Вика завязала бантик над правым ухом и вертится перед зеркалом сколько из
2.На какой картинке площадь белой части не равна площади серой части?
3. В большом ящике лежат три ящика поменьше, а в каждом из этих ящиков лежит еще по три ящика. Сколько всего ящиков? (A) 9 (Б) 10 (В) 12 (Г) 13 (Д) 15
Задачи, оцениваемые в 4 балла
4.Бабушка украсила 8 коржиков изюмом и 7 коржиков орехами. Всего она украсила 11 коржиков. Сколько коржиков украшены и изюмом, и орехами?
(A) 1 (Б) 2 (В) 3 (Г) 4 (Д) 7
5. Фигурки на рисунке обозначают цифры (одинаковыми фигурками обозначены одинаковые цифры). Какую цифру обозначает цветок?
(A) 1 (Б) 2 (В) 3 (Г) 4 (Д) 5
Задачи, оцениваемые в 3 балла
1. Федя клеит на ленту наклейки четырех видов (всегда в одном и том же порядке). Какую наклейку он разместит в десятой клеточке?
2. В прятки играет 13 ребят, один из них водит. Водящий уже нашел 9 ребят. Сколько еще ребят надо ему найти?
(A) 3 (Б) 4 (В) 5 (Г) 9 (Д)22
3. Какая из линий самая длинная?
4.Сколько времени на самом деле, если эти часы спешат на 15 минут?
(A) половина второго (Б) без 15 минут 2 часа (В) 2 часа ровно (Г) 15 минут третьего (Д) половина тре тьего
Задачи, оцениваемые в 4 балла
5. Воробей Джек прыгает по изгороди с одного колышка на соседний. Каждый прыжок занимает у него 1 секунду. Он делает 4 прыжка вперед, потом 1 прыжок назад, потом опять 4 вперед и 1 назад, и так далее. За сколько секунд Джек доберется от колышка СТАРТ до колышка ФИНИШ?
(A) 10 (Б) 11 (В) 12 (Г) 13 (Д) 14
Предварительный просмотр:
1. Сколько отрезков с отмеченными концами можно найти на этом рисунке? (А) 5 (В) 7 (С) 9 (D) 13 (E) 18
2. На четырех рисунках изображены цифры от 1 до 4 вместе со своими зеркальными изображениями. Каким будет следующий рисунок?
3. Каких геометрических фигур нет на рисунке?
(E) все эти фигуры есть
4. Какая из фигур, предложенных в ответах, встречается на всех четырёх рисунках?
5. Вика завязала бантик над правым ухом и вертится пред зеркалом. Сколько из следующих изображений можно увидеть в зеркале?
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4
6. Лист бумаги сложили и разрезали, как показано на рисунке. Сколько кусочков получилось?
(A) 2 (B) 3 (C) 4 (D) 5 (E) 6
7. От Кащея до Бабы Яги ведут 3 дороги, а от Бабы Яги до Кикиморы - 2 дороги. Сколькими способами можно пройти от Кащея до Кикиморы, заходя к Бабе Яге? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6
8. Пять божьих коровок сидят на цветке. Сколько всего на них пятнышек?
1. Красунчику нужно полчаса, чтобы пройти половину пути от школы до своего дома. За какое время он пройдёт весь путь из школы домой, если будет двигаться с такой же скоростью?
А: за 15 минут; Б: за полчаса; В: за 40 минут;
Г: за 1 час; Д: за 2 часа;
2. Хитрун изготовил два кирпичика, склеив по два одинаковых кубика (на рисунке). Какую из фигур, указанных в ответах, Хитрун не сможет собрать из этих двух кирпичиков?
3. Из серых и белых кубиков построены 6 одинаковых башен. Каждая башня построена из пяти кубиков. Кубики одинакового цвета не соприкасаются между собой (смотри рисунок), Сколько белых кубиков использовано для постройки башен?
А: 10; Б: 11; В: 12; Г: 18; Д: 30;
4. У Ласунчика 9 конфет, а у Веселуна их 17. Сколько конфет должен отдать Веселун Ласунчику, чтобы у них стало конфет поровну?
А: 2; Б: 3; В: 4; Г: 5; Д: 6;
5. Какое число окажется в синем облачке, если все действия выполнить верно?
А: 6; Б: 7; В: 8; Г: 10; Д: 15;
6. Числовой ребус.
Какое число закрыто квадратом, если одинаковые числа закрыты одинаковыми фигурами? А: 2; Б: 3; В: 4; Г: 5; Д: 6;
7. Зонтик "Кенгуру". На моём зонтике написано слово KANGAROO, как показано на рисунке. На каком из предложенных в ответах рисунков тоже изображён мой зонтик?
А: ; Б: ; В: ;
8. Разрезание фигуры.
Хитрун разресал фигуру на рисунке на вот такие треугольники: . Сколько треугольников у него получилось?
А: 8; Б: 12; В: 14; Г: 15; Д: 16;
Предварительный просмотр:
Задачи, оцениваемые в 3 балла
1. Вася поет слово КЕНГУРУ. Он тянет каждый гласный звук 5 секунд, а на каждый согласный тратит ровно 1 секунду. Сколько времени он поет это слово?
(А) 7 сек (Б) 17 сек (В) 19 сек (Г) 29 сек (Д) 35 сек
2.Сколько кубиков вынули?
(А) 4 (Б) 5 (В) 6 (Г) 7 (Д) 8
3. У Кати вчера был день рождения. Завтра будет пятница. В какой день недели был день рождения Кати?
(А) во вторник (Б) в среду (В) в пятницу (Г) в субботу
4.Шесть городов соединены автобусными маршрутами. Стоимость проезда между этими городами указана на схеме. За какую наименьшую сумму можно проехать из города А в город В?
(А) 70 (Б) 80 (В) 90 (Г) 100 (Д ) 110
5. Что не равно 5?
(A) Лучшая оценка в школе. (Б) Число носов у двух собак и трех котов.
(В) Номер задачи, которую ты сейчас решаешь.
(Г) Число букв в слове ПЯТЬ. (Д) Половина числа 10.
Задачи оцениваемые в 4 балла
5.На левой стороне улицы находятся дома с нечетными номерами от 1 до 19, а на правой стороне – дома с четными номерами от 2 до 14. Сколько домов на этой улице?
Задачи, оцениваемые в 3 балла
1.Сережа шел по лестнице, шагая через ступеньку (первую ступеньку он пропустил). При этом он считал шаги: «Один, два, три…». После того, как он сказал «пять», оказалось, что осталась одна ступенька. Сколько всего ступенек на лестнице?
(А) 5 (Б) 7 (В) 9 (Г) 11 (Д) 12
2.Какие числа расположены одновременно в прямоугольнике и в круге, но не в треугольнике?
(А) 5 и 11 (Б) 1 и 10 (В) 13 (Г) 3 и 9 (Д) 6,7 и 4
3. 2 × 2 + 2 + 2 + 2 + 2 + 2 × 2 = ?
(А) 12 (Б) 16 (В) 20 (Г) 24 (Д) 32
4.Какие фигурки надо взять, чтобы из них можно было составить круг?
(А) 1, 2, 3 (Б) 2, 3, 4
(В) 1, 3, 4 (Г) 1, 2, 4 (Д) 2, 3, 4
5.В коридоре детского сада стояли двухколесные и трехколесные велосипеды. Катя подсчитала, что колес – 18, а рулей всего 7. Сколько было двухколесных велосипедов?
(А) 2 (Б) 3 (В) 4 (Г) 5 (Д) 6
Задачи оцениваемые в 4 балла
6.Два ковша воды – это половина ведерка, а три чашки – это половина ковша. Тогда два ведерка – это
(А) 24 чашки (Б) 48 чашек
(В) 12 чашек (Г)36 чашек
Предварительный просмотр:
Задачи, оцениваемые в 3 балла
1. Ваня шёл по деревне и встретил каких-то животных. От испуга он забыл, как они называются. Когда мама спросила, много ли их было, Ваня ответил: “Очень! Целый табун!”. Мама сразу догадалась, что это были: (А) лошади; (Б) собаки; (В) гуси; (Г) коровы; (Д) овцы.
2. Петя научился приветствовать знакомых разными способами, но всегда делает это невпопад: учителю машет рукой, маме отдает честь, другу сдержанно кивает. Научите его, кому при встрече принято пожимать руку: (А) учителю; (Б) маме; (В) знакомой девушке;
(Г) другу; (Д) другу и маме.
3. Знаете ли вы, что ГРАБ — это дерево, родственное берёзе? Уже знаете? Тогда скажите, сколько осмысленных русских слов можно получить, заменяя в слове ГРАБ букву А другой буквой?
(А) 1; (Б) 2; (В) 3; (Г) 4; (Д) 5.
4. Какое из этих слов по смыслу лишнее?
(А) волкодав ; (Б) борзая ; (В) пудель ; (Г) собака ; (Д) овчарка .
Задачи, оцениваемые в 4 балла
5. Студент позвонил маме: « Денег осталось очень мало, ну просто кот … ». Тут связь прервалась. Какое слово мама не услышала?
(А) намяукал; (Б) намурлыкал; (В) насмеялся;
(Г) наурчал; (Д) наплакал ?
6. Какое по счёту место занимает в русском алфавите последняя
из согласных букв? (А) 24; (Б) 26; (В) 27; (Г) 29; (Д) 30.
7. Догадайтесь, какой русский писатель иногда подписывал свои произведения псевдонимом Нави Волырк :
(А) Денис Иванович Фонвизин ;
(Б) Иван Андреевич Крылов ;
(В) Александр Сергеевич Грибоедов ;
(Г) Александр Сергеевич Пушкин ;
(Д) Николай Васильевич Гоголь .
Задачи, оцениваемые в 3 балла
1. В кошельке у Сергея три монеты: 5 рублей, 2 рубля и 1 рубль. Какую сумму он не сможет заплатить без сдачи?
(А) 3 рубля (B) 4 рубля (С) 6 рублей (D) 7 рублей (E) 8 рублей
2. Серёжа задумал число, прибавил к нему 8, от результата отнял 5 и получил 3. Какое число он задумал?
(A) 5 (Б) 3 (В) 2 (Г) 1 (Д) 0
3. Саша гуляла в два раза дольше, чем делала уроки. На уроки она потратила 50 минут. Сколько времени она гуляла?
(A) 1 час (Б) 1 час 30 минут (В) 1 час 40 минут
(Г) 2 часа (Д) 2 часа 30 минут
4. Если вчера был вторник, то послезавтра будет
(A) пятница (Б) суббота (В) воскресенье (Г) среда (Д) четверг
Задачи, оцениваемые в 4 балла
5.Какое самое маленькое число фигурок придётся убрать, чтобы остались фигурки одного вида?
(A) 9 (Б) 8 (В) 6 (Г) 5 (Д) 4
6.Стрелочки на рисунке указывают на результаты действий с числами. Числа 1, 2, 3, 4 и 5 надо разместить по одному в квадратики так, чтобы все результаты были правильными. Какое число попадёт в заштрихованный квадратик?
(A)1 (Б) 2 (В)3 (Г)4 (Д)5
Предварительный просмотр:
Задачи, оцениваемые в 3 балла
1. Косте подарили щенка. Как Костя увидел его, так сразу и назвал Бубликом. Какой у Бублика хвост?
(А) колечком; (Б) трубой; (В) прутом;
(Г) свисающий; (Д) обрубленный.
2. В каком выражении слово да значит не то, что в остальных? (А) рожки да ножки; (Б) Иван да Марья;
(В) ай да умница; (Г) вокруг да около; (Д) тишь да гладь.
3. Девочку Людмилу могут звать Людой, Люсей или Милой, а вот Машей — вряд ли. А девочку Марию вряд ли будут называть …(А) Марфа; (Б) Маня; (В) Маруся; (Г) Маша;
Задачи, оцениваемые в 4 балла
4. В каком слове не спрятано число? (А) внутри; (Б) родинка; (В) подвал; (Г) стол; (Д) путешествие.
5. Дом — крыша, слон — хобот, нога — колено, дерево — …? (А) лес; (Б) берёза; (В) ветка; (Г) куст; (Д) пень.
6. Маша протянула младшему брату леденец и сказала: «Л. жи и молчи!»
Какими буквами можно заполнить пропуск?
(А) только е; (Б) только и; (В) только о;
(Г) только е и и; (Д) е, и, о.
7. Библиотекарь Д. Е. Фолиантов занимался расстановкой книг в шкафу номер 17. Что он делал с книгами?
(А) расстаивал; (Б) расстановливал; (В) расстановлял; (Г) расставливал; (Д) расставлял.
8. Лёва загадал одну из семи нот и назвал Лёше одну букву, входящую в её название. Лёша сразу смог догадаться, какая нота загадана. Какую букву назвал Лёва?
(А) л; (Б) и; (В) с; (Г) о; (Д) а.
9. У Миши светлые волосы, у его папы — чёрные, у брата — рыжие, а дедушка Миши совсем седой. Кто из них брюнет?
(А) Миша; (Б) папа; (В) брат; (Г) дедушка; (Д) никто.
10. Говорят два дома, но семь домов. Как видим, слово два требует от слова дом окончания -а, а слово семь — окончания -ов. Какое из названий чисел ведёт себя в таких словосочетаниях точно так же, как два?
(А) пять; (Б) двадцать; (В) двадцать один;
(Г) двадцать семь; (Д) сто четыре.
11. В каком из ребусов зашифровано название домашнего животного?
Предварительный просмотр:
Задачи, оцениваемые в 3 балла
1. По шахматным полям ходит
(А) пёс; (Б) кот; (В) конь; (Г) бык; (Д) петух.
2. Какого слова не существует?
(А) прабабушки; (Б) правнуки; (В) прадети;
(Г) прадедушки; (Д) все эти слова существуют.
3. Смех, грохот, шелест. Какой из этих звуков обычно самый тихий, а какой — самый громкий?
(А) самый тихий — смех, самый громкий — грохот;
(Б) самый тихий — шелест, самый громкий — смех;
(В) самый тихий — смех, самый громкий — шелест;
(Г) самый тихий — шелест, самый громкий — грохот;
4. Последняя согласная буква в алфавите — это
(А) Я; (Б) Ш; (В) Ъ; (Г) Щ; (Д) Ь.
5. Маленький Федот решил наблюдать за погодой. Утром посмотрел в окно — дождь идёт. Записал в дневник: Идёт дождь. Днём посмотрел — а дождя нет. Записал: Дождь перестал. Вечером ещё раз посмотрел в окно. А там дождь. Что записать Федоту?
(А) Дождь ещё идёт. (Б) Дождь опять идёт. (В) Дождь уже идёт. (Г) Дождь всё идёт. (Д) Дождь пока идёт.
6. Какое слово нельзя вставить вместо многоточия во фразу «У меня есть … друзей?»
(А) пара; (Б) трое; (В) пятерня; (Г) дюжина; (Д) сотня.
7. Никто никогда не видел
(А) стаю уток; (Б) стаю акул; (В) стаю волков;
(Г) стаю коров; (Д) стаю ворон.
8. Петя опоздал на урок. Как ему правильно спросить: « _______, можно войти?»
(А) Разрешите; (Б) Простите; (В) Пустите;
(Г) Прошу; (Д) Проспал.
9. Студент из Германии, изучающий русский язык, вошёл на кухню и спросил:
— Есть пить?
— Пить есть, есть нет, — ответил ему второй студент.
Что он хотел сказать?
(А) В доме есть еда, но нет питья.
(Б) В доме нет ни еды, ни питья.
(В) В доме есть питьё, но нет еды.
(Г) В доме есть и еда, и питьё.
Задачи, оцениваемые в 4 балла
10. Сёстры Саша и Глаша родились в один день. Они …
(А) двойки; (Б) двойники; (В) двойнята;
(Г) двойняшки; (Д) двушки.
11. Глухой слыхал, как немой сказал, что слепой видал, как хромой …
(А) играл; (Б) читал; (В) болтал; (Г) бежал; (Д) лежал.
12. Заливные . наливные . проливные .
(А) яблочки, луга, дожди; (Б) луга, яблочки, дожди;
(В) дожди, луга, яблочки; (Г) дожди, яблочки, луга;
Предварительный просмотр:
Задачи, оцениваемые в 3 балла
2. Кто из них не музыкант? (А) пианист; (Б) гармонист; (В) баянист; (Г) флейтист; (Д) трубочист.
3. В русском языке есть слова, обозначающие «голоса» разных животных и птиц: ку-ку, иа, кудах-тах-тах и т. п. Из пяти данных в ответах слов четыре обозначают «голоса» животных и птиц, а одно — нет. Какое? (А) гав-гав; (Б) и-го-го; (В) кис-кис; (Г) кря-кря; (Д) кукареку.
4. Хотя шкаф был высоким, котёнок умудрился __прыгнуть на него прямо с пола. Какая приставка здесь пропущена?
(А) от; (Б) вы; (В) пере; (Г) с; (Д) за.
5. Какое из этих слов по смыслу сильно отличается от остальных? (А) очки; (Б) бинокль; (В) микроскоп; (Г) наушники; (Д) лупа.
6. У Лёвы в коллекции игрушечных животных есть корова, коза, крокодил, лягушка, кит, кошка, ворона и курица. Игрушки стоят на полке так, что их названия идут в алфавитном порядке. Между какими игрушками стоит на полке кошка?
(А) между коровой и крокодилом;
(Б) между крокодилом и курицей;
(В) между вороной и китом;
(Г) между курицей и лягушкой;
(Д) между козой и коровой.
7. Какое слово не родственно остальным? (А) смешить; (Б) смешать; (В) смешной; (Г) насмешливый; (Д) смех.
8. Дениске идёт девятый год. Это значит, что ему
(А) больше девяти, но меньше десяти;
(Б) больше восьми, но меньше девяти;
(В) больше семи, но меньше восьми;
(Г) больше девяти; (Д) меньше восьми.
Задачи, оцениваемые в 4 балла
9. Маша составляла кроссворд. Ей осталось придумать вопрос для строки из трёх клеточек, где в первой клеточке уже стояла буква м, а в третьей — буква ч. Она попросила друзей помочь. Коля предложил вопрос: «Холодное оружие», Соня: «То, чем играют в футбол», а Катя: «Встреча двух команд». Кто из них дал плохой совет?
(А) все трое; (Б) Коля; (В) Соня;
(Г) Катя; (Д) все советы хорошие.
Викторина проводится на заключительном занятии в 5-м классе кружка “Наглядная геометрия”. Ход викторины освещается презентацией (Приложение 1). В игре принимают участие три команды. Каждая команда выбирает себе название, девиз. В игре задействованы еще 6 учащихся, которые выступают в роли консультантов и двое учеников – ведущие. Игра проходит в три этапа: два отборочных тура и финальная игра.
Правила игры:
За каждой командой закреплены по 2 консультанта, они ведут подсчет баллов, если команда отвечает правильно – баллы прибавляются.
Также за правильностью хода игры наблюдают преподаватели лицея и приглашенные.
Оборудование: мультимедийный проектор, экран, компьютерное оснащение.
Ход игры
- Сколько углов у треугольника? (три)
- Как называется отрезок, соединяющий точку окружности с центром этой окружности? (радиус)
- Сколько градусов содержит прямой угол? (90 о )
- Какое получится тело, если вращать прямоугольник относительно одной из своих сторон? (цилиндр)
- На какой угол поворачивается солдат по команде “кругом”? (180 0 )
- Наука об измерении земли. (геометрия)
- Какой треугольник называется равнобедренным?
- Треугольник, у которого все стороны равны.
- Отрезок, соединяющий две несоседние вершины многоугольника? (диагональ)
- Замкнутая плоская кривая. (окружность или овал)
- Какая плоская фигура не имеет площади? (окружность)
- Какое тело носит имя Хеопса? (пирамида)
- В каких единицах измеряется величина угла? (градусы)
- Сколько градусов содержит тупой угол? (больше 90 о , но менее 180 о )
- Сумма длин сторон многоугольника? (периметр)
- Луч, делящий угол пополам? (биссектриса)
- Точная дата начала 21 века? (01.01.2001 г)
- Какая фигура лежит в грани куба? (квадрат)
- Инструмент для построения окружности? (циркуль)
- Сколько вершин у куба? (8)
- Назовите фигуру, для которой любимым числом является “3” ? (треугольник)
- Прямоугольник с равными сторонами. (квадрат)
- Угол меньше прямого. (острый)
- С помощью какого инструмента измеряют величину угла? (транспортир)
- Угол больше 90 о , но меньше 180 о градусов? (тупой)
- Сумма углов треугольника равна …? (180 о )
- Что можно вычислить, перемножив длину, ширину и высоту куба? (объем)
- Угол в 1 градус, рассматриваемый в лупу с четырехкратным увеличением, имеет величину…? (в 1 градус)
- Диаметр окружности равен восьми метрам. Чему равен радиус? (4 метра)
- Величина прямого угла? (90 0 градусов)
Темы | Стоимость вопроса (количество баллов) | ||||
Углы | 1 | 2 | 3 | 4 | 5 |
Плоские фигуры | 1 | 2 | 3 | 5 | 5 |
Пространственные тела | 1 | 2 | 3 | 4 | 5 |
Разное | 1 | 2 | 3 | 4 | 5 |
- На угол в 10 о смотрят через увеличительное стекло с десятикратным увеличением. Чему равен угол, наблюдаемый сквозь стекло? (10 о )
- Чему равен угол между минутной и часовой стрелками на часах в 5 ч? (120 о )
- На плоскости проведены три луча ОА, ОВ, ОС. Чему может равняться АОС, если АОВ – прямой, а ВОС = 54 о ? (144 о ; 36 о )
- Минутная стрелка за 15 минут поворачивается на некоторый угол. За какое время на тот же угол поворачивается часовая стрелка? (3 часа)
- Сколько процентов развёрнутого угла составляет половина прямого угла? (25%)
- Разрежьте фигуру по линиям сетки на три одинаковые части.
- Найдите все возможные квадраты и сосчитайте их количество. (14)
- Груша тяжелее чем яблоко, а яблоко тяжелее персика. Что тяжелее: груша или персик? (груша).
- Два мальчика играли на гитарах, а один на балалайке. На чем играл Юра, если Миша с Петей и Петя с Юрой играли на разных инструментах. (Петя – балалайка)
- Вика завязала бантик над правым ухом и вертится перед зеркалом. Сколько из следующих изображений можно увидеть в зеркале?
- Если бы завтрашний день был вчерашним, то до воскресенья осталось бы столько дней, сколько прошло от воскресенья до вчерашнего дня. Какой же сегодня день? (среда)
- Арбуз разрезали на четыре части и съели. Получилось пять корок. Может ли такое быть?
Финальный тур
1. Магический квадрат
Девиз: Знать должен каждый и стар и млад: есть и бермудский треугольник, и магический квадрат.
Надо вписать все числа от 1 до 9, не повторяя их, таким образом, чтобы сумма чисел по горизонтали, вертикали и диагонали были одинаковыми.
Девиз: Нужно не только знать фигуры, но и в узоры их собирать.
Дан кусок проволоки, длиной 120 см. Какое наименьшее число раз придется ломать проволоку, чтобы изготовить каркас куба с ребром 10 см?
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Столичный центр образовательных технологий г. Москва
Получите квалификацию учитель математики за 2 месяца
от 3 170 руб. 1900 руб.
Количество часов 300 ч. / 600 ч.
Успеть записаться со скидкой
Форма обучения дистанционная
Выберите документ из архива для просмотра:
Выбранный для просмотра документ Презентация Веселая математика.pptx
Курс повышения квалификации
Профессиональные компетенции педагога в рамках Федерального закона «Об образовании в Российской Федерации» №273-ФЗ от 29.12.2012
Курс повышения квалификации
Педагогическая поддержка ребенка в образовательной среде
Курс повышения квалификации
Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО
«Инновация. Инновационные технологии»
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Описание презентации по отдельным слайдам:
Математическая игра Весёлая математика
"Предмет математики настолько серьёзен, что полезно не упускать случая сделать его немного смешным". Блез Паскаль
8) Даны числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Что больше: их сумма или произведение? 1. «РАЗМИНКА»
10) Вика завязала бантик над правым ухом и вертится перед зеркалом. Сколько из следующих изображений можно увидеть в зеркале? а) б) в) г)
Конкурс для болельщиков 3.Задача о молоке Бидон с молоком весит 32 кг, бидон без молока 2 кг. Сколько весит бидон, заполненный молоком наполовину?
РЕШЕНИЕ 1) 32 – 2 = 30 (кг) – масса молока; 2) 30 : 2 = 15 (кг) – масса половины молока; 3) 15 + 2 = 17 (кг) – масса бидона, заполненного молоком наполовину. Ответ: 17 кг.
4.«Одновременная работа» Вот очень смешное заданье, Но справится с ним не любой! Сейчас здесь урок рисованья Представлен вам будет простой
5.«Математические термины» Знак «равно» Точка Луч Линейка Угол Литр Объем Деление Корень уравнения Треугольник
6. «Кто быстрее посчитает?»
Конкурс для болельщиков 7. Задача о портном Портной имеет кусок сукна длиной 16 метров. Каждый день он отрезает по 2 метра. По истечении какого дня портной отрежет последний кусок?
РЕШЕНИЕ 1день 2день 3день 4день 5день 6день 7день
8. Магический квадрат 6 9 3
Конкурс для болельщиков 9. Задача о четвёрке Записать четвёрку тремя пятёрками.
М о л о д ц ы ! Желаем успехов в дальнейшем изучении математики!
Выбранный для просмотра документ Разработка Весёлая математика.docx
Муниципальное автономное общеобразовательное учреждение
Домодедовская средняя общеобразовательная школа №7 с углубленным изучением отдельных предметов
(МАОУ ДСОШ №7с УИОП)
Творческая работа: «Мой педагогический опыт»
Тема: Математическая игра
Учитель: Суслова Ольга Геннадьевна
Математическая игра "Веселая математика"
Внеклассное мероприятие в рамках «Недели математики» в 5 – в классе
"Предмет математики настолько серьёзен,
что полезно не упускать случая
сделать его немного смешным".
Блез Паскаль
Цели и задачи:
1. Образовательные:
обобщить знания учащихся;
сформулировать у учащихся представление о математике как части общечеловеческой культуры.
2. Развивающие:
развить творческие способности учащихся, оригинальность их математического мышления;
повысить мотивации к изучению математики.
3. Воспитательные:
воспитать у учащихся желание повысить свой интеллектуальный уровень;
создавать ситуацию успеха у учащихся.
Оборудование:
мультимедийный проектор, экран, доска, мел, карточки.
В игре участвуют учащиеся 5-в класса. Внутри класса создаются команды по 5 человек, остальные болельщики. Жюри- 4 человека: учитель, представитель администрации, 2 старшеклассника, ассистенты. Жюри выставляет баллы, подводит итоги. По окончании игры подведение итогов. Вопросы задаются одновременно с показом слайдов. Решение задач показано на каждом последующим слайде. Вопросы к слайдам читает ведущий (учитель или старшеклассник).
На вопрос «Зачем надо изучать математику?» ответим словами из толкового словаря: Математика - наука, изучающая величины, количественные отношения, а также пространственные формы.
1. “Разминка” (2 балла за каждый правильный ответ, если ответа нет – то возможность ответить появляется у команд соперников, и они получают 1 балл за каждый правильный ответ).
Учитель: 1) Сколько яиц можно съесть натощак? (Одно, второе уже будет не натощак.)
2) На руках 10 пальцев. Сколько пальцев на 10 руках? (50)
3) Петух, стоя на одной ноге весит 7 кг. Сколько он будет весить, стоя на двух ногах? (Столько же.)
4) Сколько разных букв в названии нашей страны? (5)
5) Тройка лошадей пробежала путь 30 км. Сколько пробежала каждая лошадь?
6) Когда сутки короче: зимой или летом? (Одинаковые.)
7) У родителей 6 сыновей. Каждый имеет сестру. Сколько всего детей в семье? (7)
8) Даны числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Что больше: их сумма или
произведение? (Сумма больше, произведение равно 0.) ( слайд № 3)
9) Что можно приготовить, но нельзя съесть? (уроки)
10) Вика завязала бантик над правым ухом и вертится перед зеркалом. Сколько из следующих изображений можно увидеть в зеркале? (три: б); в); г))(слайд № 4)
2. «Треугольники» (5 баллов получит команда, если посчитает правильно все треугольники, изображенные на рисунке) (слайд № 5)
Учитель: Часто знает и дошкольник, что такое треугольник!
А уж вам - то, как не знать. Но совсем другое дело -
Быстро, точно и умело треугольники считать.
Например, в фигуре этой - сколько разных, посмотри.
Всё внимательно исследуй и по краю и внутри.
Подведение итогов после двух конкурсов. Задача 3 (1 балл) для болельщиков (слайд № 5), ассистенты прибавляют баллы команде, которая решила задачу и передают жюри.
3. Задача о молоке (за решение болельщики получают – 1 балл) (слайд № 6)
Бидон с молоком весит 32 кг, бидон без молока 2 кг. Сколько весит бидон, заполненный молоком наполовину? (17кг.) (решение-слайд № 6)
4 «Одновременная работа» (5 баллов получит команда, чей представитель наиболее точно начертит окружность и треугольник. Сложность состоит в том, что чертить треугольник и окружность надо одновременно - правая рука чертит окружность, левая – треугольник) (слайд № 8)
Учитель: Вот очень смешное заданье,
Но справится с ним не любой!
Сейчас здесь урок рисованья
Представлен вам будет простой!
5. «Математические термины» (3 балла получит команда, если с первого раза догадается о каком математическом термине идет речь, 1 балл, если верный ответ команда даст со второй попытки. Если команда не даст верного ответа – то возможность ответить получится у других команд. За правильный ответ они получат по 2 балла) (слайд № 9)
Учитель: Попробуйте без слов показать математические термины так, чтобы ваша команда отгадала, о каком понятии идет речь!
6. «Кто быстрее посчитает?» (3 балла получит команда, которая быстрее сосчитает, другая команда – 1 балл).
Учитель: Совсем недавно, кажется, было лето; давайте вспомним про него, заодно и поупражняемся в счёте. Результат будет зависеть от того, как слаженно вы сработаете. Будете работать дружно – получится быстрее.
Каждая команда получает карточку с изображением летней полянки и объектов, которые необходимо сосчитать.
Ответ: бабочек – 4; жуков – 3; мотыльков – 2; колокольчиков – 5; пчёл – 6
Подведение итогов после трёх конкурсов. Задача 7 для болельщиков
(слайд № 10), ассистенты прибавляют баллы команде, которая решила задачу и передают жюри.
7. Задача о портном (за решение болельщики получают – 1 балл; ответ: по истечении 7 дня, см. рисунок – отрезал портной 7 раз, восьмой кусок не отрезается) (слайд № 11).
Учитель: Портной имеет кусок сукна длиной 16 метров. Каждый день он отрезает по 2 метра. По истечении какого дня портной отрежет последний кусок?
Данную презентацию можно использовать как сопровождение к разработке игры "Весёлая математика", так и самостоятельным материалом.
Желаем успехов в дальнейшем изучении математики!
Просмотр содержимого документа
«Тема: Математическая игра "Веселая математика"»
Математическая игра
Весёлая математика
"Предмет математики настолько серьёзен, что полезно не упускать случая сделать его немного смешным".
Блез Паскаль
8) Даны числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Что больше: их сумма или произведение?
10) Вика завязала бантик над правым ухом и вертится перед зеркалом. Сколько из следующих изображений можно увидеть в зеркале?
Конкурс для болельщиков 3.Задача о молоке
Бидон с молоком весит 32 кг, бидон без молока 2 кг. Сколько весит бидон, заполненный молоком наполовину?
1) 32 – 2 = 30 (кг) – масса молока;
2) 30 : 2 = 15 (кг) – масса половины молока;
3) 15 + 2 = 17 (кг) – масса бидона,
заполненного молоком наполовину.
Ответ: 17 кг.
4.«Одновременная работа»
Вот очень смешное заданье, Но справится с ним не любой! Сейчас здесь урок рисованья Представлен вам будет простой
5.«Математические термины»
6. «Кто быстрее посчитает?»
Конкурс для болельщиков 7. Задача о портном
Портной имеет кусок сукна длиной
16 метров. Каждый день он отрезает по 2 метра.
По истечении какого дня портной отрежет последний кусок?
1день 2день 3день 4день 5день 6день 7день
8. Магический квадрат
Конкурс для болельщиков 9. Задача о четвёрке
Записать четвёрку тремя
М о л о д ц ы !
Желаем успехов в дальнейшем изучении математики!
-75%
Виды олимпиадных заданий на уроке математики. Элементы технологии развивающего обучения.
(слайд 2) Все олимпиадные задания можно разделить на группы, учитывая их воздействие на мыслительную деятельность учащихся.
- Арифметические задания: магический квадрат, математические ребусы, математические трюки и фокусы
- Геометрические задания
- Задания на внимание (ловушки)
- Задания на объемно-пространственное мышление
- Задания на развитие наблюдательности
- Задания на сравнение
- Задачи «на переливание»
- Задачи на взвешивание
- Задачи на время
- Задачи-шутки
- Классификация, группировка, исключение лишнего
- Комбинаторика
- Логические задачи (задачи на смекалку)
- Числовые ряды, закономерности, аналогия
Задания, направленные на развитие восприятия и воображения.
Восприятие – это основной познавательный процесс чувственного отражения действительности, ее предметов и явлений при их непосредственном действии на органы чувств. Оно является основой мышления и практической деятельности, как взрослого человека, так и ребенка, основой ориентации человека в окружающем мире, в обществе. Психологические исследования показали, что одним из эффективных методов организации восприятия и воспитания наблюдательности является сравнение.
(слайд 3) Восприятие при этом становится более глубоким. В результате игровой и учебной деятельности восприятие само переходит в самостоятельную деятельность, в наблюдение.
Задания на развитие внимания
С 1 класса начинаю работу (слайд 4) с заданиями на внимание. Это помогает научить детей работать с иформацией, развивает критическое мышление. Формирование гибкости ума, освобождение мышления от шаблонов происходит при решении задач-шуток, занимательных заданий, задач на перебор вариантов, т.к. в большинстве своем эти задачи не привязаны к темам и не требуют особой теоретической подготовки.
(слайд 5) Комбинаторика, перебор
Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций.
( слайд 6) Сущность этого приема заключается в проведении организованного разбора и анализа всех случаев, которые потенциально возможны в ситуации, описанной в задаче.
(слайд 7) Наглядные задания на объёмно-пространственное мышление
У младших школьников более развита память наглядно-образная, чем смысловая. Они лучше запоминают конкретные предметы, лица, факты, цвета, события. Чтобы решить эти задачи обычно достаточно просто внимательно рассмотреть рисунок. А иногда надо придумать нужный рисунок самостоятельно.
(слайд 8) Это задания с палочками (спичками), на симметрию, игра «Танграмм» и другие. (слайд 9) Танграмм используется на уроках изучения плоскостных фигур. Такие задания есть в системе Занкова.
(слайд 10) Игры с палочками можно включать в урок с 1 класса на уроках введения и образования чисел, составления геометрических фигур (а при помощи пластилина и объёмных), палочками можно рисовать, создавать закономерность. Работа с палочками или спичками рационально использовать при изучении римских цифр, а также как один из вариантов графического диктанта.
(слайд 11) Задачи с геометрическим содержанием нацелены на знание геометрических фигур и их свойств как основы для формирования пространственных и изобразительных умений школьников, на расширение кругозора.
(слайд 12) Задачи на аналогию, закономерность и исключение лишнего используются для формирования умений поиска решения задач, интуиции, требуют знания теории и нешаблонного подхода к решению. Такие задания используются в разных темах программы. Аналогия – это сходство между объектами в некотором отношении. Использование аналогии в математике является одной из основ поиска решения задач.
(слайд 13) Классификация
Классификация – это общепознавательный прием мышления, суть которого заключается в разбиении данного множества объектов на попарно непересекающиеся подмножества (классы).
Исключение лишнего - в каждой задаче этой серии указаны четыре объекта, из которых три в значительной мере сходны друг с другом, и только один отличается от всех остальных.
(слайд 14) Задачи на взвешивание, время и переливание
Эти задачи требуют не только знание программного материала (в частности величины), но требуют нешаблонного подхода к решению, выстраивания логической цепочки и применения житейского опыта.
(слайд 16) Математические ребусы, криптограммы,
Такой вид заданий требует знаний и умений программного материала и служит для совершенствования вычислительных навыков.
(слайд 17) Ребусы
Решение ребусов не отличается от других видов таких заданий, только здесь требуется объяснить детям, что числа в жизни мы называем по-разному: 1 — один, первый, раз, кол; 2 - два, второй, пара; 5 — пять, пятый, пятерка; 100 — сто, сотня, сотый и т.д.
Система развивающего обучения Л.В.Занкова направлена на развитие мышления детей. Дидактические принципы развивающего обучения системы Л.В.Занкова представлены на слайде (слайд 18)
Программный материал содержит некоторый вид олимпиадных заданий. При работе на уроке у детей формируется осознанное критическое мышление. Это происходит благодаря тому, что в классе обсуждаются пути решения задач, рассматриваются различные варианты решения, учитель постоянно просит школьников обосновывать, рассказывать, доказывать правильность своего суждения. На уроках учащиеся овладевают основами логического алгоритмического мышления, приобретают начальный опыт применения знаний для решения учебно-практических задач, что создает основу для выявления одаренных детей. Программа по математике для 1-4 кл. И. И. Аргинской, С. Н. Кормишиной включает сочетание обязательного содержания и сверхсодержания, а также многоаспектную структуру заданий и дифференцированную систему помощи, которые создают условия для мотивации продуктивной познавательной деятельности у всех обучающихся.
(слайд 19) Содержательную основу для такой деятельности составляют логические задачи, задачи с неоднозначным ответом, с недостающими или избыточными данными, представление заданий в разных формах (рисунки, схемы, чертежи, таблицы, (слайд 20) диаграммы и т. д.), которые способствуют развитию критичности мышления, интереса к умственному труду. Логические задачи требует умения проводить доказательные рассуждения, анализировать. Хочу остановиться на некоторых из них, которые представлены в учебниках математики системы Занкова.
(слайд 21) 3 класс. Решение логических задач с помощью составления и заполнения таблиц.
Такой вид задач дается и объясняется в учебниках.
(слайд 21, 22) 4 класс. Решение задач подбором.
(слайд 23) 4 класс. Решение логических задач рациональным способом
(слайд 24) 4 класс. Решение задач алгебраическим методом. Сравнение арифметического и алгебраического методов решения задач.
(слайд 2) 4 класс. Математические фокусы. Работа по совершенствованию вычислительных навыков. Проверка истинности утверждений.
Регулярное использование на уроках математики системы специальных задач и заданий, направленных на развитие познавательных возможностей и способностей, расширяет математический кругозор младших школьников, способствует математическому развитию, повышает качество математической подготовленности, позволяет детям более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.
Как добиться успешного участия школьника в математической олимпиаде? Тренироваться, тренироваться и ещё раз тренироваться. Для успеха в конкурсной математике, конечно, нужно решать задачи. Успех связан не только со способностями, но и со знанием классических олимпиадных задач. Поэтому к олимпиаде надо серьёзно готовиться. А учебники Аргинской и Кормишиной направлены на разъяснения способов выполнения таких заданий.
Читайте также: