Чтобы система отсчета была инерциальной систему координат следует связать с
Любое тело находится в состоянии покоя или движется равномерно и прямолинейно, до того момента пока действие на него других тел не заставит его изменить свое состояние. Этот закон называют первым законом Ньютона. Но, так как способность тела сохранять состояние покоя или равномерного прямолинейного движения носит название инертности, то и данный закон часто называют законом инерции. Свойство тела сохранять без изменения свою скорость, если другие тела на него не действуют, назвали инерцией. Inertia — от латинского бездеятельность, косность.
Закон инерции был первым шагом при установлении основных законов классической механики.
Закон инерции является важным и независимым законом. Он отображает возможность определить пригодность системы отсчета для рассмотрения движения в динамическом и кинематическом смыслах. Без данного критерия не было бы понятно как синхронизировать часы и вводить единое время. Без закона инерции стали бы бессмысленными все уравнения кинематики и динамики. Так, невозможно говорить о равномерном движении, если нельзя синхронизировать часы. Закон инерции наполняет физическим смыслом второй и третий законы Ньютона.
Инерциальные системы отсчета
Движение в механике является относительным, то есть его характер зависит от системы отсчета. Закон инерции справедлив не для любой системы отсчета. Системы отсчета по отношению к которым, выполняется закон инерции носят название инерциальных. Система отсчета называется инерциальной, если она находится в состоянии покоя или равномерного и прямолинейного движения по отношению к другой инерциальной системе отсчета. Получается, что инерциальных систем бесконечно много. Закон инерции утверждает, что инерциальные системы отсчета существуют. В неинерциальной системе отсчета тело может обладать ускорением, если на него не действуют другие тела.
Экспериментально было показано, что инерциальной системой отсчета можно считать гелиоцентрическую систему отсчета, с началом координат в центре Солнца, с осями, проведенными в сторону звезд. Часто говорят, что система отсчета связанная с Землей является инерциальной, но строго говоря, это не так, потому что Земля вращается около собственной оси и вокруг Солнца. Однако при решении многих задач в классической механике эффектами неинерциальности такой системы отсчета можно пренебречь.
Масса тела, сила
Основной характеристикой материи, определяющей ее инерционные свойства, является масса тела. Массу иногда делят на инертную и гравитационную. К настоящему времени доказано, эти виды массы равны друг другу с точностью примерно порядка от величины.
Для описания меры механического воздействия на тело со стороны других тел (полей) которое упомянуто в законе инерции, используют понятие силы. При действии силы на тело, оно или изменяет свою скорость движения, тогда говорят о динамическом проявлении силы, или деформируется, тогда имеют в виду статическое проявление силы. Сила является векторной величиной и определяется величиной и направлением.
Примеры решения задач
Задание | Выполняется ли закон инерции для системы отсчета, которую связывают с автомобилем, если 1) машина увеличивает свою скорость отъезжая от места парковки; 2) перемещается по дуге окружности; 3) движется с постоянной скоростью? |
Решение | 1) Если машина движется с ускорением (увеличивая скорость от нуля), то связанная с ней система отсчета инерциальной не будет. |
2) Если автомобиль движется по криволинейной траектории, то систему отсчёта связанную с ним нельзя считать инерционной.
3) Если машина движется с постоянной скоростью относительно Земли (которую можно принимать за инерционную систему отсчета в данном случае), то и автомобиль будет инерционной системой отсчета.
Задание | Какой вывод об инерциальности системы отсчета, связанной с Землей можно сделать на основании следующего опыта: Маленький шарик бросили в глубокую шахту (глубина h), двигаясь, шарик отклонился от вертикали к востоку. Какова величина этого отклонения? Сопротивление воздуха не учитывать. Выполняется ли закон инерции в системе отсчета, связанной с Землей? |
Решение | Сделаем рисунок. |
В результате явления инерции шарик будет отклоняться от вертикали на расстояние (s), равное:
где – разность скоростей, перемещения точек поверхности Земли и дна шахты; t – время, которое тратит тело на падение. можно найти используя понятие период обращения Земли вокруг своей оси (T):
где R – Радиус Земли по экватору.
При свободном падении вертикально под действием силы тяжести Земли имеем:
Инерциальными системами отсчета называют такие системы, относительно которых все тела, не испытывающие действия сил, движутся равномерно и прямолинейно .
Инерциальными системами отсчета называют такие системы, относительно которых все тела, не испытывающие действия сил, движутся равномерно и прямолинейно.
Если какая-либо система отсчета движется относительно инерциальной системы поступательно, но не прямолинейно и равномерно, а с ускорением или же вращаясь, то такая система не может быть инерциальной и закон инерции в ней не выполняется.
Во всех инерциальных системах отсчета все механические и физические процессы протекают совершенно одинаково (при одинаковых условиях).
Согласно принципу относительности, все инерциальные системы отсчета равноправны и все проявления законов физики в них выглядят одинаково, а записи этих законов в разных инерциальных системах отсчета имеют одинаковую форму.
Если в изотропном пространстве существует хотя бы одна инерциальная система отсчета, приходим к выводу, что существует бесконечное множество таких систем, движущихся друг относительно друга поступательно, равномерно и прямолинейно. Если инерциальные системы отсчета существуют, то пространство однородно и изотропно, а время – однородно.
Законы Ньютона и другие законы динамики выполняются только в инерциальных системах отсчета.
Рассмотрим пример инерциальной и неинерциальной систем. Возьмем тележку, на которой находятся два шарика. Один из них лежит на горизонтальной поверхности, а другой подвешен на нити. Сначала тележка движется относительно Земли прямолинейно и равномерно (а). Силы, действующие на каждый шарик по вертикали, уравновешены, а по горизонтали на шарики никакие силы не действуют (силу сопротивления воздуха можно проигнорировать).
При любой скорости движения тележки относительно земли (υ1, υ2, υ3 и т.д.) шарики будут находиться в покое относительно тележки, главное, чтобы скорость была постоянной.
Однако, когда тележка наедет на песчаную насыпь (б), ее скорость начнет быстро уменьшаться, в результате чего тележка остановится. Во время торможения тележки оба шарика придут в движение – изменят свою скорость относительно тележки, хотя их никакие силы не толкают.
В этом примере первой (условно неподвижной) системой отсчета является Земля. Вторая система отсчета, движущаяся относительно первой – тележка. Пока тележка двигалась равномерно и прямолинейно, шарики находились в покое относительно тележки, т. е. выполнялся закон инерции. Как только тележка стала тормозить, т. е. начала двигаться с ускорением относительно инерциальной (первой) системы отсчета, закон инерции перестал выполняться.
Строго инерциальной системы отсчета нет. Реальная система отсчета всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается различных объектов. Все реальные тела движутся с каким-либо ускорением, следовательно любая реальная система отсчета может рассматриваться в качестве инерциальной лишь приближенно.
Инерциальной системой с очень высокой степенью точности считается гелиоцентрическая система, связанная с центром Солнца и координатными осями, направленными на три далекие звезды. Эту систему используют в задачах небесной механики и космонавтики. В большинстве технических задач инерциальной системой отсчета считают любую систему, жестко связанную с землей (или любым телом, которое покоится или движется прямолинейно и равномерно относительно поверхности Земли).
Принцип относительности Галилея гласит: Механические явления протекают одинаково во всех инерциальных системах отсчета, т. е. описывающие их законы динамики одинаковы.
Принцип относительности Галилея гласит:
Механические явления протекают одинаково во всех инерциальных системах отсчета, т. е. описывающие их законы динамики одинаковы. Поэтому все инерциальные системы отсчета равноправны.
Это значит, что уравнения, выражающие законы механики, не меняются при преобразованиях Галилея.
Преобразования Галилея заключаются в преобразовании координат и времени t движущейся материальной точки при переходе от одной инерциальной системы отсчета к другой:
Для координаты x это выражается так:
Здесь и - радиус-векторы, и - координаты точки в двух инерциальных системах отсчета, а υ – относительная скорость движения этих двух инерциальных систем отсчета. Время не изменяется при переходе из одной инерциальной системы отсчета в другую: принцип относительности Галилея основан на представлениях об абсолютном времени и абсолютном пространстве. Это означает, что во всех инерциальных системах отсчета события протекают одинаково (одновременно).
В некоторый начальный момент времени t0 = 0 возьмем одну из систем координат К (XYZ) и совместим с подвижной – K´(X´Y´Z´) . Зафиксируем систему K. В любой последующий момент времени положение некоторой точки А, движущейся относительно обеих систем координат, определяется в системе K радиус-вектором , а в системе K´ - радиус-вектором . Вектор, соединяющий начало координат О неподвижной системы координат с началом координат О´ подвижной системы, равен вектору перемещения системы K´ относительно K: . Согласно правилу сложения векторов, . Выразив вектор перемещения через скорость движения системы K´ относительно K, получим . Исходя из этого,
Из этого уравнения вытекает закон сложения скоростей:
где - скорости точки относительно систем K и K´ соответственно. Дифференцируем по времени это выражение и получим w = w´. Это значит, что ускорение точки в данный момент времени одинаково относительно любой из систем, неускоренно движущихся относительно друг друга.
Галилей на основании наблюдений сформулировал классический принцип относительности, согласно которому законы механики одинаковы в любых инерциальных системах отсчета. То есть, уравнения движения относительно любых инерциальных систем совпадают друг с другом. Это значит, что уравнение mw = F эквивалентно уравнению m´w´ = F´.
Из принципа Галилея следует, что F = F´, т. е. силы, действующие на точку, неизменны при переходе от одной инерциальной системы к другой, также инерциальной системе.
Следовательно, все величины, входящие в уравнение Ньютона, не изменяются при преобразовании от одной инерциальной системы к другой инерциальной системе.
Инерциальные системы отсчета – это системы отсчета, которые сохраняют свою скорость, т.е. движутся без ускорения.
Всякая система отсчёта, движущаяся по отношению к инерциальной системе отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Следовательно, теоретически может существовать любое число инерциальных систем отсчета.
В реальности система отсчёта всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается движение различных объектов. Так как все реальные тела движутся с тем или иным ускорением, любая реальная система отсчёта может рассматриваться как инерциальная система отсчета лишь с определенной степенью приближения. С высокой степенью точности инерциальной можно считать гелиоцентрическую систему, связанную с центром масс Солнечной системы и с осями, направленными на три далёкие звезды. Такая инерциальная система отсчета используется главным образом в задачах небесной механики и космонавтики. Для решения большинства технических задач инерциальной можно считать систему отсчета, жёстко связанную с Землёй.
Принцип относительности Галилея
Инерциальные системы отсчета обладают важным свойством, которое описывает принцип относительности Галилея:
- всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета.
Равноправие инерциальных систем отсчета, устанавливаемое принципом относительности, выражается в следующем:
- законы механики в инерциальных системах отсчета одинаковы. Это значит, что уравнение, описывающее некоторый закон механики, будучи выражено через координаты и время любой другой инерциальной системы отсчета, будет иметь один и тот же вид;
- по результатам механических опытов невозможно установить, покоится ли данная система отсчета или движется равномерно и прямолинейно. В силу этого ни одна из них не может быть выделена как преимущественная система, скорости движения которой мог бы быть придан абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости движения систем, так что любую систему можно признать условно неподвижной, а другую – движущейся относительно нее с определенной скоростью;
- уравнения механики неизменны по отношению к преобразованиям координат при переходе от одной инерциальной системы отсчета к другой, т.е. одно и тоже явление можно описать в двух разных системах отсчета внешне по-разному, но физическая природа явления остается при этом неизменной.
Примеры решения задач
Задание | Является ли инерциальной системой отсчета: 1) искусственный спутник Земли? 2) карусель? |
Ответ | 1) Искусственный спутник земли не является инерциальной системой, так как он движется по орбите под действием силы притяжения со стороны Земли, а, следовательно, движется с ускорением. |
2) карусель не является инерциальной системой отсчета, так как вращательное движение – это движение с ускорением.
Задание | Система отсчета жестко связана с лифтом. В каких из приведенных ниже случаев систему отсчета можно считать инерциальной? Лифт: а) свободно падает; б) движется равномерно вверх; в) движется ускоренно вверх; г) движется замедленно вверх; д) движется равномерно вниз. |
Ответ | а) свободное падение – это движение с ускорением , поэтому систему отсчета, связанную с лифтом в данном случае нельзя считать инерциальной; |
б) так как лифт движется равномерно, систему отсчета можно считать инерциальной;
в) так как лифт движется с ускорением, систему отсчета нельзя считать инерциальной;
г) лифт движется замедленно, т.е. с отрицательным ускорением; систему отсчета нельзя считать инерциальной, так как она движется с ускорением (независимо от знака ускорения и направления движения);
д) так как лифт движется равномерно, систему отсчета можно считать инерциальной.
Первый закон механики, или закон инерции (инерция – это свойство тел сохранять свою скорость при отсутствии действия на него других тел), как его часто называют, был установлен еще Галилеем. Но строгую формулировку этого закона дал и включил его в число основных законов механики Ньютон. Закон инерции относится к самому простому случаю движения – движению тела, на которое не оказывают воздействия другие тела. Такие тела называются свободными телами.
Ответить на вопрос, как движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?
Имеется лишь один выход. Надо создать для тела условия, при которых влияние внешних воздействий можно делать все меньшим и меньшим, и наблюдать, к чему это ведет. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к земле уравновешивается действием поверхности, на которую он опирается, и на скорость его движения влияет только трение.) При этом легко обнаружить, что чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, заметно не меняя скорость. Трение можно уменьшить до минимума с помощью воздушной подушки – струй воздуха, поддерживающих тело над твердой поверхностью, вдоль которой происходит движение. Этот принцип используется в водном транспорте (суда на воздушной подушке). На основе подобных наблюдений можно заключить: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу впервые пришел Галилей.
С другой стороны, нетрудно заметить, что, когда скорость тела меняется, всегда обнаруживается воздействие на него других тел. Отсюда можно прийти к выводу, что тело, достаточно удаленное от других тел и по этой причине не взаимодействующее с ними, движется с постоянной скоростью.
Движение относительно, поэтому имеет смысл говорить лишь о движении тела по отношению к системе отсчета, связанной с другим телом. Сразу же возникает вопрос: будет ли свободное тело двигаться с постоянной скоростью по отношению к любому другому телу? Ответ, конечно, отрицательный. Так, если по отношению к Земле свободное тело движется прямолинейно и равномерно, то по отношению к вращающейся карусели тело заведомо так двигаться не будет.
Наблюдения за движениями тел и размышления о характере этих движений приводят нас к заключению о том, что свободные тела движутся с постоянной скоростью, по крайней мере, по отношению к определенным телам и связанным с ними системам отсчета. Например, по отношению к Земле. В этом состоит главное содержание закона инерции.
Поэтому первый закон Ньютона может быть сформулирован так:
существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.
Инерциальная система отсчета
Первый закон Ньютона утверждает (это с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.
Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.
Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.
Инерциальных систем существует бесконечное множество. Система от-счета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.
Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т.е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.
С гораздо большей точностью можно считать инерциальной систему отсчета, в которой начало координат совмещено с центром Солнца, а координатные оси направлены к неподвижным звездам. Эту систему отсчета называют гелиоцентрической.
Инерциальными являются системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.
Галилей установил, что никакими механическими опытами, поставлен-ными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея или механического принципа относительности.
Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).
Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальными.
К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.
В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.
Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко. Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1).
О том, что телу свойственно сохранять не любое движение, а именно прямолинейное, свидетельствует, например, следующий опыт (рис. 2). Шарик, двигавшийся прямолинейно по плоской горизонтальной поверхности, сталкиваясь с преградой, имеющей криволинейную форму, под действием этой преграды вынужден двигаться по дуге. Однако когда шарик доходит до края преграды, он перестает двигаться криволинейно и вновь начинает двигаться по прямой. Обобщая результаты упомянутых (и аналогичных им) наблюдений, можно сделать вывод, что если на данное тело не действуют другие тела или их действия взаимно компенсируются, это тело покоится или же скорость его движения остается неизменной относительно системы отсчета, неподвижно связанной с поверхностью Земли.
Читайте также: