Грунтоцементные сваи расход цемента
ППР по закреплению грунтов методом цементации
И еще вопрос: в чем тонкость цементации лесовых грунтов (именно ЦЕМЕНТАЦИИ, а не силикатизации).
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Ну на самом деле всё немного проще для вас.
Видимо все спец. способы должны выполняться в составе проектной и далее рабочей документации.
Даже если почитать град. кодекс и всё такое.
Закрепление грунтов - влияет на безопасность - требуется СРО.
Ну в перечне работ тоже должно быть по идее. Правда я там не видел, но думаю что должно быть.
Так что заказывайте проектным организациям. В ППРе делать закрепление без СРО нельзя.
А вот как делать это хз.
Я без понятия.
Если бы делал я, то только через опытное внедрение/эксперимент/пробное закрепление. Ибо ничего не знаю на эту тему.
Ну это в крайнем конечно случае, когда заказчику и ГИПу при*****ось именно цементация и струйная цементация.
Обычную то цементацию, как я понимаю ещё как-то считают. А вот струйную никак пока нельзя смоделировать. Не изучена.
__________________"Безвыходных ситуаций не бывает" барон Мюнгхаузен Посмотрите здесь, если файл не прикрепился пишите в личку ППР это проект производства работ выполненный на основании рабочих чертежей паспортных данных применяемых механизмов с учетом конкретных условий строительной площадки.
Ели подрядчика нет тогда это ПОС в объеме ППР, и несет рекомендательные требования. Делается примечание применять механизмы с характеристиками не ниже указанных. и ли с аналогичными.
Обследование (влагометрия) проектирование
Согласно Пособию к СНИП "Химическое закрепление грунтов. " цементации подлежат только крупнообломочные, гравелистые грунты, а также пески крупные рыхлые. Но не лессовые! Согласно Пособию к СНИП "Химическое закрепление грунтов. " цементации подлежат только крупнообломочные, гравелистые грунты, а также пески крупные рыхлые. Но не лессовые!Почитайте ТСН Ростовской области по данному вопросу 2005 года, возможно закрплять и лессовые через направленные гидроразрывы, т..е. сначала под большим давлением грунт "разрывают" создают в нем трещины и пустоты, а потом заполняют раствором.
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
про крупность и песок. Это спорный момент.
1) В древней книжке по специальным способам проходки горных выработок 1970-1980 годов я читал что можно закреплять цементом и пески средней крупности (или даже мелкий). Автор мог ошибиться, но мог и знать чего пишет. Автора не помню, не очень известный.
2) Японцы сделали микро-нано-цемент с маленьким размером гранул цемента. И в Японии у них получается закреплять даже мелкие пески, по их заявлению. НО они пытались просунуть технологию в РФ. И фирма-партнёр в РФ попыталась обосновать это в известной лаборатории. Выбрали СПбГАСУ кафедру оснований/механики грунтов.
Местный профессор засунул песок в трубу с заваренным концом и начал нагнетать цементный раствор. Но через несколько минут сваренный торец трубы оторвался.
Был сделан вывод о невозможности проникновения японского цемента в русский песок. Фирма-партнёр послала японцев подальше. Технология не прижилась.
Может быть эксперимент был поставлен неверно, не знаю.
Почему то ведь в японском песке у них всё проникает.
3) ближайший метод наверное тогда уж струйная цементация.
Сейчас её активно засовывают в шахты и т.п.
И всё работает.
ЗЫ. Конечно, если бы меня заставили делать цементацию. Я бы конечно не рискнул верить на слово и новым тенденциям. Только СНиПы. ^__^
Грунтоцементные сваи расход цемента
КОНСТРУКЦИИ ГРУНТОЦЕМЕНТНЫЕ АРМИРОВАННЫЕ
Armed grouted structures. Rules of architectural design
Дата введения 2017-11-16
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛИ - Акционерное общество "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство"), НИИОСП им.Н.М.Герсеванова и НИИЖБ им.А.А.Гвоздева
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
6 ВВЕДЕН ВПЕРВЫЕ
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет
Введение
Настоящий свод правил разработан с учетом обязательных требований, установленных в Федеральном законе от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", Федеральном законе от 29 декабря 2004 г. N 190-ФЗ "Градостроительный кодекс Российской Федерации", Федеральном законе от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" и содержит основные геотехнические требования к проектированию армированных грунтоцементных конструкций в различных инженерно-геологических условиях и при любых видах строительства.
Разработан НИИОСП им.Н.М.Герсеванова и НИИЖБ им.А.А.Гвоздева институтами АО "НИЦ "Строительство": кандидаты техн. наук И.В.Колыбин, Д.Е.Разводовский - руководители темы; кандидаты техн. наук: Х.А.Джантимиров, Ф.Ф.Зехниев, М.Н.Ибрагимов, А.В.Рытов, А.В.Скориков, В.В.Семкин, А.В.Шапошников, М.Я.Якобсон, инж. Д.А.Внуков, при участии д-ра техн. наук В.А.Ильичева, д-ра техн. наук Н.С.Никифоровой, д-ра геол.-минерал. наук A.Г.Шашкина, канд. техн. наук A.Г.Малинина, канд. техн. наук О.А.Маковецкого, инж. П.А.Малинина.
1 Область применения
Настоящий свод правил устанавливает основные геотехнические требования и распространяется на проектирование армированных грунтоцементных конструкций, выполняемых в грунте по методу струйной цементации и глубинного перемешивания при строительстве и реконструкции зданий и сооружений в талых грунтах.
Настоящий свод правил не распространяется на проектирование конструкций в грунте, изготавливаемых с помощью инъекционных технологий с применением цементов и микроцементов, а также иных вяжущих материалов.
2 Нормативные ссылки
В настоящем своде правил приведены ссылки на следующие нормативные документы:
ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями
ГОСТ 12071-2014 Грунты. Отбор, упаковка, транспортирование и хранение образцов
ГОСТ 21153.2-84 Породы горные. Методы определения прочности при одноосном сжатии
ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 28985-91 Породы горные. Методы определения деформационных характеристик при одноосном сжатии
СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"
СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"
СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, N 2)
СП 103.13330.2012 "СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод"
Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 армированная грунтоцементная конструкция: Конструкция, состоящая из одного или нескольких армированных грунтоцементных элементов.
3.2 армированный массив грунта: Естественный грунтовый массив, усиленный армирующими элементами.
3.3 влажное механическое перемешивание: Процесс, включающий перемешивание грунта специальным буровым инструментом и его перемешивание со строительным раствором, включающим воду, связующие с наполнителями и добавками.
3.4 глубинное перемешивание: Технология, позволяющая создавать грунтоцементные конструкции путем механического перемешивания грунтов в естественном залегании с твердеющим материалом без специального извлечения грунта на поверхность с помощью специального бурового устройства в процессе его погружения или извлечения с вращением.
3.5 грунтоцемент, ГЦ: Грунт, закрепленный путем его перемешивания с цементным раствором методом струйной цементации или глубинного перемешивания и имеющий механические характеристики, заданные проектом.
3.6 грунтоцементный элемент; ГЦЭ: Объем грунта, закрепленный цементным вяжущим по методу струйной цементации или глубинного перемешивания, с приданием ему повышенной прочности и пониженной водопроницаемости, характеризуемый геометрическими параметрами и физико-механическими свойствами, назначенными при проектировании и подтвержденными опытными работами.
3.7 грунтоцементные элементы с теряемыми буровыми штангами; ТБШ ГЦЭ: Технология устройства грунтоцементных элементов путем прямого бурения на проектную длину с размыванием грунта цементным раствором при использовании в качестве бурового инструмента теряемых стальных трубчатых штанг с накатанной винтовой поверхностью.
3.8 конструкция грунтоцементная: Конструкция, состоящая из грунтоцементных элементов, устроенная в массиве грунта по методу струйной цементации или глубинного перемешивания, выполняющая определенные несущие и (или) ограждающие функции.
3.9 прочность грунтоцемента: Количественный показатель прочности на одноосное сжатие закрепленного грунта, воспринимающего осевую статическую нагрузку до состояния разрушения.
струйная цементация (jet grouting): Закрепление грунта технологиями, позволяющими разрушать грунт струей цементного раствора (jet1), или струей цементного раствора, усиленной воздушным потоком (jet2), или струей воды с последующей подачей цементного раствора (jet3) для смешения его с грунтом и создания элемента из закрепленного грунта, обладающего заданными прочностными свойствами.
3.11 сухое механическое перемешивание: Процесс, включающий перемешивание грунта специальным буровым инструментом с добавлением вяжущего вещества в виде порошка (без добавления воды).
элемент закрепленного грунта: Объем грунта, закрепленного каким-либо технологическим способом, характеризуемый контролируемыми геометрическими параметрами и физико-механическими свойствами, назначенными при проектировании и подтвержденными опытными работами.
4 Общие положения
4.1 Общие требования
4.1.1 Для устройства грунтоцементных конструкций применяют технологии глубинного перемешивания и струйной цементации. Армирование грунтоцементных конструкций осуществляется с целью повышения их прочности и несущей способности, снижения деформаций при усадке грунтоцемента.
4.1.2 Для устройства грунтоцементных конструкций следует применять цементные растворы (при необходимости с химическими добавками в соответствии с приложением В). При устройстве грунтоцементных конструкций для противофильтрационных завес и экранов допускается применять цементно-бентонитовые или цементно-глинистые растворы.
При наличии агрессивных подземных вод следует применять стойкие по отношению к ним цементы.
Примечание - Применение шлако-щелочных вяжущих, эффективных в глинистых грунтах, в настоящем своде правил не рассматривается.
4.1.3 Грунтоцементные конструкции используются в качестве временных и (или) постоянных несущих и (или) ограждающих конструкций.
Армированные грунтоцементные конструкции предназначены для устройства:
- элементов армирования оснований;
- фундаментов линейных объектов строительства;
- анкерных креплений ограждений котлованов;
- отсечных геотехнических экранов;
- горизонтальных и вертикальных противофильтрационных завес;
- усиления фундаментов зданий и сооружений;
- противооползневых конструкций на склонах и откосах.
4.1.4 Применение армированных грунтоцементных конструкций для сооружений класса КС-3 согласно ГОСТ 27751 допускается только на основании результатов дополнительных исследований.
4.1.5 Армирование грунтоцементных конструкций может осуществляться путем установки:
- жестких арматурных элементов из металлопроката (круглых труб или прокатных профилей);
- арматурных каркасов из металлических стержней;
- буровых анкерных штанг с винтовой накатанной поверхностью, оставляемых при устройстве грунтоцементных элементов или анкерных свай;
- предварительно изготовленных железобетонных элементов, например, предварительно изготовленных сборных железобетонных свай.
Грунтоцементные конструкции допускается армировать трубами, прокатными профилями и арматурными каркасами большего диаметра с применением вибропогружателей.
При соответствующем обосновании допускается применять композитные материалы.
Грунтоцементные конструкции армируют путем размещения продольной арматуры соосно с проходкой или под наклоном.
4.1.6 Армированные грунтоцементные конструкции должны проектироваться на основе СП 22.13330, СП 63.13330 и с учетом:
Способ определения количества цемента в грунтоцементном материале конструкции, создаваемой струйной цементацией
Изобретение относится к оперативному определению количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией. При проведении струйной цементации из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят замер верхней части возведенной конструкции, вычисляют ее площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м 3 подземной конструкции, рассчитывают из заданного соотношения. Достигается возможность оперативно определять количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией.
Изобретение относится к способам оперативного определения количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией.
«Наиболее важным параметром, определяющим конечную эффективность струйной технологии, является количество цемента (в сухом состоянии), содержащееся в 1 м 3 укрепленного грунта. Именно данный параметр определяет прочность материала грунтоцементных колонн или их фильтрационные свойства» (Малинин А.Г. Обоснование расхода цемента при струйной цементации грунта / А.Г. Малинин // Проблемы развития транспортных и инженерных коммуникаций. - 2003 - №2 – С.3).
Известен способ контроля качества жидкого бетона с использованием ультразвуковых сигналов, при котором измеряют скорость ультразвука в жидком бетоне, затем выявляют зависимость этой скорости от соотношения содержания цемента и воды (Лешинский М.Ю. Испытание бетона. М.: Стройиздат, 1980, с. 135-137, 152). Данный способ позволяет определять прочность строительных конструкций по состоянию жидкого бетона.
Однако скорость ультразвука зависит также от заполнения бетона твердой фракцией (гравий, щебень, включения грунта), что делает невозможным применение способа для определения количества цемента в грунтоцементной пульпе при струйной цементации.
Известен способ определения количества цемента в выделяемой из скважины грунтоцементной пульпе, заключающийся в добавлении в закачиваемый в скважину цементный раствор порошкообразного индикатора в виде магнитомягкого железосодержащего вещества (RU 2165495 C1, E02D 5/46, E02D 3/12, опубл. 20.04.2001).
Недостатком способа является наполнение грунтоцементного тела строительной конструкции порошковым материалом, подвергающимся коррозии и приводящим к снижению прочности строительной конструкции.
Известен способ определения количества цемента в грунтоцементном материале конструкции (RU 2513567 C1, E02D3/12, G01N 27/22 опубл. 20.04.2014), в котором в цементный раствор добавляют порошок графита, измеряют электропроводность цементного раствора и грунтоцементной пульпы и по приведенной формуле определяют количество цемента в грунтоцементном материале строительной конструкции.
Недостатком известного способа является то, что грунт содержит электропроводные растворы солей и окислов, которые влияют на результат замера электропроводности грунтоцементной пульпы и вносят значительную ошибку в результат вычисления количества цемента в пульпе.
Наиболее близким аналогом к предложенному способу является способ (RU 2611373 C1, G01N 33/38, G01N 23/223, опубл. 21.02. 2017) определения объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных конструкций струйной цементацией, при котором производят отбор проб исследуемого материала и определение рентгенофлуоресцентным методом количественного содержания химического элемента в отобранных пробах, причем перед струйной цементацией выбирают химический элемент, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, для закачки его в грунт совместно с цементным раствором при струйной цементации, приготавливают цементный раствор замешиванием цемента в воде и при приготовлении цементного раствора вводят выбранный химический элемент в цементный раствор, отбирают пробу цементного раствора, производят бурение на проектную глубину и закачивают цементный раствор под давлением в грунт для образования в грунте строительной конструкции и выделения из грунта грунтоцементной пульпы, при проведений струйной цементации отбирают пробу грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, и рассчитывают объемную концентрацию цементного раствора в грунтоцементной пульпе по формуле.
Способ не дает возможности определять количество цемента в грунтоцементном материале возведенной конструкции струйной цементацией.
Задачей предлагаемого способа является оперативное определение количества цемента в грунтоцементном материале конструкции для проведения прочностных расчетов сооруженной конструкции.
Поставленная задача решается тем, что в способе определения количества цемента в грунтоцементном материале конструкции, созданной струйной цементацией при которой из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят обмер верхнего торца возведенной конструкции, вычисляют его площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м 3 подземной конструкции рассчитывают по формуле:
где, m ц 1 - количество сухого цемента в 1 м 3 грунтоцементного материала конструкции, кг;
m - количество цемента, кг, затраченного для приготовления цементного раствора на создание подземной конструкции;
s - площадь поперечного сечения созданной конструкции, м 2 ;
h - глубина заложения конструкции, м;
ρс - плотность цементного раствора, кг/л;
ρп - плотность грунтоцементной пульпы, кг/л;
Сс - весовая концентрация химического элемента в цементном растворе, мг/кг;
Сп - весовая концентрация химического элемента в грунтоцементной пульпе, мг/кг.
Сущность предлагаемого изобретения заключается в том, что количество цемента (в сухом состоянии) в грунтоцементном материале подземной конструкции может быть определено как разность между количеством цемента, содержащегося в закачиваемом цементном растворе, и количеством цемента, содержащегося в выделяемой из скважины грунтоцементной пульпе. При этом количество цемента, выносимое в грунтоцементной пульпе, и количество цемента, создающее строительную конструкцию, зависят от физико-механических характеристик грунта, а также параметров процесса струйной цементации. Количество цемента для изготовления подземной конструкции известно, так, при укреплении грунта «Расход цемента варьируется в диапазоне 350-700 кг/м 3 . Стандартным считается значение 450 кг/м 3 . Расход цемента повышают до 700 кг/м 3 при укреплении органического грунта. В задачах устройства противофильтрационных завес принимается минимальный расход цемента» (Малинин А.Г. Струйная цементация грунтов. - Пермь: Престтайм, 2007. - С. 18). Расход цемента уточняется при создании опытных свай.
Концентрация цемента в цементном растворе, выводимом с пульпой на поверхность земли соответствует концентрации цемента в цементном растворе, закачиваемом в скважину, поэтому количество цемента, в пульпе определяется через объем цементного раствора, выводимого с пульпой по патенту RU 2611373 С1.. Для определения количество цемента (в сухом состоянии) в грунтоцементном материале подземной конструкции на 1 м 3 , разность количества цемента цементного раствора и количество цемента, содержащегося в грунтоцементной пульпе, необходимо разделить на объем подземной конструкции.
Возможность осуществления заявляемого изобретения показана следующим примером.
Минимальное количество вводимого элемента, согласно RU 2611373 С1, рассчитывают по формуле Рр мин=5 Cпо;
где: Рр мин - минимальное количество химического элемента вводимого на 1 кг цементного раствора (мг/кг);
Спо - предел обнаружения применяемым спектрометром химического элемента (мг/кг).
При проведении струйной цементации производят отбор проб цементного раствора и грунтоцементной пульпы, в которых определяют концентрацию кобальта, а также плотность проб.
Для цементного раствора:
плотность - ρс=1,25 кг/л, концентрация - Сс Co=87,8 мг/кг
плотность - ρп=1,62 кг/л, концентрация - Сп Со=21,9 мг/кг
При обмере верхнего торца сваи, ее диаметр составил 0,76 м. То есть площадь поперечного сечения сваи составляет 0,45 м 2 .
Определяют количественное содержание цемента в 1 м 3 материала грунтоцементной конструкции:
По графику рис. 3.10 (Малинин А.Г. Струйная цементация грунтов. - Пермь: Престтайм, 2007 - С. 103) содержание 340 кг/м 3 цемента в грунтоцементной конструкции соответствует 2,2 МПа прочности на сжатие.
Предлагаемое изобретение дает возможность оперативно рассчитать фактическую прочность возводимых струйной цементацией подземных конструкций при возведении их в различных геологических условиях.
Способ определения количества цемента в грунтоцементном материале конструкции, созданной струйной цементацией, при которой из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, отличающийся тем, что производят обмер верхнего торца возведенной конструкции, вычисляют его площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м 3 подземной конструкции, рассчитывают по формуле:
где, mц1 - количество сухого цемента в 1 м 3 грунтоцементного материала конструкции, кг;
m - количество цемента, кг, затраченного для приготовления цементного раствора на создание подземной конструкции;
s - площадь поперечного сечения созданной конструкции, м 2 ;
h - глубина заложения конструкции, м;
ρс - плотность цементного раствора, кг/л;
ρп - плотность грунтоцементной пульпы, кг/л;
Сс - весовая концентрация химического элемента в цементном растворе, мг/кг;
Сп - весовая концентрация химического элемента в грунтоцементной пульпе, мг/кг.
Способ возведения грунтоцементной сваи
Изобретение относится к способам закрепления слабых водонасыщенных грунтов, может быть использовано для повышения их несущей способности в области промышленного и гражданского строительства. Технический результат, обеспечиваемый изобретением, состоит в повышении несущей способности сваи при одновременном снижении расхода цемента. Способ возведения грунтоцементной сваи включает погружение одной или нескольких обсадных труб с самораскрывающимся инвентарным башмаком на нижнем конце. Обсадные трубы погружают асимметрично, параллельно оси возводимой грунтоцементной сваи. Перед погружением обсадных труб их суммарная площадь поперечного сечения (в случае одной трубы - площадь поперечного сечения одной трубы) Sт подбирается из соотношения Sт = (0,01-0,5)Sc, где Sc - площадь поперечного сечения возводимой сваи. После погружения одной обсадной трубы до проектной отметки в нее засыпают цемент, а саму обсадную трубу извлекают из грунта. Затем по оси возводимой сваи устанавливают буровой агрегат, снабженный специальным рабочим органом для перемешивания цемента с грунтом, при этом столб цемента находится внутри возводимой сваи. При этом в зависимости от соотношения диаметров обсадной трубы и тела возводимой сваи возможны два основных варианта ее конструкции. 5 ил.
Изобретение относится к способам закрепления слабых водонасыщенных грунтов, может быть использовано для повышения их несущей способности в области промышленного и гражданского строительства.
Известен способ производства известковой сваи в слабых водонасыщенных грунтах. Известковую сваю устраивают следующим образом. В толще водонасыщенного грунта проходят скважину диаметром 32. 50 см (если грунты не сохраняют вертикальных откосов скважину проходят с обсадной трубой). Пробуренные скважины заполняют комовой негашеной известью и уплотняют последнюю трамбовкой весом 300. 400 кг. Уплотнение грунта происходит при погружении в него трубы с закрытым нижним концом, при трамбовании в скважине извести и за счет взаимодействия извести с грунтом, при котором происходит физико-химическое закрепление грунта. (Абелев М.Ю. Слабые водонасыщенные глинистые грунты как основания сооружений. Стройиздат, М., 1973, с. 161-165).
Недостатком такого способа является сложная технология устройства свай, а также их низкая несущая способность.
Наиболее близким техническим решением к данному по своей сущности и достигаемому результату является способ возведения грунтоцементной сваи, включающий введение в слабый водонасыщенный грунт цемента и его перемешивание с грунтом. (Мотузов Я.Я. и др. Технология изготовления грунтоцементных свай. М. , "Транспортное строительство", 1977, N 10, с. 20. 21). Сущность способа состоит в том, что при погружении бурового рабочего органа через отверстия, находящиеся на расстоянии от центра вращения, в грунт подается раствор цементного вяжущего, при вращении рабочего органа происходит перемешивание цементного вяжущего с грунтом, далее происходит твердение и образование грунтоцементной сваи.
Недостатком этого способа является сложная технология устройства свай, включающая оборудование для точного дозирования порошкообразного вяжущего и воды для приготовления суспензии с заданным водоцементным отношением, растворомешалку, растворонасос, водяной насос, расходомеры, сальник-вертлюг и систему шлангов и кранов для нагнетания суспензии и промывки всей установки водой после изготовления каждой сваи.
Сущность заявляемого изобретения выражается совокупностью существенных признаков, достаточных для достижения обеспечиваемого предлагаемым изобретением технического результата, который заключается в повышении несущей способности сваи при одновременном снижении расхода цемента.
Сущность способа возведения грунтоцементной сваи, включающего введение в слабый водонасыщенный грунт цемента и его перемешивание с грунтом, состоит в том, что при погружении бурового рабочего органа через отверстия, находящиеся на расстоянии от центра вращения, в грунт подается раствор цементного вяжущего, при вращении рабочего органа происходит перемешивание цементного вяжущего с грунтом, далее происходит твердение и образование грунтоцементной сваи.
Предложенное техническое решение характеризуется тем, что в слабый водонасыщенный грунт при устройстве грунтоцементной сваи в пределах ее возводимого тела в грунт погружают одну или несколько обсадных труб с теряемым или самораскрывающимся башмаком на погружаемом конце. При этом труба (трубы) располагаются асимметрично, параллельно оси возводимой сваи, а площадь суммарного сечения обсадных труб подбирают из соотношения Sт = (0,01. 0,5) Sс, где Sс - площадь сечения грунтоцементной сваи.
После этого в обсадные трубы засыпается цементное вяжущее и они извлекаются из грунта так, что цементное вяжущее остается в грунте.
В грунт с помощью буровой установки погружается рабочий орган, который перемешивает цементное вяжущее с грунтом. За счет гидратации цементного вяжущего поровой водой грунта происходит его затворение, а дальнейшее твердение приводит к образованию грунтоцементной сваи.
Заявленная совокупность существенных признаков находится в причинно-следственной связи к достигаемому результату.
При диаметре трубы dTmin < 70 мм затруднена засыпка в трубу цемента.
Соотношение STmin = 0,01 Sс (при одной трубе ее минимальный диаметр соответственно находится из соотношения dTmin 0,1 dс, где dс - диаметр грунтоцементной сваи) определяет минимальное содержание цемента. При меньшем содержании цемента прочность сопротивления материала грунтоцементной сваи недостаточна для восприятия нагрузок.
При диаметре трубы dTmin > 800 мм возникают сложности с ее погружением в грунт с помощью существующего оборудования.
Соотношение STmin = 0,5 Sр (при одной трубе ее максимальный диаметр соответственно находится из соотношения dTmin = 0,707 dс) определяет максимальное содержание цемента в грунте, при большем количестве цемента возведение грунтоцементных свай экономически нецелесообразно.
При погружении нескольких обсадных труб их диаметр составляет не более половины расчетного диаметра сваи, так как иначе введенный в грунт цемент окажется за пределами тела изготовляемой грунтоцементной сваи.
При этом количество обсадных труб определяется предусматриваемым распределением цементного вяжущего в теле сваи и его необходимым количеством.
Сравнение заявленного технического решения с прототипом позволило установить его соответствие критерию "новизна", так как оно не известно из уровня техники.
Предложенный способ возведения грунтоцементной сваи является промышленно применимым с помощью существующих технических средств и соответствует критерию "изобретательский уровень", так как оно явным образом не следует из уровня техники, при этом из последнего не выявлено предписываемых преобразованию характеризуемых отличительных от прототипа существенных признаков, необходимых для достижения указанного технического результата.
Таким образом, предложенное техническое решение соответствует критериям изобретения.
Других известных технических решений аналогичного назначения с подобными существенными признаками заявителем не обнаружено.
Способ возведения грунтоцементной сваи 1 включает погружение обсадной трубы 2 с самораскрывающимся инвентарным башмаком на нижнем конце (фиг. 1). Обсадные трубы погружают асимметрично, параллельно оси 3 возводимой грунтоцементной сваи. Перед погружением одной обсадной трубы ее диаметр подбирают из соотношения dт = (0,1. 0,707) dс где dс - диаметр возводимой сваи.
После погружения одной обсадной трубы 2 до проектной отметки в нее засыпают цемент 4, а саму обсадную трубу извлекают из грунта. Затем по оси возводимой сваи 3 устанавливают буровой агрегат 5, снабженный специальным рабочим органом 6 для перемешивания цемента 4 с грунтом, при этом столб цемента находится внутри возводимой сваи. При этом в зависимости от соотношения диаметров обсадной трубы 2 и тела возводимой сваи 1 возможны два основных варианта ее конструкции (фиг. 2).
В процессе погружения рабочего органа с заданной скоростью при его одновременном вращении происходит разрыхление грунта и перемешивание его с цементом, при этом цементное вяжущее распределяется ближе к периферии сечения сваи, что придает ей значительно большую несущую способность (фиг. 3).
При погружении нескольких обсадных труб до проектной отметки в них засыпают цемент и извлекают из грунта. Столбы цемента остаются в грунте. Затем по оси возводимой сваи устанавливают буровой агрегат, снабженный специальным рабочим органом для перемешивания цемента с грунтом, при этом столбы цемента находятся внутри тела возводимой сваи (фиг. 4).
В процессе погружения рабочего органа с заданной скоростью при его одновременном вращении происходит разрыхление грунта и перемешивание его с цементом, при этом цементное вяжущее распределяется ближе к периферии сечения сваи, что придает ей значительно большую несущую способность (фиг. 5).
Высокая естественная влажность грунта является достаточной для гидратации цемента.
Упрощение технологии устройства грунтоцементной сваи и сокращение времени на ее изготовление достигается за счет исключения из технологического цикла трудоемких процессов изготовления суспензии вяжущего, дозирования ее и синхронизированной подачи к вращающемуся рабочему органу. Отпадает необходимость в применении мокрых процессов и связанного с этим использованием шлангов, вентилей, дозаторов и дорогостоящего оборудования для приготовления цементной суспензии, ее подаче к буровому агрегату. В связи с тем, что при погружении обсадных труб уплотняется окружающий грунт, повышается несущая способность сваи по грунту. Кроме того, снижается расход цемента за счет увеличения его концентрации, связанного с более низким содержанием воды в теле грунтоцементной сваи и устройства ее более рациональной конструкции, так как цементное вяжущее распределяется по наиболее загруженной периферийной части сечения сваи. Современный технический уровень позволяет изготовлять в слабых водонасыщенных грунтах грунтоцементные сваи диаметром до 1,2 м с несущей способностью до 150 тонн.
Способ возведения грунтоцементной сваи, включающий погружение обсадной трубы с самораскрывающимся инвентарным башмаком на нижнем конце, засыпку цемента в обсадную трубу с последующим извлечением ее из грунта, перемешивание цемента с грунтом, отличающийся тем, что в пределах тела грунтоцементной сваи асимметрично, параллельно ее оси погружают одну или несколько обсадных труб, а площадь суммарного сечения обсадных труб подбирают из соотношения Sт = (0,01 - 0,5) Sс, где Sс - площадь поперечного сечения грунтоцементной сваи.
Вяжущие вещества, применяемые при глубинном перемешивании
При влажном смешивании в большинстве случаев применяется обычный портландцемент. Для грунтов с высоким содержанием органики или для слабых глинистых грунтов могут применяться особые связующие. Смеси зольной пыли, гипса и цемента могут применяться, если требуется прочность обрабатываемого грунта 1-3 МПа.
Приложение Г
Устройство армированных грунтоцементных элементов
Грунтоцементный элемент с развитой боковой поверхностью имеет значительное предельное сопротивление грунтового основания, при этом может наблюдаться дефицит прочности по материалу. Армирование позволяет сблизить значения сопротивления грунтового основания и прочности ствола и добиться за счет этого оптимальных с точки зрения материалоемкости проектных решений.
Г.1 Преимущество железобетонных элементов по сравнению с металлическими (при их использовании в качестве постоянных конструкций) заключается в их коррозионной стойкости в неоднородном высокопористом материале, каким является грунтоцемент. Второе преимущество - возможность оснащать сердечники "рубашками" для образования антисейсмического и разделительного зазоров на части боковой поверхности.
Г.2 Армированные грунтоцементные комбинированные сваи целесообразно применять в следующих случаях:
- ленточных и групповых фундаментов под сильно нагруженные сооружения больших размеров в плане;
- безростверковых свайных фундаментов;
- свайных фундаментов с высоким ростверком, в том числе свай-колонн, в том числе в мерзлых грунтах;
- свай в проседающих и оседающих массивах, в том числе на намывных территориях;
- свайных фундаментов в сейсмических районах.
Г.3 Сборный железобетонный высокопрочный сердечник позволяет заменить буровую сваю значительно большего сечения, при этом, грунтоцементный элемент в песчаных грунтах обеспечивает высокое предельное сопротивление.
Г.4 Задача уменьшения негативного трения в оседающих и проседающих массивах грунта существенно упрощается за счет возможности размещения на части длины сердечников разделительного антифрикционного слоя из поролона, пенополистирола и др.
В сейсмических районах разделительный слой расчетной толщины на боковой поверхности сердечников позволяет создавать эффект "гибкого" подземного этажа и снижения сейсмических нагрузок.
Г.5 Армирование стальными арматурными стержнями или сварными каркасами допускается для временным конструкций, например, ограждений котлованов. Для постоянных конструкций следует применять мероприятия по антикоррозионной защите металла. В частности, пластиковые гофрированные трубки, заполненные цементным или полимерцементным раствором, надежно защищают арматуру и повышают коэффициент использования за счет увеличения площади боковой поверхности металлического сердечника. Металлические сердечники из проката черных металлов могут защищаться оцинкованием или специальными покрытиями.
Приложение Д
Определение длины и сплошности грунтоцементного элемента геофизическими методами
Определение длины и сплошности грунтоцементного элемента без выбуривания кернов может выполняться сейсмоакустическими методами.
Основной метод проведения испытаний по определению длины и сплошности грунтоцементного элемента - проверка эхо-тестером. Он основан на измерении времени между интервалами излучения упругой продольной волны в грунтоцементном элементе и прихода отраженных волн. Отраженная продольная волна возникает в местах изменения механического импеданса (механический импеданс пропорционален скорости продольной волны в свае и площади поперечного сечения). В однородном грунтоцементном элементе скорость постоянна и там, где находится нижний конец сваи, происходит отражение волны. В случае нарушения сплошности грунтоцементного элемента фиксируется локальное отражение сигнала.
Длина грунтоцементного элемента L вычисляется, исходя из измеренных интервала времени и скорости распространения продольной волны в грунтоцементе . Скорость распространения продольной упругой волны в грунтоцементе принимается равной 3600 м/с.Для проведения испытаний применяется выровненная горизонтальная поверхность оголовка грунтоцементного элемента. Приемник эхо-тестера устанавливается и закрепляется на поверхности. Возбуждение упругой продольной волны выполняется механическим воздействием темпером (молотком) по поверхности в продольном направлении. Фиксируется интервал времени между начальным воздействием и приходом отраженного эхо-сигнала. Измерение выполняется с повторяемостью не менее шести раз в разных местах сечения, с накоплением данных по одной точке 6-8 раз. Точность определения длины грунтоцементного элемента зависит от шага квантования сигнала, равного 20 мкс и составляет 0,1 м. Прохождение сейсмоакустического сигнала по телу грунтоцементного элемента фиксируется с помощью рефлектограммы (пример рефлектограммы приведен на рисунке Д.1 (приложение Д)) по которой определяется сплошность материала.
Дополнительный контрольный метод определения длины грунтоцементного элемента - метод регистрации дифрагированной волны.
При распространении по телу грунтоцементного элемента упругой продольной волны, нижнее сечение элемента является источником дифрагированной волны, распространяющейся к поверхности земли. Измеряя время прохождения дифрагированной волны от низа грунтоцементного элемента до приемника на поверхности земли можно определить длину грунтоцементного элемента
Читайте также: