Зарядка телефона через вай фай
В 1820 году Андре-Мари Ампер доказал André Marie Ampère , что электрический ток создаёт магнитное поле, а в 1831-м Майкл Фарадей открыл Faraday discovers electromagnetic induction, August 29, 1831 закон индукции, который стал основой работы современных беспроводных зарядок.
В 1888 году Генрих Герц подтвердил Heinrich Hertz Produces And Detects Radio Waves In 1888 существование электромагнитного поля. Его исследования помогли Николе Тесле впервые передать энергию на расстояние. Это случилось World’s Columbian Exposition in Chicago 1893 в 1893 году на всемирной выставке в Чикаго.
До конца XX века с передачей энергии на расстояние разными способами экспериментировали многие учёные. Исследования продолжаются до сих пор.
Массовый интерес к беспроводной зарядке зародился только после бума мобильных устройств уже в XXI веке.
Сегодня этим вопросом занимаются организации Wireless Power Consortium и AirFuel Alliance.
Какие есть стандарты беспроводной зарядки
Чтобы зарядить смартфон без проводов, используется пара катушек: одна в зарядной станции, которая подключена к питанию, другая в устройстве.
Когда на первой катушке появляется ток, вокруг неё образуется магнитное поле, которое передаёт его на вторую.
Магнитное поле появляется из-за использования переменного тока высокой частоты. Он преобразовывается в постоянный, когда передаётся на устройство.
В зависимости от частоты тока в работу включаются магнитная индукция или магнитный резонанс.
Магнитно-индукционные станции
Они передают энергию на расстояние около 10 мм и используют для этого частоту переменного тока 100–357 кГц. Чтобы зарядить смартфон с помощью такой станции, он должен поддерживать конкретный диапазон её частот.
Магнитное поле не проходит через металл, поэтому беспроводная зарядка возможна только на смартфонах, задняя панель которых сделана из стекла или пластика. При этом даже толстый защитный чехол может помешать процессу зарядки.
По принципу магнитной индукции работают беспроводные зарядки Qi и PMA.
Разработкой стандарта Qi с 2008 года занимается организация Wireless Power Consortium (WPC), в которую входят производители зарядок из Америки, Европы и Азии. Его спецификации находятся в общем доступе Qi wireless power specification .
Этот стандарт беспроводной зарядки используют в iPhone 8 и более новых смартфонах Apple, а также во всех устройствах Samsung линейки Galaxy S последних пяти лет.
С ним также работают компании Xiaomi, Huawei, LG, Sony, Asus, Motorola, Nokia, HTC.
Разработкой стандарта PMA с 2012 года по 2015-й занималась организация Power Matters Alliance (PMA).
Он в большей мере распространён в США. Там его продвигали AT&T removed Qi wireless charging in the Lumia 1520 to make room for PMA сотовый оператор AT&T и сеть кофеен Starbucks.
Сегодня Power Matters Alliance в составе AirFuel Alliance занимается развитием альтернативного типа беспроводной зарядки AirFuel. Но вместе с Qi этот стандарт до сих пор поддерживают смартфоны Samsung, включая последние флагманы Galaxy S10, S10+ и S10e.
Магнитно-резонансные станции
В отличие от станций, работающих на магнитной индукции, в них применяется увеличенная вплоть до 6,78 МГц частота тока. Это позволяет расширить радиус зарядки до 40–50 мм.
В таких беспроводных зарядках также используется набор из двух катушек. Но они могут не находиться друг напротив друга, поэтому зарядные устройства необязательно должны быть выполнены в виде подставок или ковриков.
По принципу магнитного резонанса работают беспроводные зарядки стандартов Rezence и AirFuel.
Rezence
Разработкой Rezence с 2012 года по 2015-й занималась организация Alliance for Wireless Power (A4WP).
За счёт увеличения расстояния зарядки стандарт позиционировали как более удобную альтернативу Qi и PMA. Сейчас A4WP входит в состав AirFuel Alliance и работает над стандартом AirFuel.
Rezence продвигали производители комплектующих Broadcom, Gill Electronics, Integrated Device Technology (IDT), Intel, Qualcomm, Samsung Electronics, Samsung Electro-Mechanics, а также WiTricity.
AirFuel
Этот тип беспроводной зарядки ещё не вышел в массовое производство. Потенциал его распространения пока неясен, но компания Huawei планирует Huawei puts on a resonant wireless charging AirFuel комплектовать им все свои смартфоны.
Разработкой стандарта AirFuel, который станет продолжением Rezence, с 2015 года занимается организация AirFuel Alliance.
В теории AirFuel можно спрятать даже под стол или другую поверхность. Через неё станции смогут одновременно работать с несколькими устройствами: смартфонами, наушниками, ноутбуками.
Что нужно знать о мощности беспроводных зарядок
Беспроводные зарядки отличаются по входной и выходной мощности: обычно она варьируется от 5 до 20 Вт.
Её уровень указывают на корпусе устройства, на коробке, на официальном сайте производителя. Его также можно узнать из обзоров.
Некоторые компании вместо мощности в ваттах указывают напряжение в вольтах и силу тока в амперах. По их значениям также можно узнать, насколько быстро можно зарядить устройство.
Мощность зарядки в ваттах = напряжение в вольтах × силу тока в амперах.
Беспроводные зарядки могут поставляться без блока питания. Их входную мощность нужно знать, чтобы определить, какой подойдёт для их полноценной работы. Мощность стандартного блока питания iPhone — 5 Вт, iPad — 12 Вт, Galaxy S10 — 25 Вт.
Если входной мощности достаточно, устройство должно выдавать максимальную выходную. Зарядка ZMI WTX10 Wireless Charger выдаёт 18 Вт, двойной док Samsung EP-P5200 — 10 Вт, рекомендованная Belkin Boost Up Special Edition Apple зарядка Belkin Boost Up Special Edition — 7,5 Вт.
При этом нужно понимать, с какой мощностью беспроводной зарядки работает ваш смартфон. iPhone 8, 8 Plus и X на iOS 12 поддерживают 7,5 Вт, iPhone XS, XR и XS Max, Galaxy S10 — 10 Вт.
Чтобы определить примерную скорость зарядки в часах от 0 до 100%, ещё нужно знать ёмкость аккумулятора смартфона в ватт-часах и учитывать коэффициент полезного действия (КПД) беспроводной зарядки — обычно 75–90%.
Скорость зарядки в часах = ёмкость аккумулятора в ватт-часах / выходную мощность зарядки (или смартфона, если она меньше) в ваттах / КПД в % × 100%.
Чтобы зарядить аккумулятор iPhone XS Max на 12,08 Вт∙ч с помощью ZMI WTX10 Wireless Charger, уйдёт не меньше 1⅓–1⅔ часа. При этом к сети её можно подключить стандартным блоком питания.
Что нужно знать, используя беспроводную зарядку
Как установить смартфон на зарядную станцию
Положите смартфон в центр беспроводной зарядки или на место, предусмотренное производителем.
Убедитесь, что зарядка началась. Если этого не случилось, ваш смартфон не поддерживает такой способ передачи энергии или вы используете слишком толстый чехол.
Как избежать перегрева во время беспроводной зарядки
Во время беспроводной зарядки смартфон нагревается больше обычного. Чтобы избежать перегрева, он может временно отключить передачу энергии, когда заряд аккумулятора достигнет 80%.
Не используйте громоздкие чехлы, которые мешают естественному теплообмену. И не кладите на устройство, которое заряжается, посторонние предметы. Опасно накрывать его тканью, которая ограничит циркуляцию воздуха.
Как долго смартфон может находиться на беспроводной зарядке
Смартфон может находиться на беспроводной зарядке всю ночь напролёт. Когда заряд его аккумулятора достигнет 100%, передача энергии прекратится.
Главное, используйте качественные зарядку, кабель и блок питания, чтобы избежать короткого замыкания.
Стоит ли покупать беспроводную зарядку сегодня
Беспроводная зарядка станет хорошим подарком для коллеги или делового партнёра, она займёт достойное место на рабочем столе дома или в офисе.
Но до покупки беспроводной зарядки нужно обязательно взвесить её преимущества и недостатки.
Преимущества
- Можно просто положить смартфон на зарядное устройство, и он тут же начнёт восполнять энергию.
- Не нужно искать кабель с подходящим коннектором (Lightning, microUSB, USB-C).
- Уменьшается износ кабелей питания, портов и коннекторов.
Недостатки
- Беспроводная зарядка работает медленнее проводной из-за меньшего КПД.
- Зарядная станция редко идёт в комплекте, обычно её приходится докупать отдельно.
- Нельзя полноценно использовать смартфон во время зарядки.
- Если случайно сместить смартфон, лежащий на станции, зарядка может прекратиться.
- Толстые защитные чехлы и чехлы с металлическими частями могут мешать работе беспроводной зарядки.
- Беспроводную зарядку не всегда удобно брать с собой.
У беспроводной зарядки сегодня больше минусов, чем плюсов. Пока она находится на начальном этапе развития, поэтому нужно чётко понимать, где и когда её уместно использовать.
Беспроводное зарядное устройство удобно на рабочем столе. Можно поставить его на прикроватную тумбу и класть на него смартфон перед сном. Но совсем неудобно брать такую зарядку в путешествие и использовать на ходу.
С развитием стандартов Qi и AirFuel беспроводные зарядки будут использоваться повсеместно. Но для этого производителям предстоит расширить радиус действия, увеличить скорость зарядки и разобраться с остальными недостатками.
Беспроводные зарядные устройства уже сейчас стремительно набирают популярность и начинают активно занимать свою нишу на рынке. Но подобной технологии уже активно наступает на пятки такая идея, как зарядить телефон через Wi-Fi.
Хронология развития
Идея передачи энергии на большие расстояние без использования сопутствующих проводников уже давно будоражит умы лучших мыслителей планеты. Первые подвижки в этом деле наметились еще в начале XX века.
Открыл, осуществил и описал же такую технологию небезызвестный сербский ученый Никола Тесла. Но социум не был готов к подобным технологиям, так как в памяти народа еще были живы воспоминания об охоте на ведьм и инцидентах в Салеме, а потому технология была предана забвению и канула в Лету. Но лишь до определенных пор.
С того момента прошло немало времени, случилось несколько мировых войн, и вот человечество достигло того уровня развития, при котором идеи почти вековой давности становятся не такими уж безумными и неприемлемыми.
К тому же технический прогресс и эволюция микропроцессорной техники являются весьма приличным подспорьем для осуществления преобразования электромагнитных волн в направленный поток электрической энергии.
Не стоит сомневаться, что где-то на закрытых объектах уже давно разработана и доведена до совершенства подобная технология. Но в промышленных целях эти устройства вряд ли будут использоваться. А потому предлагаю рассмотреть те варианты, которые были изначально ориентированы на выход на гражданский рынок.
Современный уровень развития
Первый раз мы услышали о том, что зарядка телефона через Wi-Fi стала возможной, около пяти лет назад. Это приспособление было продемонстрировано на CES 2010 под названием RCA Airnergy Charger. По описаниям принципа работы оно было похоже на предложенное Теслой устройство.
Airnergy
Приспособление представляло собою небольшую коробочку вполне приемлемых габаритов для того, чтобы постоянно носить его в кармане пиджака; из коробочки выходил кабель для подключения к телефону. Внутри имелись небольшая схема с приемником Wi-Fi-сигнала и аккумулятор небольшой емкости. Конкретные технические данные не были опубликованы, но образная модель работы устройства была изложена.
Приемник перехватывает радиоволны, по которым транспортируется информация, регистрирует их колебания, частоту и амплитуду. После чего схема выстраивает их в таком порядке, что они ничем не отличаются от колебаний электроэнергии. Завершив трансформацию, новообразованное электричество начинает заполнять емкость аккумулятора. Остается только подключить устройство и наблюдать, как происходит зарядка.
Но, увы, несмотря на гениальность идеи, ее реализация оставляла желать лучшего. Не совсем хорошо отшлифованная общая методика работы, эргономика и внутреннее обустройство платы не позволяли даже выйти на рынок. Что уж говорить о возможности конкурировать с традиционными методами подачи электропитания.
КПД был чудовищно низким, несмотря на то, что на представлении было заявлено о зарядке BlackBerry-устройства с 30% до полного заряда всего за 90 минут. Но на деле технология была сырой, а заявленный на лето того же года выход устройства так и не состоялся. Его стоимость должна была составить около 40 долларов США.
Продукт от Energous
В настоящее время компания Energous уже продает такое устройство. Технологические тонкости не раскрываются из соображения защиты интеллектуальной собственности, так как эта технология уже более совершенна, чем описанная ранее.
Здесь уже не требуется подключения к гаджету для зарядки. Устройство само преобразовывает волны таким образом, что они ориентированы не на передачу данных, а на пополнение уровня заряда. Единственный существенный минус – работа лишь в одном режиме: приспособление либо заряжает мобильное устройство, либо предоставляет доступ к сети.
Пожалуй, если бы не столь специфический принцип работы и необходимость покупать новый смартфон, то аппарат нашел бы свою аудиторию.
Power over Wi-Fi
Наконец мы добрались до флагмана реализации подобной задумки. Под конец первой половины нынешнего года стало известно, что Вашингтонский исследовательский университет находится на стадии активного тестирования новой технологии power over Wi-Fi, которая уже тогда позволяла заряжать не только аккумуляторы мобильных устройств. Удовлетворительные результаты были получены также при пополнении уровня заряда батареек в часах.
По сравнению с двумя предыдущими методами зарядки, у данного способа имеется несколько отличительных черт.
Во-первых, не требуется ни покупать отдельные специальные устройства, ни новый смартфон. Все, что нужно, – перепрошить домашний роутер. Это никоим образом не повлияет на его работоспособность в качестве ретранслятора информации. Аппаратных изменений не требуется вовсе.
Во-вторых, в отличие от Energous-устройства, принцип работы данной методики позволяет одновременно и заряжать батареи, и пользоваться доступом к сети. Причем не только одному заряжаемому устройству, а сразу всем подключенным аппаратам.
И последнее: на данный момент максимальное расстояние для зарядки составляет 8,4 метра. Но разработчики отметили, что данный параметр можно увеличить и он будет изменен в несколько раз. Как только сам технологический процесс будет доведен до ума, ученые займутся вопросом увеличения дальности работы.
Как зарядить телефон через WI-FI: Видео
Имею опыт работы в ИТ сфере более 10 лет. Занимаюсь проектированием и настройкой пуско-наладочных работ. Так же имеется большой опыт в построении сетей, системном администрировании и работе с системами СКУД и видеонаблюдения.
Работаю специалистом в компании «Техно-Мастер».
На Хабре есть немало статей о беспроводной зарядке смартфонов, и в комментариях к каждой из них, нет-нет, да и проскользнет наивный вопрос, который местные старожилы мгновенно заминусуют, отправив комментатора учить матчасть. Мы как, не побоимся этого слова, крупнейший производитель зарядных устройств для смартфонов с удовольствием проведем ликбез по беспроводным зарядкам, ответим на вопросы и развеем пару мифов. И начнем, пожалуй, с вопроса, от которого большинство хабровчан начинают скрежетать зубами.
Шапочка из фольги и свинцовые трусы компенсируют все негативные… извините, шутка. Уверения о некоем опасном излучении беспроводных зарядок можно воспринимать только со снисходительной улыбкой. Как говорится, не учите физику, и ваша жизнь будет полна чудес (и/или необоснованных страхов). Если на расстоянии двух сантиметров над поверхностью станции телефон перестает заряжаться и даже распознавать беспроводную зарядку, то откуда взяться излучению, которое будет «бить» на метры вокруг, выжигая мозг и репродуктивную систему?
Каждую секунду вас пронзают радиоволны сотовой связи, Wi-Fi, Bluetooth, ТВ и радиовещания и множество других сигналов в самых разных диапазонах, вы подвергаетесь воздействию электромагнитного поля от компьютера, любого электроприбора и даже электропроводки в стенах, а уж как «фонит» работающая микроволновка! И всё это не оказывает ровным счетом никакого влияния на вас, потому что это не ионизирующее излучение (то есть, не радиация).
Изучением влияния неионизирующего излучения на человека ученые занимаются десятки лет, и за это время было не раз доказано, что реальную опасность для людей представляют только долговременные тесные объятия с мощными неэкранированными излучателями, вроде военного радара, базовой станции сотовой связи, направленной точно на вас на расстоянии в пару метров или микроволновки без двери. И вред будет заключаться в разогреве молекул воды в клетках и денатурации белков.
Единственная рекомендация, которая хоть как-то затрагивает беспроводные зарядки для смартфонов, — не подносить работающую зарядку к кардиостимулятору. По инструкции медицинским устройствам вообще противопоказано любое постороннее мощное излучение. При этом нет никаких доказательств или случаев влияния Qi-зарядки на кардиостимулятор. Более того, уже разработана беспроводная зарядка для самих кардиостимуляторов.
Человеку беспроводная зарядка не может навредить никоим образом. А вот себе самой — вполне, если между телефоном и станцией оставить металлический предмет (как монета на фото). Электромагнитная индукция — дело такое.
Фото: Wireless Power Consortium
Однако если задаться такой целью, с помощью беспроводной зарядки действительно можно нанести вред смартфону. Дело в том, что хоть Qi-станции могут обнаруживать посторонние металлические предметы, попавшие между двумя катушками, некоторые тонкие предметы, вроде скрепок или декоративных вставок на чехле, могут остаться незамеченными. Оказавшись над передающей индукционной катушкой, металл неизбежно начнёт нагреваться. Нескольких минут хватит, чтобы та же скрепка раскалилась и начала плавить пластик.
КПД проводной зарядки составляет около 97%, то есть потерь энергии практически нет. А вот КПД беспроводных зарядок колеблется на уровне 60–75%. В теории, в сферических условиях в вакууме, так сказать. В реальности на КПД зарядки стандарта Qi влияет положение телефона на зарядной станции (то есть положение индукционных катушек друг относительно друга), их характеристики и размеры.
В этом году технологические новостные сайты наперебой репостили «исследование» энтузиаста, сравнившего скорость и энергопотребление проводной и беспроводных зарядок. Закономерно, результаты оказались не в пользу последних, причем КПД индукционной зарядки варьировался от станции к станции и особенно сильно зависел от положения смартфона на них. Если за 100% взять эффективность проводной зарядки, то КПД Qi варьировался от 20% до 53%, а самый лучший результат показала оригинальная Google Pixel Stand — 61%. Правда, исследование было посвящено не скорости или тепловыделению беспроводных зарядок, а их энергопотреблению — автор вел читателя к выводу, что если хотя бы половину от 3 млрд смартфонов в мире заряжать по воздуху с таким КПД, энергопотребление и нагрузка на энергосети возрастут. С одной стороны, с математикой не поспоришь. С другой, неутешительный вывод держится на вероятности «если бы, да кабы», а энергопотребление в мире и так растёт за счет цифровизации общества.
Кстати, возьмите на вооружение USB-тестер, с помощью которого можно измерять напряжение, ток и переданную энергию. Такой гаджет стоит около 1000 рублей, но позволяет безошибочно оценить качество USB-кабелей и выходные параметры зарядных устройств. Архиполезная вещь в хозяйстве!
Фото: AliExpress
Исходя из невысокого реального КПД индукционной зарядки, мы приходим к необходимости подключения зарядной станции к блоку питания повышенной мощности. Если 5-ваттную станцию подключить к 5-ваттному ЗУ, то из-за потерь скорость зарядки смартфона будет… скорее всего, никакой, потому что результирующая мощность на приёмной катушке смартфона окажется незначительно выше энергопотребления телефона в режиме ожидания. Производители Qi-станций рекомендуют использовать блоки питания с мощностью на 30–40% выше, чем у Qi-зарядки. Так, Apple для своей новой 15-ваттной MagSafe для iPhone 12 рекомендует докупить адаптер с мощностью не ниже 20 Вт. К счастью, не обязательно производства Apple. Мы провели сравнение скорости зарядки iPhone 12 Pro через MagSafe, подключенного к оригинальному 20-ваттному адаптеру Apple и к крохотному Anker Nano на те же 20 Вт. Разница между двумя блоками питания укладывается в несущественную погрешность — 188 минут в случае с ЗУ Apple 20 Вт и 190 минут в паре с Anker Nano 20 Вт. А при зарядке от этих блоков питания не через MagSafe, а напрямую по кабелю, батарею удалось зарядить за одинаковое время в 104 минуты.
Кстати, о MagSafe. Формально с новой зарядкой Apple совместимы все iPhone с Qi-приемником, но лишь семейство iPhone 12 будет заряжаться с максимальной мощностью 15 Вт, тогда как предыдущие модели смартфона — только 5 Вт. Также обозреватели заметили странную несовместимость MagSafe с мощными блоками питания для MacBook — в паре с 96-ваттным адаптером MagSafe «раскачался» только до 10 Вт. Есть мнение, что в адаптер для ноутбука просто не «зашит» необходимый профиль питания, требуемый для MagSafe.
Раньше мы тоже советовали приобретать для наших беспроводных зарядок блоки питания примерно на 40% мощнее, однако теперь самые мощные Qi-станции, вроде Anker PowerWave II Stand мы просто комплектуем сетевым адаптером необходимой мощности. Если в комплекте с вашей Qi-зарядкой не оказалось кабеля, докупите гарантированно хороший провод — дешёвые безымянные USB-кабели часто не могут передать высокие токи, а наименее качественным кабелям не покоряется даже 0,5 А.
Рискуем удивить, но да. Как и проводная зарядка. А уж как опасно для аккумулятора отсутствие любой зарядки и уход в глубокий разряд! Аккумуляторы вообще от жизни умирают. На скорость наступления неизбежного конца по большей части влияет лишь интенсивность использования батареи. В некотором смысле литий-ионные батареи следуют завету «live fast, die young» — чем быстрее аккумулятор выработает свой ресурс циклов заряда/разряда, тем быстрее потеряет ёмкость и потребует замены.
Заметьте, мы говорим о ресурсе, выраженном в количестве циклов зарядки. Самому аккумулятору абсолютно все равно, каким образом ему пытаются восполнить заряд: по проводу или через индукционную катушку — контроллер питания любой входящий ток приведёт к нужным характеристикам и лишь затем подаст на элемент питания.
Но нет дыма без огня, откуда-то ведь взялись городские легенды об опасности беспроводной зарядки? В этом мифе есть доля правды, только не там, где полагают большинство несведущих владельцев смартфонов. Повторим: ток, подаваемый непосредственно на аккумулятор, не различается в зависимости от способа зарядки, так что никакого «повреждения индукционными токами» при использовании стандарта Qi быть не может в принципе. Аккумулятору вредит лишь нагрев до высоких температур, который ускоряет деградацию анода и катода и, как следствие, ведёт к снижению ёмкости и в особо тяжёлых случаях даже к короткому замыканию. Ускоренный износ батареи наблюдается при её нагреве выше 30 °C, то есть температурный порог издевательски мал и ниже температуры тела человека.
Давайте считать и прикидывать. КПД Qi-зарядок составляет около 60%, большая часть потерянной энергии преобразуются в тепло, которое нагревает катушки и, соответственно, смартфон, а вместе с ним и аккумулятор. Важный момент — для наиболее высокого КПД катушки в станции и смартфоне должны находиться точно друг над другом, при их смещении станция вынуждена повышать мощность, что вызывает повышенный нагрев.
Дешевые безымянные Qi-зарядники не испортят ваш смартфон, зато могут испортиться сами — экономия на элементной базе и некачественная пайка могут закончиться коротким замыканием. И хорошо, если не случится возгорания.
Фото: iphones_ru / Instagram
Смартфоны могут охлаждаться только естественным образом, поэтому добротный чехол серьезно ухудшает отвод тепла. Это не значит, что надо непременно избавляться от чехлов во имя сохранности батареи — новый аккумулятор через пару лет обойдётся дешевле, чем потенциально разбитый экран сейчас. Но свою лепту в перегрев смартфона чехол всё-таки вносит.
Поэтому же мы не рекомендуем добавлять смартфону функцию беспроводной зарядки с помощью Qi-приёмника в виде тонкой пластины со штекером. Смартфоны без Qi-катушки просто не рассчитаны на то, что сквозь них начнут протекать индукционные токи, а тыльную часть начнет нагревать индукционная катушка. В лучшем случае при использовании такого ресивера вы получите очень быструю деградацию аккумулятора из-за перегрева, в худшем — испорченные MEMS-компоненты, вроде компаса или гироскопа.
Подобные Qi-ресиверы для смартфонов можно купить за 200–300 рублей, но мнимое удобство может обернуться повреждениями аккумулятора и микромеханических компонентов смартфона.
Фото: AliExpress
Всё-таки стандарт беспроводной зарядки Qi разрабатывался не наобум лазаря. Начинку смартфонов предложили защищать изолирующей пластиной, возможные негативные эффекты от перегрева были просчитаны, а мощность — ограничена гарантированно безопасными значениями (те самые 5 Вт в первых ревизиях стандарта, 15 Вт сейчас).
Даже в самом неблагоприятном случае беспроводная зарядка не превратит телефон в сковородочку для жарки шкварок. В смартфоны встроен термодатчик, который не позволяет батарее нагреваться выше 45 °C. Если обнаружится перегрев, например из-за толстого чехла, не дающего телефону охлаждаться естественным образом, то контроллер питания потребует снизить подаваемую мощность.
Но всё это касается оригинальных спецификаций Qi с базовым ограничением мощности беспроводной зарядки смартфонов в 15 Вт. А что же с быстрыми беспроводными зарядками?
Заряжать современный смартфон от беспроводной станции мощностью 5 Вт — это очень медитативное занятие, имеющее смысл только если телефон оставлять на прикроватной тумбочке на всю ночь. Для тех, кто закономерно не хочет ждать по шесть часов, производители смартфонов предлагают собственные проприетарные быстрые зарядки, на полную мощность работающие только с определёнными устройствами их же марки. Так у Huawei есть SuperCharge на 27 Вт и 50 Вт, OPPO представила AirVOOC на 65 Вт, а Xiaomi так и вовсе в ноябре 2020 года анонсировал 80-ваттную беспроводную зарядку, способную зарядить батарею на 4000 мА·ч за 19 минут.
Чудо техники от Xiaomi — беспроводная зарядка телефона за 18 минут. А что с температурой батареи? Пока неизвестно.
Потрясающие мощности и, в теории, потрясающее тепловыделение. Заметим, что при проводной зарядке гаджеты тоже нагреваются, и этот нагрев зависит от мощности зарядки (при условии, что сам смартфон в этот момент не используется, иначе нагрев будет значительно выше). Но при беспроводной передаче энергии тепла выделяется всё же больше. Соответственно, Qi-зарядник на 5 Вт нагреется крайне несущественно, на 15 Вт — побольше, а вот как должен разогреться смартфон, который питают через 80-ваттную беспроводную станцию… На самом деле однозначно мы пока не можем ответить на этот вопрос, сверхмощная зарядка Xiaomi ещё не вышла в серию, и реальных независимых тестов пока не проводилось.
Итак, с тепловыделением быстрых беспроводных зарядок более-менее разобрались — в теории оно выше, но практически нагрев контролируется термодатчиками и разнесением высокой мощности на две отдельных передающих катушки. Но есть другой возможный негативный фактор, общий и для проводной, и для беспроводной быстрой зарядки — повышенный ток, подаваемый на аккумулятор.
Разрядка и зарядка литий-ионной батареи представляет собой процесс передачи положительных ионов лития между анодом и катодом. Чем выше мощность заряда или разряда, тем быстрее ионы покидают один электрод и прикрепляются к другому. В ходе эксплуатации батареи анод и катод неизбежно изнашиваются, а быстрая зарядка незначительно ускоряет этот процесс. Насколько? Если использовать исключительно «быстрый» способ, то разница в ёмкости в сравнении с медленно заряжаемым аккумулятором проявится года через два или примерно 500–600 циклов, но при таком износе в принципе разумно заменить батарею, так как та неизбежно потеряет 10–15% ёмкости. Подчеркнем, что эта проблема проявляется при использовании и проводных, и беспроводных зарядных устройств высокой мощности.
Стандарт Qi сразу создавался открытым, поэтому за установку индукционной Qi-катушки производители гаджетов не платят никаких лицензионных отчислений. Соответственно, поддержка Qi — это лишь вопрос себестоимости индукционного модуля и перепроектирования внутренностей смартфона. Всякая компания вольна решать, внедрять ли ей поддержку Qi или нет и катушку какой мощности интегрировать.
В мире продукции, выпускаемой тиражом в десятки и сотни тысяч (а кому повезёт со спросом — и миллионов) штук экономия даже в несколько центов не бывает лишней. Например, в iPhone X закупочная стоимость компонентов для реализации беспроводной зарядки составила $6. И это по мегаоптовой скидке для уважаемого заказчика, и это для катушки с мощностью приёма не более 7,5 Вт. Для флагмана за $1000 лишние $6 в себестоимости погоды не делают, чего не скажешь об Android-фонах начального и среднего уровня, производители которых не прочь сэкономить для повышения конкурентоспособности среди равных.
Смартфон Palm Pre опередил свое время, став первым массовым телефоном с беспроводной зарядкой. И это в 2009 году, за год до появления Qi, за два года до первого Android-фона с опциональной Qi-крышкой и за шесть лет до интеграции Qi-катушек внутрь смартфонов.
Фото: HP
К счастью, цена катушек пала достаточно низко, чтобы установка приёмника даже на 10 Вт практически не отражалась на цене телефона, хотя 3–4 года назад смартфоны почти поголовно имели катушки всего на 5 Вт. В современных устройствах приемник Qi с мощностью 5 Вт можно встретить только по двум причинам: либо вам попалось удешевлённое по всем возможным фронтам устройство, либо это намеренный шаг для разнесения смартфонов компании по разным ценовым сегментам, чтобы дорогие модели имели более явные преимущества над дешёвыми.
Человечество медленно движется в беспроводное будущее. Многие едва ли вспомнят, когда последний раз использовали Ethernet, а смартфоны всё чаще выходят без разъёма для наушников. Однако до сих пор практически вся электроника нуждается в перманентном или регулярном подключении к розетке. В новом материале Лайф рассказывает, когда смартфоны научатся заряжаться по воздуху и чем нас не устраивают современные беспроводные зарядки.
Современные беспроводные зарядки изобрели ещё в позапрошлом веке
Частично проблему проводов люди решили в конце XIX века. Никола Тесла уже тогда использовал электромагнитную индукцию для включения лампочек без розеток. С тех пор было придумано ещё несколько способов "воздушной" электропередачи, но их коммерциализация продвигается медленно. Поэтому актуальные беспроводные зарядки до сих пор используют электромагнитную индукцию. Коммерческий вариант этой технологии называется Qi. Это стандарт электропередачи, который в 2009 году разработал и утвердил консорциум компаний, заинтересованных в развитии обсуждаемой технологии. Сегодня им пользуются многие компании: Apple, Samsung, Huawei и другие.
Принцип работы Qi прост. В смартфоне и зарядном устройстве стоят индукционные катушки. Одна — приёмник, другая — передатчик. При подключении к розетке передатчик образует электромагнитное поле. Когда в него попадает катушка-приёмник, смартфон начинает заряжаться.
Использование Qi чуть удобнее зарядки от кабеля, но этот стандарт далёк от идеала. Во-первых, диапазон работы катушек очень мал — от трёх до пяти сантиметров. В большинстве случаев заряжаемый гаджет приходится класть на передатчик. То есть валяться на диване со смартфоном и при этом заряжать его всё ещё нельзя. Во-вторых, Qi-стандарт — маломощный: через индукционную катушку гаджеты заряжаются, как правило, в 1,5–2 раза медленнее, чем от провода. В-третьих, Qi-зарядки выделяют много избыточного тепла во время работы. А постоянный нагрев и перегрев сокращают срок службы литийионных аккумуляторов.
Электричество передают с помощью звука и света, но неэффективно
В случае с индукционными катушками не всё так хорошо, как хотелось бы. Но радует, что эта технология не является потолком, в который упирается технологический прогресс. В лабораторных условиях люди научились передавать электричество по воздуху и другими способами. Так, в 2011 году студенты Университета Пенсильвании представили ультразвуковой способ. Они создали ультразвуковой передатчик и приёмник, которые преобразуют звуковые волны в электричество. Причём на расстоянии от 7 до 10 метров. Проблема метода — низкая мощность. К тому же в ряде стран действуют ограничения на максимальный уровень звукового давления.
Другим любопытным способом "воздушной" электропередачи является лазер. При определённой настройке волна электромагнитного излучения может стать светом. Передаваемую таким образом энергию можно собрать специальным фотоэлементом. Главным достоинством этого метода является огромная дальность действия. Также при использовании лазера не возникают радиочастотные помехи. В то же время у технологии есть недостатки — например, обязательная прямая видимость передатчика и приёмника. В квартире свету может помешать хоть человек, хоть табуретка, а под открытым небом луч рассеется в тумане. Другим минусом светопередачи являются несовершенные приёмники: современные фотоэлементы улавливают в лучшем случае половину передаваемой энергии. Тем не менее известно, что американские военные дорабатывают эту технологию. Есть планы по созданию беспилотников, которые будут заряжаться в воздухе с помощью лазера.
Лучше всех показал себя Wi-Fi
Все перечисленные модели имеют недостатки. Где-то незначительные, где-то — критические. Именно поэтому самой перспективной на сегодня разработкой является передача электричества по Wi-Fi.
Однажды исследователи Вашингтонского университета обратили внимание, что во время "молчания" Wi-Fi-антенны перманентно излучают пакеты энергии. Тогда учёные сделали специальный приёмник и поняли, что даже обычные роутеры могут дистанционно запитывать маломощные электроприборы. Эту технологию назвали PoWiFi (Power over Wi-Fi).
В 2015 году учёные выступили с докладом. Выяснилось, например, что параллельно с рассылкой энергии Wi-Fi-антенны превосходно справляются и с основной задачей — передачей информации. Исследователи объяснили это тем, что для рассылки электричества роутеры используют только свободные каналы.
Чтобы не быть голословными, специалисты провели демонстрацию, в ходе которой с помощью Wi-Fi включили камеру наблюдения на расстоянии пяти метров от роутера. В другом случае учёные за 2,5 часа зарядили на 41% фитнес-трекер Jawbone Up 24.
Скоро все гаджеты будут заряжаться по Wi-Fi
С тех пор как учёные научились преобразовывать сигнал Wi-Fi в электричество, появилось множество стартапов, пытающихся довести технологию PoWiFi до коммерческого продукта.
Одной из таких компаний является Energous. Она выпускает специальные Wi-Fi-модемы, которые не предназначены для раздачи интернета. Они постоянно излучают мощные "электрические" волны. Напомним, кастомные роутеры учёных могли запитать лишь простые гаджеты вроде цифрового термометра. Тогда как передатчиков Energous хватает для зарядки, например, наушников и смартфонов.
С коммерциализацией этой концепции дела обстоят сложнее. Дело в том, что кроме специального Wi-Fi пользователю нужен ещё, например, смартфон со специальной антенной. И Energous такие компоненты уже выпускает. Но производители электроники почему-то ещё не выстроились в огромную очередь у офиса Energous для их закупки. В январе этого года на выставке Consumer Electronics Show компания Energous представила всего несколько гаджетов с поддержкой зарядки по Wi-Fi: слуховой аппарат Dlight и умные очки Vuzix Blade. Кроме того, вендор показал собственные прототипы наушников и смарт-часов с гибкой антенной. Все они заряжаются по воздуху на расстоянии до одного метра.
Смартфонов с поддержкой "воздушной" зарядки пока нет. Впрочем, гендиректор Energous Стив Риззон заявил, что появление таких аппаратов — вопрос ближайшего будущего. По словам Риззона, они уже ведут переговоры с несколькими вендорами. Также руководитель Energous сказал, что готовят более мощные варианты приёмников и передатчиков, которые смогут заряжать не только смартфоны, но и ноутбуки. Причём на расстоянии уже до пяти метров. Появиться такие ноутбуки должны в 2020 году.
Кстати, ходят слухи, что одним из клиентов Energous является сама Apple. И в это охотно верится, поскольку недавно в патентах Apple всплыло описание iMac, который с помощью Wi-Fi запитывает окружающую периферию — мышки и клавиатуры.
Наши глаза настроены только на узкую полосу возможных длин волн электромагнитного излучения, порядка 390-700 нанометров. Если бы вы могли видеть мир на разных длинах волн, вы бы знали, что в городской зоне вы освещены даже в темноте — повсюду инфракрасное излучение, микроволны и радиоволны. Часть этого электромагнитного излучения окружающей среды испускается объектами, которые разбрасывают повсюду свои электроны, и часть переносит радиосигналы и сигналы Wi-Fi, которые лежат в основе наших систем связи. Все это излучение также переносит энергию.
Всем знакома ситуация, когда смартфон садится в самый неподходящий момент.
Можно ли использовать энергию электромагнитных волн?
Исследователи из Массачусетского технологического института представили исследование, которое появилось в журнале Nature, где подробно описали, как приступили к практической реализации этой цели. Они разработали первое полностью изгибаемое устройство, которое может преобразовывать энергию из сигналов Wi-Fi в пригодное для использования электричество постоянного тока.
Любое устройство, которое может преобразовывать сигналы переменного тока (AC) в постоянный ток (DC), называется ректенной: выпрямляющей антенной (rectifying antenna). Антенна улавливает электромагнитное излучение, преобразуя его в переменный ток. Затем он проходит через диод, который преобразует его в постоянный ток для использования в электрических цепях.
Впервые ректенны были предложены в 1960-х годах и даже использовались для демонстрации модели вертолета, приводимого в действие микроволнами, в 1964 году изобретателем Уильямом Брауном. На этом этапе футуристы уже мечтали о беспроводной передаче энергии на большие расстояния и даже использования ректенн для сбора космической солнечной энергии со спутников и передачи на Землю.
Оптическая ректенна
Сегодня новые технологии работы в наномасштабах позволяют много нового. В 2015 году исследователи из Технологического института Джорджии собрали первую оптическую ректенну, способную справляться с высокими частотами в видимом спектре, из углеродных нанотрубок.
Пока что эти новые оптические ректенны имеют имеют низкую эффективность, около 0,1 процента, и поэтому не могут конкурировать с растущей эффективностью фотоэлектрических солнечных панелей. Но теоретический предел для солнечных батарей на основе ректенн, вероятно, выше, чем предел Шокли-Кьюссера для солнечных элементов, и может достигать 100% при освещении излучением определенной частоты. Это делает возможной эффективную беспроводную передачу энергии.
Новая часть устройства, изготовленного MIT, использует преимущества гибкой радиочастотной антенны, которая может захватывать длины волн, ассоциирующиеся с сигналами Wi-Fi, и преобразовывать их в переменный ток. Затем, вместо традиционного диода для преобразования этого тока в постоянный, новое устройство задействует «двумерный» полупроводник, толщиной всего в несколько атомов, создавая напряжение, которое можно использовать для питания носимых устройств, датчиков, медицинских устройств или электроники большой площади.
Новые ректенны состоят из таких «двумерных» (2D) материалов — дисульфида молибдена (MoS2), который всего в три атома толщиной. Одним из его замечательных свойств является снижение паразитной емкости — тенденция материалов в электрических цепях действовать в роли конденсаторов, удерживающих определенное количество заряда. В электронике постоянного тока это может ограничивать скорость преобразователей сигналов и способность устройств реагировать на высокие частоты. Новые ректенны из дисульфида молибдена имеют паразитную емкость на порядок ниже тех, которые были разработаны до настоящего времени, что позволяет устройству захватывать сигналы до 10 ГГц, в том числе в диапазоне типичных Wi-Fi устройств.
Заряжать смартфон от Wi-Fi это не возможность, а мечта!
У такой системы было бы меньше проблем, связанных с батареями: ее жизненный цикл был бы намного длиннее, электрические устройства заряжались бы от окружающего излучения и не было бы необходимости утилизировать компоненты, как в случае с батареями.
«Что, если бы мы могли разработать электронные системы, которые обернем вокруг моста или которыми накроем целую магистраль, стены нашего офиса, и дадим электронный интеллект всему, что нас окружает? Как вы будете обеспечивать энергией всю эту электронику?», задается вопросом соавтор работы Томас Паласиос, профессор кафедры электротехники и компьютерных наук в Массачусетском технологическом институте. «Мы придумали новый способ питания электронных систем будущего».
Использование 2D-материалов позволяет дешево производить гибкую электронику, что потенциально позволит нам размещать ее на больших площадях для сбора излучения. Гибкими устройствами можно было бы оснастить музей или дорожную поверхность, и это было бы гораздо дешевле, чем использовать ректенны из традиционных кремниевых или полупроводников из арсенида галлия.
Можно ли зарядить телефон от Wi-Fi сигналов?
К сожалению, этот вариант кажется крайне маловероятным, хотя на протяжении многих лет тема «свободной энергии» дурачила людей снова и снова. Проблема заключается в энергетической плотности сигналов. Максимальная мощность, которую может использовать точка доступа Wi-Fi без специально лицензии на вещание, как правило, составляет 100 милливатт (мВт). Эти 100 мВт излучаются во всех направлениях, распространяясь по площади поверхности сферы, в центре которой — точка доступа.
Даже если бы ваш мобильный телефон собирал всю эту мощность со 100-процентной эффективностью, для зарядки батареи iPhone все равно потребовались бы дни, а небольшая площадь телефона и его расстояние до точки доступа серьезно ограничат количество энергии, которое он мог бы собрать с этих сигналов. Новое устройство MIT сможет захватывать около 40 микроватт энергии при воздействии типичной плотности Wi-Fi в 150 микроватт: этого недостаточно для питания iPhone, однако достаточно для простого дисплея или удаленного беспроводного датчика.
По этой причине гораздо более вероятно, что беспроводная зарядка для более крупных гаджетов будет опираться на индукционную зарядку, которая уже в состоянии питать устройства на расстоянии до метра, если между беспроводным зарядным устройством и объектом зарядки нет ничего.
Тем не менее, окружающая радиочастотная энергия может использоваться для питания определенных типов устройств — как, вы думаете, работали советские радиоприемники? И грядущий «интернет вещей» однозначно будет использовать эти модели питания. Осталось только создать датчики с низким энергопотреблением.
Соавтор работы Хесус Гражал из Технического университета Мадрида видит потенциальное применение в имплантируемых медицинских устройствах: таблетка, которую пациент может проглотить, передаст данные о здоровье обратно на компьютер для диагностики. «В идеале не хотелось бы использовать батареи для питания таких систем, потому что, если они будут пропускать литий, пациент может умереть», говорит Гражал. «Намного лучше собирать энергию из окружающей среды, чтобы питать эти маленькие лаборатории внутри тела и передавать данные на внешние компьютеры».
Текущая эффективность работы устройства составляет около 30-40% по сравнению с 50-60% для традиционных ректенн. Наряду с такими понятиями, как пьезоэлектричество (материалы, которые генерируют электроэнергию при физическом сжатии или растяжении), электричество, генерируемое бактериями и теплом окружающей среды, «беспроводное» электричество вполне может стать одним из источников питания для микроэлектроники будущего.
Надеюсь, вы не расстроились тем, что данный метод зарядки для телефонов не подходит? Расскажите в нашем чате в Телеграме.
Читайте также: