Вентиляторы шасси что это
Я собираюсь купить несколько вентиляторов на корпусе (12 см) для моего компьютера, и продавец сказал мне, что вентилятор с DC12V 0,18a имеет более высокие обороты, чем вентилятор с DC12v 0,16a.
Я ничего не знаю об электронике или напряжении, правда ли то, что он сказал?
2 ответа 2
Во-первых, не существует стандартизации того, как указываются токи вентиляторов. Например, можно указать ток под нагрузкой лопасти, а можно указать ток двигателя без подключенного вентилятора. Можно указать ток на пиковой скорости, а другой - на средней скорости (для вентиляторов, которые меняют свою скорость). Можно указать средний ток для линии вентиляторов, а можно указать абсолютный максимум, на который рассчитан двигатель. Можно указать пиковый ток запуска и можно указать средний рабочий ток. Вы поняли идею.
Во-вторых, вентиляторы различаются по дизайну лопастей. Некоторые вращаются на низких оборотах, но используют больше лопастей. Некоторые вращаются на высоких оборотах, но используют более низкую площадь лезвия. Вентилятор с высоким числом оборотов может потреблять меньше энергии, чем вентилятор с низким числом оборотов, потому что его меньшие лопасти создают меньшее воздушное трение.
В-третьих, проекты сильно различаются по эффективности. В подшипниках есть трение. В электронике драйвера потеря мощности. И возникает вопрос о том, сколько энергии можно восстановить, когда магнитные поля разрушаются - двигатель вентилятора накапливается и разрушает магнитные поля, когда вентилятор вращается, продолжая толкать его, и они различаются в зависимости от того, сколько энергии отрыва они восстанавливаются против того, сколько они превращают в тепло.
Как правило, текущие рейтинги, которые вы видите на устройстве, это максимум, который оно собирается нарисовать, а не фактические суммы, которые вы, вероятно, увидите. Так что они не очень полезны ни для чего, кроме как для того, чтобы убедиться, что у вас достаточно энергии для запуска устройства.
Превосходная конструкция вентилятора может потреблять тот же ток и перемещать то же количество воздуха, но работать на гораздо более низких оборотах, чем конструкция с более низким вентилятором. Это может быть достигнуто путем использования большего количества лезвий, более толстых лезвий или более агрессивно закрученных лезвий. Это общая конструктивная особенность вентиляторов с низким уровнем шума.
Так что, по сути, продавец не понимает, что вентилятор - это не лампа накаливания.
Всем привет. В продолжение темы описания авиационных систем "для чайников" (тут и тут), я подготовил новый текст про шасси и колёсные тормоза самолётов.
Система колёс, на которые опирается самолёт при движении по земле, называется шасси. В современных авиалайнерах используется трёхстоечная система шасси с двумя основными стойками, расположенными под крылом позади центра тяжести и одной передней стойкой, расположенной в носу самолёта. Основные стойки шасси оснащаются тормозами, а передняя стойка делается поворотной, чтобы самолет мог маневрировать при движении по земле.
На больших самолетах типа Аirbus 380 или Boeing 747 в дополнение к основным стойкам делают вспомогательные, чтобы распределить значительный вес гигантского самолета. На всех стойках шасси установлены амортизаторы. Принцип действия и назначение которых похожи на автомобильные, но основная задача — смягчить перегрузки на посадке, чтобы нагрузки на узлы самолёта не превышали допустимых. .
1. Поворотная носовая стойка
Кроме распределения веса самолета, носовая стойка поворачивается влево-вправо, чтобы самолет мог маневрировать при движении на земле.
Поворотом носовой стойки можно управлять двумя способами:
- С помощью педалей управления рулём направления,
- С помощью специальной ручки управления разворотом носовой стойки.
Управление поворотом носовой стойки с помощью педалей осуществляется на разбеге при взлёте и пробеге при посадке, когда скорость самолета достаточно велика. Одновременно, с помощью этих же педалей, летчик управляет отклонением руля направления.
картинка кликабельная
Предел отклонения носовой стойки при управлении от педалей специально ограничен, как правило это 10 градусов. Поворачивать на рулёжные дорожки, когда надо отклонять носовую стойку на углы порядка 50-70 градусов, не получится. На малых скоростях для руления используется ручка управления носовой стойкой.
Эта ручка используется только при рулёжке и автоматически отключается при больших скоростях движения.
картинка кликабельная
2. Основные опоры шасси и Колёсные тормоза
Основные опоры шасси представляют собой тележку, на которую навешиваются колеса, оснащённые тормозами.
Тормоза на самолёте похожи на автомобильные, только существенно мощнее, что не удивительно, т.к. им приходится тормозить машину массой 30-600 тонн со скоростей порядка 250 км/ч до нуля на ограниченной по длине взлётно-посадочной полосе (ВПП).
Самолётные тормоза состоят из "бутерброда" тормозных дисков и колодок.
Колёсные тормоза могут быть задействованы двумя разными способами: "вручную" и автоматически.
"Вручную" пилот тормозит педалями. Может возникнуть вопрос, как пилот умудряется педалями и носовой стойкой управлять и тормозить? Дело в том, что педали самолёта устроены совсем не так, как в автомобиле. Управление по направлению выполняется перемещением педалей вперёд-назад. При этом две педали двигаются синхронно: левая вперёд-правая назад и наоборот. Управление тормозами осуществляется нажатием на педаль. Каждую педаль можно нажимать отдельно, так называемое дифференциальное торможение — это ещё один из способов управления направлением движения по земле. Если левым тормозом пользоваться интенсивнее, чем правым, то и самолёт будет разворачивать влево и наоборот.
Автоматический режим торможения включается сам при наступлении определенного события. Таких событий может быть два:
- Во время посадки: Одновременное касание полосы (срабатывание датчиков обжатия шасси) и нахождение ручек управления двигателями в положении "малый газ",
- Во время взлёта: Перевод ручек управления двигателем из положения "взлётный режим" в положение "малый газ". Этот режим торможения называется "прерванный взлёт" (Rejected Takeoff, RTO)
Активировать/деактивировать режим автоторможения в самолётах Airbus и SSJ-100 лётчик может с помощью одной из четырёх кнопок под ручкой уборки-выпуска шасси (В Boeing для этого используется переключатель). Три кнопки (LOW, MED, MAX) соответствуют различным интенсивностям торможения при посадке, а четвертая (RTO) активирует режим прерванного взлёта.
С автоторможением при посадке всё очевидно. Давайте рассмотрим режим прерванного взлёта.
Прерванный взлёт — это режим, когда экипаж решает прекратить взлёт по причине существенного отказа. Прервать взлёт можно только до достижения "скорости принятия решения". Скорость принятия решения зависит от длины и состояния поверхности ВПП и рассчитывается исходя из возможности затормозить, не выкатившись за пределы ВПП. Если в процессе набора скорости неисправность происходит после достижения скорости принятия решения, экипаж продолжит взлёт, что бы не случилось. Если до — будет тормозить.
Перед каждым взлётом экипаж обязан активировать автоторможение. Скорость начала и интенсивность торможения при прерванном взлёте напрямую влияет на то, выкатится ли самолёт за пределы полосы или нет. Активированное автоторможение гарантирует, что торможение начнётся немедленно после вывода двигателей из взлётного режима.
Если прерывать взлёт приходится при максимальной взлётной массе и на предельной скорости, то несмотря на то, что кроме колёсных тормозов экипаж задействует реверс и воздушные тормоза, энергия, которую должны поглотить тормоза, разогревает их так, что они начинают светиться не хуже лампочки. После полной остановки самолёта работа тормозов не заканчивается. Они должны выдержать ещё не менее 90 секунд, прежде чем подожгут стойки шасси. По нормативам, что за 90 секунд к самолёту подоспеет пожарная команда, которая всегда дежурит в аэропортах (и успевает!).
Спасибо комментариям — напомнили об одной очень важной функции тормозов авиалайнера: антиблокировочной системе (АБС). Основное отличие АБС самолёта от таковой автомобиля заключается в последствиях блокировки колёс: если у автомобиля блокировка приводит к снижению управляемости и увеличению тормозного пути, то заблокированные колёса самолёта при посадке просто взрываются от трения об асфальт. А без покрышек основных стоек торможение не будет ни эффективным ни безопасным. Так что АБС на самолёте неотключаемая и довольно критическая функция.
3. Уборка — выпуск шасси
Кроме тормозов и управления носовой стойкой с шасси связана ещё одна важная функция — уборка/выпуск шасси. Управление уборкой-выпуском шасси в нормальном режиме осуществляется с помощью соответствующей ручки на приборной панели.
Вверх — убрать, вниз — выпустить. Кстати, можно не бояться случайно "сложить" стойки шасси, когда самолёт стоит на земле — в современных авиалайнерах предусмотрена блокировка от таких действий, когда шасси "обжаты" — амортизаторы находятся в сжатом состоянии под действием веса ЛА .
Для улучшения аэродинамических свойств ЛА ниши, в которых размещаются убранные шасси, закрываются створками, поэтому процедура нормальной уборки шасси выглядит примерно так:
- Вычислитель снимает замки закрытого положения створок и подаёт команду на открытие створки
- Створки полностью открыты и зафиксированы в открытом положении. Соответствующие датчики сообщают об этом вычислителю
- Вычислитель открывает замки выпущенного положения стоек шасси и начинает их уборку.
- Стойки полностью убраны и зафиксированы в закрытом положении. Соответствующие датчики сообщают об этом вычислителю
- Вычислитель открывает замки открытого положения створок и начинает их закрывать
- Створки полностью закрыты и зафиксированы в закрытом положении. Вычислитель фиксирует признак окончания уборки шасси
Весь процесс занимает 20-40 секунд. Если в процессе что-то идёт не так, то система прерывает процесс, т.к. есть вероятность что-то сломать. Нормальный выпуск шасси происходит в обратном порядке.
На случай неисправностей в системе уборки-выпуска предусмотрен особый порядок выпуска шасси — аварийный выпуск. Аварийный выпуск активируется кнопкой аварийного выпуска, расположенной под колпачком рядом с ручкой уборки-выпуска шасси. При аварийном выпуске средствами, не зависящими от вычислителя системы уборки-выпуска шасси, снимаются замки убранного положения стоек шасси и створок. Шасси вываливается под собственным весом. Массы каждой из стоек достаточно чтобы выломать створку, даже если та не откроется сама. На замки нижнего положения стойки также встают под действием собственного веса.
4. Датчики обжатия стоек шасси
Информация об обжатии стоек шасси, которые я упоминал выше, это очень нужная многим системам информация. Пожалуй, стоит перечислить кое-какие функции, зависящие от этого сигнала:
При появлении сигнала обжатия шасси:
При снятии сигнала обжатия шасси:
Параграф добавлен после прочтения комментариев: Датчики обжатия стоек шасси как правило выполняются многоканальными и располагаются на каждой из стоек. Данные с многочисленных датчиков собираются специальными устройствами, концентраторами данных. На основании полученных данных формируются сигналы об обжатии каждой из стоек и сигнал обжатия всех стоек. В логике работы описанных выше функций используются разные сигналы: для начала автоторможения достаточно сигналов обжатия двух основных стоек, а для включения режима тех. обслуживания надо чтобы были обжаты все три стойки. Но это уже другая история.
Бонус
Пока я готовил этот текст, решил для себя разобраться, почему на некоторых самолётах, например Boeing 757 тележка основных стоек шасси в полете наклонена так, что передние колёса находятся выше задних:
А на Boeing 767 наоборот, передние колеса ниже задних:
Как выяснилось всё дело в том, как спроектирована ниша, куда убираются стойки шасси, спасибо видео:
И, что самое любопытное, в военно-транспортном C5 Galaxy основные стойки шасси выпускаются в положении поперёк движения самолёта и только потом разворачиваются на 90 градусов в нужное положение.
Что такое CFM
CFM — не метрическая единица измерения объема, кубический фут в минуту. Используется эта единица потому, что футы повсеместно применяются в США, а именно эта страна остается передовым разработчиком компьютерных технологий.
В кубических метрах, как правило, в характеристиках кулера этот параметр указывается редко. Впрочем, несложно сделать расчет в более привычных для европейца единицах: 1 куб. м = 35, 31 CFM.
Характеристика зависит от трех параметров кулера:
- Формы лопастей;
- Скорости их вращения;
- Диаметра вентилятора.
Например, при равной скорости больший воздушный поток создаст вентилятор, диаметр которого больше. Соответственно, при одинаковом диаметре эффективнее кулер, лопасти которого вращаются быстрее.
Что значит это в практическом плане? Зная рекомендуемый CFM для компьютерного корпуса, несложно рассчитать вид вентиляторов и количество, которые надо использовать для максимального охлаждения.
Какое охлаждение нужно в зависимости от типа корпуса
В зависимости от типоразмера шасси следует выбрать суммарно создаваемый пропеллерами воздушный поток:
- Mini Tower — 30-35;
- Middle Tower — 45-55;
- Big Tower — 70-110.
Просто большее количество пропеллеров будет создавать лишний шум. Рекомендую отдать предпочтение одной мощной модели, создающей достаточный воздушный поток, перед несколькими небольшими, но шумными. С топом кулеров для процессора вы можете ознакомиться здесь.
Замечено, что вентиляторы разного диаметра при работе создают приблизительно одинаковый уровень шума. Исключения — устройства с пониженной шумностью. Работают они тихо, но при этом нагнетают тот же по объему поток воздуха.
Также учитывайте, что чем больше вентиляторов установлено на всасывание воздуха, тем больше пыли будет поглощать компьютер. А значит, что и чистить его придется чаще, если вы хотите нормальной работоспособности девайса.
И не забывайте, что даже самые мощные крыльчатки будут неэффективны для охлаждения ПК, если разместить их неправильно. При грамотной компоновке, количество подаваемого воздуха соответствует количеству выдуваемого, а поток, огибая компоненты компьютера, не встречает на пути значимых препятствий.
Читайте также: