испытания на морозостойкость. Легковесный кирпич применяют для наружных и внутренних стен зданий и сооружений с нормальной влажностью помещений. Его нельзя применять для фундаментов и цоколей зданий и для влажных и мокрых помещений.
Номенклатура и техническая характеристика продукции, выпускаемой в данной курсовой работе представлены в таблице.
керамический кирпич технология строительный
2. Характеристика сырья и полуфабрикатов
В качестве сырья для производства керамического кирпича и керамических камней применяют:
- глинистые породы, встречающиеся в природе в плотном, рыхлом и пластическом состоянии, называемые в целом легкоплавкими глинами, а также трепельные и диатомитовые породы;
- органические и минеральные добавки, корректирующие свойства природного сырья (кварцевый песок, шлаки, шамот, опилки, уголь, зола и другие.);
- светложгущиеся огнеупорные и тугоплавкие глины, стекло, мел, отходы фарфорового производства, огнеупорного кирпича для получения офактуренного лицевого кирпича, изготавливаемого из легкоплавких глин.
Основным сырьём для производства кирпича являются легкоплавкие глины - горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 800 - 1000°С в камнеподобный материал.
Легкоплавкие глины относятся к остаточным и осадочным породам. Для производства кирпича наибольшее применение нашли элювиальные, ледниково-моренные, гумидные, аллювиальные, морские и некоторые другие глины и суглинки.
Для определения возможности использования глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства.
Наиболее ценной для производства кирпича является глинистая фракция, содержание которой не должно быть менее 20%.
Очень важно для характеристики глины содержание в ней глинозёма Аl2O3, повышающего технологические свойства сырья: в легкоплавких глинах оно колеблется в пределах от 10 до 15%.
Содержание кремнезёма SiO2 колеблется в пределах от 60 до 75%. В глинах часть кремнезёма находится в связанном виде в глинообразующих минералах и в несвязанном виде как примесь, обладающая свойством отощающих материалов.
Кальций содержится в глинах в виде карбонатов и сульфатов, а магний - в виде доломита. В некоторых сортах глин наличие кальция и магния в пересчете на их оксиды (CaO и MgO) достигает 25%, но, как правило, общее их содержание не превышает 5-10%. Обычно соединения кальция и магния отрицательно влияют на спекаемость и прочность керамических изделий. При наличии в глинистых породах свыше 20% карбонатных примесей они не могут использоваться без соответствующей обработки или обогащения. Оксиды железа, титана, марганца и других металлов содержатся в глинах в количестве до 10-12% и оказывают существенное влияние на целый ряд важнейших свойств керамических изделий. Наибольшее влияние оказывают оксиды железа, находящиеся в глине в виде оксида Fe2O3 и гидроокиси Fe(OH)3 и оксиды марганца MnO2. Они улучшают спекаемость изделий и придают им окраску.
Калий и натрий входят в глины в виде щелочных оксидов, содержание которых находится в пределах 3,5-5%.
Сера присутствует в глинах в различных соединениях, ее содержание не оказывает на качество стеновых керамических изделий.
Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты глинозема, содержащие кремнезем и окислы железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов.
В данной курсовой работе для производства керамического кирпича в качестве основного компонента используем глину.
частицы менее 1 мкм - не менее 15 %;
частицы менее 10 мкм - не менее 30 %.
Число пластичности: до 25.
Влажность 18 -22 %.
Коэффициент чувствительности к сушке 1,32 - 2,72;
Воздушная усадка 6 - 10 %.
Карбонатные включения более 3 мм не допускаются.
В качестве корректирующих добавок к сырью выбираем местные промышленные отходы (золы ТЭС) и песок.
Золы ТЭЦ представляют собой отходы от сжигания в пылевидном состоянии каменных углей. Добавка золы ТЭС делает кирпич менее чувствительным к сушке и повышает его прочность. Также золы ТЭС действуют как выгорающая добавка, т.к. в золе остается не выгоревшее твёрдое топливо (каменный уголь), которое выгорает, и, вследствие своего выгорания, интенсифицирует процесс обжига, улучшает спекаемость массы и тем самым повышает прочность изделий.
Влажность золы, поставляемой на завод, составляет 40 %.
Физические показатели песка:
- объёмная насыпная масса 1,6 т/м 3 ;
- одуль крупности 1,6 - 1,8.
В производстве керамического кирпича глина составляет основную часть шихты - 84%. Поскольку эта глина имеет число пластичности 25 и является среднечувствительной к сушке, целесообразно введение добавок. Для уменьшения числа пластичности глины вводится отощающая добавка (песок) - 6% и отощающая и выгорающая не полностью (зола) - 10%.
Песок- 6% (об.).
3. Структурные схемы производства
При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. При наличии рыхлых глин и глин средней плотности с влажностью не свыше 23-25% применяют пластический способ переработки глин; для слишком плотных глин, плохо поддающихся увлажнению и обработке с низкой карьерной влажностью (менее 14-16%) - полусухой способ переработки.
Полусухой способ подготовки массы заключаемся в грубом измельчении исходного сырья, его подсушивании, тонком измельчении, отсеве крупных включений, смешивании его с добавками и увлажнении. Применяют этот способ при наличии засоренного камневидными включениями глинистого сырья с плотной структурой и низкой карьерной влажностью. Такой способ обеспечивает достаточно полное удаление или тщательное измельчение каменистых включений, в том числе известковых, равномерное распределение добавок и сокращение, или даже исключение из технологического цикла сушки изделий.
Недостатки полусухого способа: необходимость сушки сырья перед помолом, повышенный износ оборудования при помоле, необходимость установки прессования изделий прессов большой мощности, обеспечивающих формование изделий под давлением 15--40 МПа.
Применяют полусухой способ в производстве обыкновенного и пустотелого глиняного кирпича, камней и керамических плиток.
Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья.
При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 50°С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку.
Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.
Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. Вакуумирование массы способствует повышению ее плотности, пластичности, улучшает формовочные и конечные свойства кирпича.
В курсовой работе использована схема производства изделий методом полусухого прессования, поскольку используемая глина обладает невысокой влажностью, малопластичная.
Курсовая работа. Курсовая работа "Производство керамического кирпича"
4. Технологическая схема производства
4.1 Складирование глинистого сырья
Легкоплавкие глины доставляются на кирпичные заводы из карьеров, расположенных вблизи заводов и являющихся их составной частью. Огнеупорные и тугоплавкие глины являются привозным сырьем, они добываются и поставляются керамическим заводам специализированными предприятиями.
Для бесперебойного снабжения кирпичных заводов в зимнее время талой глиной производят открытую разработку карьера с утеплением поверхностного слоя опилками, минераловатными плитами и др. Кроме того, на заводах создают в летний период запас глины в открытых котлованах и наземных штабелях высотой 6--8 м, либо в крытых складах -- глинохранилищах глубиной 4--6 м. Устройство промежуточных складов экономически целесообразно при небольшой толщине пласта глины в карьере (менее 2,5 м), необходимости транспортирования ее на завод на расстояние более 1 км и при возможности ее промерзания.
Организация промежуточных складов обеспечивает более ритмичную работу предприятия и позволяет улучшить свойства сырья путем усреднения его состава и перераспределения влаги. В котлованы глину завозят рельсовым транспортом либо автосамосвалами, в наземные штабели -- только автосамосвалами.
Глинохранилища для загрузки глины оборудованы мостовыми грейферными кранами, грейфером на монорельсе, ленточными конвейерами, ящичными питателями. Для подачи глины в производство из глинохранилищ используют мостовой грейферный кран.
В курсовой работе использованы легкоплавкие глины, предусмотрены промежуточные склады.
4.2 Переработка глинистого сырья и подготовка массы
Переработка глинистого сырья с целью разрушения природной структуры осуществляется с помощью естественной и механической обработки. К естественной обработке глины относят вымораживание ее в замоченном состоянии (зумпфование), заключающееся в следующем. Предварительно разрыхленная при добыче и складировании глина, залитая водой, в течение длительного срока (нескольких месяцев или лет) подвергается атмосферным воздействиям: попеременному замораживанию и оттаиванию, увлажнению и высушиванию, выветриванию и пр., что приводит к разрыхлению глины, распаду агрегированных частиц на элементарные зерна, повышению удельной поверхности глины и углублению процессов набухания, возрастанию количества связанной воды, увеличению пластичности и связности глины, улучшению формовочных и сушильных свойств.
Вылеживание глины в замоченном состоянии тоже приводит к диспергированию глинистых частиц, их набуханию с частичным переходом свободной воды в связанную форму и повышению пластических свойствглины, но в меньшей степени, чем вымораживание. При вылеживании глины в атмосферных условиях в течение длительного времени происходит вымывание вредных, примесей растворимых солей (сульфатов и хлоридов).
Однако естественные способы обработки глины требуют много времени, больших площадей и не обеспечивают полного удаления каменистых включений.
Механическая обработка глинистого сырья применяется дли удаления или измельчения каменистых включений, получения удобоформуемой гомогенной массы. Выбор оборудования для механической обработки зависит от свойств исходного сырья (его плотности, твердости, вязкости, влажности) и вида получаемого изделия. Чем полнее разрушена структура глины и чем однороднее формуемая масса, тем выше качество изделия.
При полусухом способе первичное разрыхление глины производят в ножевых глинорезках (стругачах), зубчатых, винтовых камневыделительных или дезинтеграторных вальцах. Для предотвращения забивания и замазывания помольных агрегатов и сит глиной перед тонким измельчением ее подсушивают в прямоточных сушильных барабанах, при этом ее влажность снижается с 15--25 % до 2--13 %. Для тонкого измельчения применяют дезинтеграторы, гладкие дифференциальные вальцы тонкого помола, дырчатые вальцы, бегуны сухого помола, молотковые, центробежные и роторные мельницы. В курсовой работе процесс тонкого измельчения глины произведён в дезинтеграторе.
Экономически целесообразно совмещать процессы сушки и тонкого измельчения сырья. С этой целью применяют аэробильные или шахтные мельницы. Сушка в этих агрегатах осуществляется горячими топочными газами, подхватывающими мелкие частицы и уносящими их в циклоны, где они оседают; при этом крупные частицы самотеком возвращаются в мельницу.
Для тонкого помола могут быть применены трубные двухкамерные мельницы с сепаратором для разделения крупных и мелких фракций, угольные барабанные мельницы, дезинтеграторы, а также мельницы самоизмельчения типа «Аэрофол» с совмещенным процессом сушки и помола. В курсовой работе тонкий помол глины ведётся в дезинтеграторах.
Для отсева крупных частиц и разделения на фракции измельченного сырья применяют сита-бурат, плоские качающиеся сита, вибрационные сита, грохоты и воздушные сепараторы. В курсовой работе использованы грохоты.
Приготовление масс путем смешивания подготовленной глины с отощаюшими и другими добавками и увлажнения ее горячей водойили паром производят в двухвальных смесителях, в лопастных вакуумных или быстроходных бегунковых мешалках - при получении пластичных масс; в смесительных бегунах - при получении тощих масс. Увлажнение глины паром дает лучшие результаты, для этой цели предпочтительны шахтные пароувлажнители с вертикальным расположением труб и принудительным отбором порошка. Для приготовления массы мосту быть применены стержневые смесители конструкции ВНИИСтрома С-15, СК-08 и др., в которых происходят усреднение массы, домол крупных фракций и агломерация пылеватых фракций.
Оптимальная влажность порошковых масс на основе глин составляет 7--10%.
Для усреднения состава подготовленной массы, улучшения ее формовочных свойств применяют способ вылеживания ее в силосах.
4.3 Формование массы
Подготовленную массу формуют (прессуют) на гидравлических или механических прессах производительностью до 10 000 шт./ч.
В данной курсовой работе формование кирпича произведено на прессе СМ - 1085.
Пресс относится к механическому коленно-рычажному типу прессов и состоит из двух независимых одна от другой секций (левой и правой) для одновременного прессования на каждой секции четырех кирпичей. Цикл работы одной секции по отношению к другой сдвинут по фазе на 180° и совершается за один оборот коленчатого вала. Такая конструктивная особенность позволяет прессовать кирпич на одной секции, при текущем ремонте другой без остановки пресса в целом.
Пресс обеспечивает двухстороннее прессование кирпича за счет перемещающейся (плавающей) в вертикальном направлении подпружиненной формы, что уменьшает степень неравноплотности прессовки.
В прессе осуществляется дозировка и засыпка глиняного порошка в формы, прессование, выталкивания кирпича на уровень стола и сталкивания его засыпной кареткой на рольганг.
В начале цикла при вращении коленчатого вала нижний штемпель опускается, а каретка, двигаясь вперед, заполняет форму глиняным порошком, после чего каретка возвращается в свое исходное (заднее) положение, а верхний штемпель начинает прессование глиняного порошка. При этом нижние штемпели, установленные на ползуне выталкивателя, воспринимают усилие прессования, а ползун выталкивателя передает это усилие на проставок прессующего механизма. Улучшен механизм засыпки пресс-форм, благодаря наличию специального механизма перемешивания массы - ворошилки, которая предназначена для нагнетания и равномерного распределения формовочной смеси в пресс-формах. Посредством регулировки устанавливается постоянный зазор между кареткой и столом, что еще и уменьшает просыпь керамической массы.
Рисунок 5 - Пресс СМ-1085
При дальнейшем вращении коленчатого вала и сжатии глиняного порошка в форме силы трения между порошком и формой настолько возрастают, что форма вместе с прессуемым порошком увлекается вниз, в результате чего происходит двухстороннее прессование.
После завершения прессования происходит подъем верхнего штемпеля, а механизм выталкивания поднимает нижний штемпель, производя выталкивания кирпича из формы и перемещение его на уровень стола. Засыпная каретка, продвигаясь вперед для очередной засыпки формы, сдвигает кирпич со стола на рольганг, при этом нижние штемпели стоят на уровне стола.
В дальнейшем описанный цикл работы каждой секции пресса повторяется.
4.4 Сушка сырца
Основное назначение сушки сырца -- снижение его влажности, приобретение им прочности, достаточной для транспортирования в печь и последующего бездефектного обжига при минимально возможных затратах топлива и времени.
Сушку керамических изделий производят в камерных сушилках периодического действия или в туннельных сушилках непрерывного действия. В качестве теплоносителя при сушке изделий грубой строительной керамики используют дымовые газы обжигательных печей, а также специальных топок. При сушке изделий тонкой керамики применяют горячий воздух, нагреваемый в калориферах.
Современные камерные сушилки оборудованы выносными или встроенными в стены камер лопастными реверсивными вентиляторами для создания интенсивной циркуляции теплоносителя внутри камер. С целью повышении равномерности сушки применяют подачу теплоносителя в сушилку с помощью «ротамиксеров», устанавливаемых на пол внутри туннеля или камеры. Ротамиксер представляет собой медленно вращающийся конусообразный металлический кожух со щелями по образующей, соединенный через дроссель с нагнетающим вентилятором. Подача теплоносителя через ротамиксер обеспечивает интенсивную циркуляцию его в сушилке и повышает равномерность сушильного процесса, способствуя тем самым сокращению сроков сушки и повышению качества изделий.
4.5 Обжиг изделий
Обжиг керамических изделий -- завершающая стадия их изготовления, при которой формируются основные свойства изделий: плотность, прочность, водостойкость, морозостойкость и др. При обжиге происходят сложные физико-химические процессы в глинообразующих минералах, примесях, содержащихся в глинах, и добавках.
При нагревании до 200°С происходит досушка изделия и удаление физически связанной воды. При дальнейшем повышении температуры до 300--400°С происходит окисление органических примесей или добавок, выделение летучих и их сгорание. Выгорание коксового остатка происходит при 700--800°С. Оно должно завершиться в период, когда керамический черепок еще остается пористым и газопроницаемым, иначе могут произойти деформации и растрескивание изделий.
Процесс обжига условно может быть разделен на три этапа: нагрев до максимальной температуры, изотермическая выдержка, охлаждение. Для каждого температурного интервала и вида изделий расчетно-экспериментальным путем определяют режим обжига.
Для обжига изделий строительной керамики чаше всего применяют туннельные печи.
В таких печах обжигают строительный кирпич, санитарно-техническую керамику, канализационные и дренажные трубы, шамотные и огнеупорные изделия, плитки.
Размеры рабочего туннеля печей колеблются в широких пределах: длина 60--120 м, ширина 1 --1,85 м, высота от пода вагонетки до замка свода 1 --1,93 м.
В конструкцию канала печи входят (кроме стен и свода) металлический каркас, лабиринтовые стыки стен и вагонеток с песочными затворами и песочницами, пескоуловители, смотровые и аварийные окна, топки, двери с торцов канала печи, камеры со шлюзовыми затворами, смотровые подвагонеточные подвалы (подподовый канал) и другие элементы.
По обеим сторонам печного канала располагается от 6 до 72 топочных устройств щелевого или межсадочного типов. Они могут находиться как в нижней части канала, так и под сводом. Из щелевых топок горячие газы направляются в развитый под печных вагонеток, из межсадочных топок -- в пространство между вагонетками. Через определенные промежутки времени вагонетки передвигаются механическими или гидравлическими толкателями на длину одной вагонетки. Непрерывная подача вагонеток повышает производительность печи на 10--12%, улучшает качество обжига и снижает отходы при обжиге. При непрерывном передвижении вагонеток устройство межсадочных топок исключается.
Печной канал условно разделяется на зоны подогрева, обжига, охлаждения и на позиции. Длина одной позиции обычно равна длине вагонетки. В печи длиной рабочего канала, на 44 позиции зона подогрева занимает 9 позиций (20%), обжига --16 позиций (37%), охлаждения --19 позиций (43%).
Зона подогрева заканчивается около топочных устройств. Она имеет воздушные завесы и каналы для отбора отходящих газов и подачи горячего воздуха в зоны охлаждения. Отбор отходящих газов осуществляется сосредоточенно через одно окно с каждой стороны печи или рассредоточение через систему окон и каналов с каждой стороны печи.
Зона обжига ограничивается участком, в пределах которого располагаются горелочно-топочные устройства. В начале зоны, со стороны подогрева имеются воздушные завесы, способствующие дожиганию продуктов сгорания, поступающих с участка восстановления, и перемешиванию топочных газов.
Зона охлаждения наибольшая и составляет до 60% печи. Она начинается от зоны обжига и простирается до конца печи. Суммарная длина зон подогрева и обжига должна быть не меньше длины зоны охлаждения. В зоне охлаждения имеются окна для отбора части горячего воздуха на сушку и к воздушным завесам печи. Эти завесы разделяют зоны с окислительной и восстановительной средами и начало зоны охлаждения. В конце зоны, у выгрузочного конца в печь вентилятором через специальные каналы подается атмосферный воздух для охлаждения вагонеток и обожженных изделий.
В каждой зоне поддерживается необходимая печная атмосфера: при обжиге фарфора в зоне подогрева и охлаждения - окислительная; в начале зоны обжига - восстановительная; в конце ее - слабо восстановительная, или нейтральная; при обжиге фаянса и майолики во всех зонах - окислительная газовая среда. Качественное различие газовой среды в каждой зоне достигается регулированием подачи топлива и воздуха для его сжигания.
Туннельные печи просты по устройству и имеют высокую производительность. К их недостаткам относятся большие (300 - 400° С) перепады температур по сечению печи в начале зоны подогрева, трудность механизации и автоматизации многоярусной установки изделий на этажерки вагонеток, низкий КПД.
В курсовой работе использован совмещенный агрегат для обработки кирпича-сырца, включающий в себя туннельную сушилку и туннельную обжиговую печь. Это допускается, так как данные агрегаты работают в непрерывном режиме.
Пройдя обжиг, вагонетки попадают на начальное загрузочное устройство, которое перемещает их на пути расположенные над буферным туннелем. Затем, кирпич снимается с вагонеток, устанавливается на поддоны и упаковывается в транспортные пакеты. После чего отправляется на склад готовой продукции, оборудованный мостовыми кранами для загрузки в автомобили.
5. Основы теории элементарных процессов и общие закономерности проведенияотдельных стадий технологического процесса
5.1 Процесс прессования
В процессе прессования керамических порошков происходит их уплотнение за счет перемещения частиц, их деформации и частичного разрушения.
Упругое расширение прессовки приводит к возникновению трещин при расслаивании в изделиях. Основная причина их возникновения -- упругое расширение запрессованного воздуха. Количество запрессованного воздуха выражают коэффициентом запрессовки воздуха Кз.в, представляющим собой долю запрессованного воздуха в общем его объеме в порошке. Для тонкозернистых глинистых порошков Кз.в составляет 0,37--0,715, для грубозернистых отощенных порошков -- 0,303--0,57.
Запрессованный воздух создаст внутри изделия давление, которое зависит от влажности порошка: при влажности 6--8 % оно не превышает 2 МПа, при влажности 10--12 % достигает 10 МПа. С целью предотвращения появления трещин при расслаивании рекомендуется применять порошки наиболее однородные по крупности зерен и влажности, с небольшим содержанием глинистой фракции и использовать для формования прессы высокого давления с двухсторонним многократным ступенчатым приложением нагрузки. Для уменьшения количества запрессованного воздуха применяют смесители, приспособленные для вакуумирования пресс-порошков в процессе перемешивания.
Степень уплотнения порошков при прессовании характеризуется коэффициентом сжатия Ксж, т. е. отношением высоты засыпки в форму к высоте полученной прессовки. Зависимость коэффициента сжатия грубозернистых глиняных порошков от прессового давления описывается уравнением:
Ксж = ар n ,
где р---прессовое давление, МПа; а и т-- константы, определяемые экспериментально.
В зависимости от свойств керамических порошков коэффициент их сжатия изменяется от 1,5 для пластичных глин до 2.5 для тощих.
Основным показателем деформативных свойств (прессуемости) керамических порошков является компрессионная кривая, отражающая зависимость осадки порошка при прессовании от удельного давления прессования. Компрессионные кривые носят затухающий характер. При увеличении давления осадка сначала интенсивно возрастает, затем снижается и при определенном давлении практически полностью прекращается. Для керамических порошков повышение давления сверх 30--40 МПа не дает ощутимого уплотнения прессовки.
При прессовании порошков происходит затухание приложенного давления по толщине изделия в соответствиис уравнением:
гдерН давление на расстоянии Н, см, от пуансона, МПа;
р0--давление у Пуансона, МПа;
R гидравлический радиус прессовки (R=2F/Пр), см;
F -- плошадь поперечного сечения прессовки, см;
Пр -- периметр поперечногосечения прессовки, см;
К -- коэффициент, зависящий от внутреннего трения в массе и ее трения о стенки пресс-формы.
В соответствии с уравнением, неравномерность распределения усилий прессования по толщине изделия увеличивается с повышением Н и уменьшается с повышением R. Кроме того, давление прессования неодинаково по площади прессования из-за наличия бокового трения порошка о стенки формы. Это приводит к неравномерности получаемого давления.
Уменьшить перепады давления прессования и неравномерную плотность сырца можно пластификацией порошков, подогревом пресс-форм и правильным выбором режима прессования. Предпочтительно двухстороннее прессование при многократном (ступенчатом) приложении нагрузки с низким давлением в первый период для удаления воздуха и высоким давлением во второй период для окончательного прессования с паузой без нагрузки между этими периодами для наиболее полного удаления воздуха из порошка. При этом скорость нарастания давления во второй период должна быть в 5 - 6 рва выше, чем в первый, а общая продолжительность прессования не менее 1,5 - 3,5 с.
С повышением удельного давления прессования увеличивается прочность изделий. Оптимальное давление прессования, как правило, находится в пределах 15-- 40 МПа, в частности для формования изделий из порошков на основе глин давление прессования должно составлять 20--30 МПа, диатомитов 15--25 МПа, аргиллитов и отходов углеобогащения 25--40 МПа.
Экономические основы технологии производства кирпича керамического
Основные сырьевые материалы для производства кирпича керамического. Способы изготовления или добычи кирпичных глин и суглинков. Влияние влажности на параметры пластичной массы. Сушка и обжиг полуфабриката. Главная область применения красной цемянки.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 10.04.2016 |
Размер файла | 253,4 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки РФ
Федеральное государственное бюджетное образовательное учреждение высшего образования
Белгородский государственный Технологический Университет им. В.Г. Шухова
Институт экономики и менеджмента
Кафедра стратегического управления
Курсовая работа
по дисциплине ЭОТР
на тему: «Экономические основы технологии производства кирпича керамического»
Белгород 2016 г
Введение
1. Основные сырьевые материалы для производства кирпича керамического
1.1 Свойства, состав сырьевых материалов
1.2 Способы изготовления или добычи сырьевых материалов
1.3 Нормативные требования, предъявляемые к сырьевым материалам
2. Технология производства кирпича керамического
2.1 Основные способы производства кирпича керамического
3. Описание кирпича керамического и область его применения3.1 Виды кирпича керамического и его основные технико-экономические показатели
3.2 Область применения кирпича керамического
3.3 Основные производители кирпича керамического стройиндустрии
ЗаключениеСписок литературы
ВведениеКирпич -- искусственный камень правильной формы, используемый в качестве строительного материала, произведённый из минеральных материалов, обладающий свойствами камня, прочностью, водостойкостью, морозостойкостью.
Наиболее известны три вида кирпича: керамический кирпич -- из обожжённой глины, силикатный, состоящий из песка и извести и гиперпресованный кирпич.
Кирпич является древним строительным материалом. Хотя вплоть до нашего времени широчайшее распространение имел во многих странах необожженный кирпич-сырец, часто с добавлением в глину резаной соломы, применение в строительстве обожженного кирпича также восходит к глубокой древности (постройки в Египте, 3-2-е тысячелетие до н.э.). Особенно важную роль играл кирпич в зодчестве Месопотамии и Древнего Рима, где из кирпича (45х30х10) выкладывали сложные конструкции, в том числе арки, своды и т.п. Примером использования кирпичного строительства в России времён Иоанна 3 стало строительство стен и храмов Московского Кремля, которым заведовали итальянские мастера . До 19-го века техника производства кирпича оставалась примитивной и трудоёмкой. Формовали кирпич вручную, сушили только летом, обжигали в напольных печах-времянках, выложенных из высушенного кирпича-сырца. В середине 19-го века были построены кольцевая обжиговая печь и ленточный пресс, обусловившие переворот в технике производства кирпича. В это же время появились глинообрабатывающие машины бегуны, вальцы, глиномялки. В наше время более 80% всего кирпича производят предприятия круглогодичного действия, среди которых имеются крупные механизированные заводы, производительностью свыше 200 млн. шт. в год.
Строительный керамический кирпич является самым распространённым местным стеновым материалом, позволяющим экономить дефицитные металлы, цемент, а также транспортные средства. В общем балансе производства и применения стеновых материалов керамический кирпич занимает более 30%. Кирпич, накапливая солнечную энергию, медленно и равномерно отдает тепло, что защищает от чрезмерного нагревания летом и сохраняет тепло зимой. Кирпичная стена «дышит», пропуская испарения сквозь свою толщу. В результате в помещениях поддерживается уровень равновесной влажности
В данный момент в производстве строительного керамического кирпича сосредоточено внимание на совершенствовании технологии, улучшении качества выпускаемой продукции и расширении ассортимента. При строительстве новых предприятий предусматривается установление автоматизированных и высокомеханизированных технологических линий на базе современного отечественного и импортного оборудования. Осваивается выпуск эффективной пустотелой продукции, которая должна постепенно заменять традиционный полнотелый кирпич. Это позволит не только экономить сырьё, но и уменьшать толщину и массу наружных стен без снижения их теплозащитных свойств, а также создавать облегчённые конструкции панелей для индустриализации строительства.
Расширение ассортимента и, в частности, производство эффективных изделий с увеличением размеров и уменьшением средней плотности до 1250-1350 кг/м3 и менее за счёт рациональной формы и увеличения количества пустот снизит расход материалов на 1м2 наружных стен на 20-30%. На действующих заводах наряду с дальнейшей механизацией и автоматизацией производства кирпича будут всемерно улучшаться его качество и повышаться прочностные свойства, требующиеся для строительства зданий повышенной этажности и специальных сооружений. Применение в строительстве кирпича высоких марок в несущих конструкциях позволяет уменьшить его расход на 15-30%.
Улучшение качества продукции вызывает необходимость повышения культуры производства, более строгого соблюдения технологических параметров по всем переделам, улучшения обработки, рациональной шихтовки путём ввода различных добавок, в том числе отходов других отраслей промышленности.
Актуальность данной темы заключается в том что кирпич это самый распространённый продукт используемый в строительстве. Необходимо более широко развивать производство лицевого кирпича, позволяющего исключать оштукатуривание зданий и улучшать их архитектурный вид.
Цель курсовой работы изучить экономические основы технологии производства кирпича керамического.
Задачами является изучить основные материалы кирпича керамического, технологию производства, описание кирпича керамического.
Читайте также: