Vb что означает на плате планшета
Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.
До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов
Изучаем простую схему
Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.
Как соединяются радиоэлементы в схеме
Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводников
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Как же обозначаются остальные радиоэлементы?
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы и их виды
а) общее обозначение
б) мощностью рассеяния 0,125 Вт
в) мощностью рассеяния 0,25 Вт
г) мощностью рассеяния 0,5 Вт
д) мощностью рассеяния 1 Вт
е) мощностью рассеяния 2 Вт
ж) мощностью рассеяния 5 Вт
з) мощностью рассеяния 10 Вт
и) мощностью рассеяния 50 Вт
Конденсаторы
a) общее обозначение конденсатора
в) полярный конденсатор
г) подстроечный конденсатор
д) переменный конденсатор
Акустика
a) головной телефон
б) громкоговоритель (динамик)
в) общее обозначение микрофона
г) электретный микрофон
Диоды
б) общее обозначение диода
г) двусторонний стабилитрон
д) двунаправленный диод
ж) туннельный диод
з) обращенный диод
м) излучающий диод в оптроне
н) принимающий излучение диод в оптроне
Измерители электрических величин
Катушки индуктивности
а) катушка индуктивности без сердечника
б) катушка индуктивности с сердечником
в) подстроечная катушка индуктивности
Трансформаторы
а) общее обозначение трансформатора
б) трансформатор с выводом из обмотки
г) трансформатор с двумя вторичными обмотками (может быть и больше)
д) трехфазный трансформатор
Устройства коммутации
в) размыкающий с возвратом (кнопка)
г) замыкающий с возвратом (кнопка)
Электромагнитное реле с разными группами контактов
Предохранители
а) общее обозначение
б) выделена сторона, которая остается под напряжением при перегорании предохранителя
д) термическая катушка
е) выключатель-разъединитель с плавким предохранителем
Тиристоры
Биполярный транзистор
Однопереходный транзистор
Полевой транзистор с управляющим PN-переходом
Моп-транзисторы
IGBT-транзисторы
Фото-радиоэлементы
Оптоэлектронные приборы
Симисторная оптопара (статья про симистор)
Кварцевый резонатор
Датчик Холла
Микросхема
Операционный усилитель (ОУ)
Семисегментый индикатор
Различные лампы
а) лампа накаливания
б) неоновая лампа
в) люминесцентная лампа
Соединение с корпусом (массой)
Земля
Обозначения буквенно-цифровые в электрических схемах. ГОСТ 2.710
Обозначения буквенно-цифровые в электрических схемах. ГОСТ 2.710-81 (фрагмент).
Буквенные коды наиболее распространенных видов элементов.
Примеры двухбуквенных кодов
Примеры видов элементов, помеченные * добавлены автором.
Комментарии
1. Если УГО стандартами не установлено, то разработчик выполняет УГО на полях схемы и дает пояснения (ГОСТ 2.702-2011).
То-есть, если в стандартах условное обозначение какого-то электрического устройства отсутствует, можно придумать свое (желательно используя имеющиеся в стандартах элементы условных обозначений). А на свободном поле чертежа, отобразить данное обозначение и дать разъяснения о его назначении, функции.
Например фотоконденсатор:
2. По буквенному обозначению, если уж в стандартах все фотоэлементы: и фоторезистор, и фотодиод, и фототранзистор обозначают одинаково - BL, то наверное будет логичнее и фотоконденсатор у присвоить тот-же буквенный код BL.
3. Фотоэлектрохими ческий суперконденсато р, при беглом ознакомлении, совмещает в себе полупроводников ый солнечный элемент собственно суперконденсато р. Возможно его можно изобразить таким образом:
Буквенный код, тот-же применяйте на Ваше усмотрение (возможно в данном случае, можно применить обозначение как для источника питания - G) и расшифруйте в пояснениях.
Но, это предположительн о. Нужно внимательней изучить конструкцию (у меня на это нет времени)
Доброго времени суток!
Меня очень сильно интересуют 3 вопроса.
1. Как обозначаются фотоконденсатор ы на электрических схемах (по логике должно быть обозначение аналогично фоторезистору: сам элемент (конденсатор в данном случае) взять в кружок и поставить 2 стрелки направленные на него; но проблема в том, что я не нашёл ни одного подтверждения этого как в каталогах, так и вообще в статьях в Интернете).
2. Если обозначения какого-либо элемента пока не существует, то можно ли его обозначать сочетанием букв, либо сочетанием элемента и букв? Например, в данном случае пусть не существует обозначения фотоконденсатор а. Какими из следующих вариантов тогда можно его обозначить: тремя буквами "BLC" или "CBL", взятыми в кружок (кстати, если это правильно, то какой из этих 2-х вариантов верен?), или же нарисовать конденсатор, а рядом поставить буквы "BL"?
3. Как обозначаются подтипы элементов на электрических схемах? Например, существует фотоэлектрохими ческий суперконденсато р (PES-фотоконден сатор, от англ. Photoelectroche mical Supercapacitor) . Как его обозначить на схеме? Конденсатором с рядом расположенными буквами PES? Или опять сочетанием каких-либо букв, например, "PES-С" (кстати, чисто из любопытства вопрос: если такое обозначение верно, то нужно ли ставить дефис?)?
Извините, что задал столько вопросов (наверное, глупых к тому же)! Я не очень в этой сфере разбираюсь. Но мне правда очень нужно это.
Заранее благодарю!
Для питания любого МК требуются, как минимум, два провода: положительный («плюс», «Power supply») и отрицательный («минус», «Ground reference»). Обозначают их в даташитах и на схемах следующими сокращениями (Рис. 2.8):
- Vcc (Voltage Collector-to-Collector) или VDD (Voltage Drain-to-Drain);
- GND (GrouND) или Vss (Voltage Source-to-Source).
Внутреннее сопротивление МК обозначается переменным резистором Rx. Почему переменным? Потому, что ток потребления МК варьируется по мере исполнения программы. Зависит он также от режима работы, напряжения питания, температуры, тактовой частоты, нагрузки на выходные линии. В «спящем» режиме ток составляет единицы микроампер, в рабочем — десятки миллиампер, в максимально нагруженном — 0.1 . 0.3 А. Конкретные значения приводятся в даташите.
Таблица 2.4. Варианты обозначения выводов питания МК
Пары условных обозначений в даташитах
Несколько замечаний о принятых в международной инженерной практике условностях 2. Напряжение на выводе биполярного транзистора по отношению к общему проводу GND обозначается буквой «V» (англ. «Voltage») и одним из подстрочных индексов: «В» (англ. «Base», база), «С» (англ. «Collector», коллектор), «Е» (англ. «Emitter», эмиттер). К примеру, Vc — это напряжение на коллекторе относительно GND. Напряжение между двумя выводами транзистора обозначается двойным индексом: VCE — это напряжение между коллектором и эмиттером.
Индекс, образованный двумя одинаковыми буквами указывает на источник питания: Vcc — положительный, VEE — отрицательный контакт. Образно можно представить себе транзистор проводимости п—р—п, у которого коллектор соединяется с питанием (С-С), а эмиттер с «массой» (Е-Е). Транзисторы проводимости р—п—р в эту стройную теорию не помещаются, сказывается тот факт, что они изначально по технологическим причинам были меньше распространены.
Для полевых ^-канальных транзисторов существуют аналогичные названия, соответственно, VDD (плюс питания, напряжение «сток — сток», «Drain-to-Drain») и Vss (минус питания, напряжение «исток — исток», «Source-to-Source»).
Поскольку современные МК состоят из полевых транзисторов, то логично было бы их выводы питания обозначить парой «^dd'^ss^» а не «^cc'GND», как у микросхем ТТЛ-логики. Однако, здесь начинается самое интересное (Табл. 2.4). Единообразие отсутствует даже в М К одной фирмы и одного семейства.
Пример 1. Микросхема Z86L33 фирмы Zilog, выполненная в корпусе с 28 выводами, имеет название цепей питания «^dq-^ss»' а та же микросхема в корпусе с 40 выводами — «KCC-GND».
Пример 2. В семействе ATmega фирмы Atmel принято обозначение «KCC-GND» (далее в книге как основное), а в семействе ARM той же фирмы «Kdd-GND».
Пример 3. МК К1816ВЕ49 имеет два вывода питания, один из них Vcc является основным, а другой VDD служит для подключения резервной батареи.
Наверное, дальше всех в казуистике названий продвинулась микросхема TMS320F фирмы Texas Instruments, имеющая вывод общего провода с «двойной фамилией» KSS1AGND.
Тем, кто часто работаете разными семействами МК, пригодится простое мнемоническое правило — поскольку за буквой «С» латинского алфавита сразу следует буква «D», значит Vcc и VDD относятся к одной и той же цепи, т.е. к питанию. Вывод GND ни с чем не спутаешь, это «земля», «общий провод». Остаётся обозначение Vss, которое методом исключения приравнивается к GND.
Кстати, слово «вывод» (англ. «pin» — булавка) употребляется в электронике для микросхем, транзисторов, конденсаторов, диодов, резисторов, оптопар, катушек индуктивности. Слово «контакт» — для разъёмов, переключателей, джамперов, реле, перемычек, а вот сленговые названия «ноги, ножки» более характерны человеку, нежели электронному изделию.
Организация питания в МК
Двухпроводное питание современным МК досталось по наследству от «прадедушек» i8048/i8051. Сейчас оно в основном применяется в малогабаритных МК с числом выводов 6. 18, например, в Atmel ATtiny, Microchip PIC10/12. Мера вынужденная, т.к. свободных выводов катастрофически не хватает.
С развитием технологии в состав М К стали вводить аналоговые узлы АЦП/ЦАП, которые весьма чувствительны к помехам. Произошёл естественный переход на трёх- (Рис. 2.9), четырёх- (Рис. 2.10, а. в) и многопроводные (Рис. 2.11, а, б) схемы питания.
Добавление цепей AVCC (Analog УСС) и AGND (Analog GND) позволяет развязать между собой аналоговые и цифровые части микросхемы, уменьшить импульсные помехи, повысить инструментальную точность каналов АЦП и ЦАП.
Переменные резисторы ЯА и RD отличаются между собой по сопротивлениям. Во времени они тоже изменяются по разным законам. Например, в рабочем режиме «цифровой» ток значительно больше «аналогового». Следовательно, RA больше, чем Rd. В ждущем режиме ситуация может измениться с точностью до наоборот.
Резисторы Rg, Ry — это омические сопротивления, непосредственно измеренные тестером между выводами микросхем. Их наличие или отсутствие не поддаётся логическому предсказанию и обычно не указывается в даташитах. Например, в одном и том же семействе Atmel ATmega у микросхем ATmega8 и ATmega 16 питание выполняется, соответственно, по схемам, изображённым на Рис. 2.10, в и Рис. 2.10, б.
В каждом конкретном случае разобщённость внутренних цепей надо проверять экспериментально, не надеясь на знаменитый славянский «авось». Абсолютные значения сопротивлений резисторов RG, Rw у разных фирм отличаются, что связано с особенностями технологии изготовления.
Многопроводные схемы особенно характерны для 16- и 32-битных МК, у которых питание разделяется на несколько потоков. А именно: ядро процессора, периферийные буферы, аналоговая часть, система фазовой автоподстройки частоты (ФАПЧ), генераторный блок и т.д. Названия цепей встречаются самые экзотические: VDDA2, KDD18, KDDC0RE, К33, DVCC, VDDAKSS4, DVSS, KSSA. Рекордсменом в этой области можно считать М К семейства Atmel АТ91 САР, где в одном корпусе насчитывается 12 неповторяющихся названий выводов питания и 8 вариаций названий общего провода. Каждая из силовых цепей в свою очередь продублирована несколькими одноимёнными выводами с разных сторон четырёхгранного корпуса, что позволяет равномернее распределить токовую нагрузку.
Фильтрация помех
Если посмотреть на осциллограмму тока потребления МК, то в ней можно заметить низкочастотную (НЧ) и высокочастотную (ВЧ) составляющие. Как следствие, колебания тока приводят к появлению НЧ- и ВЧ-помех на зажимах питания. Для их ослабления используют стандартные решения в виде связки конденсаторов (Рис. 2.12, Рис. 2.13), 1С- и ДС-фильтров (Рис. 2.14, Рис. 2.15).
Неполярные конденсаторы С1, C3 ослабляют ВЧ-помехи. Их наличие обязательно возле любого МК, причём максимально близко от выводов питания (не более 50 мм). Конденсаторы должны быть керамические, например, К10-17 или поверхностно монтируемые чип-коденсаторы ходовых размеров 0603. 1206.
Базовый номинал ёмкости 0.1 мкФ выбран условно, как легко запоминающийся. Устройство будет нормально функционировать и при 0.068 мкФ, и при 0.15. 0.22 мкФ. Иногда параллельно конденсатору С1 ставят ещё одну неполярную ёмкость 1000 пФ, которая снижает уровень радиоизлучений. Обычно такой способ применяют в профессиональной аппаратуре, чтобы войти в допуск при проверках изделия на электромагнитную совместимость и радиопомехи.
Полярный конденсатор С2 желательно использовать танталовый (а не алюминиевый), поскольку он лучше подавляет импульсные помехи. При выборе ёмкости можно руководствоваться эмпирическим правилом, которое заимствовано из многолетней практики применения сетевых источников питания — 1000 мкФ на каждый ампер тока нагрузки. К примеру, если цифровая часть МК потребляет ток 10. 30 мА, то достаточно поставить конденсатор С2 ёмкостью 10. 30 мкФ с рабочим напряжением не менее 6.3 В. Знатоки рекомендуют выбирать более высоковольтные конденсаторы с напряжением 10. 16 В, поскольку повышается надёжность в эксплуатации и, главное, снижается внутренний импеданс, что позволяет лучше фильтровать помехи.
Конденсатор С2 обязателен при батарейном питании в качестве накопителя энергии, а также при значительных колебаниях и скачках напряжения. В некоторых случаях его функцию выполняет конденсатор фильтра сетевого выпрямителя или стабилизатора напряжения. Как вариант, конденсатор С2 может физически размещаться вблизи других цифровых микросхем и косвенно воздействовать на цепь питания МК.
Катушка индуктивности L1 развязывает цифровую и аналоговую части по высокой частоте. Если её не ставить, то может ухудшиться точность измерения АЦП и стабильность порога срабатывания аналогового компаратора. Как ни парадоксально, но значительную часть помех по питанию создают внутренние цифровые узлы МК, поэтому 1С- и /?С-фильтры защищают контроллер от . самого себя. Номинал индуктивности L1 не особо критичен и может варьироваться в широких пределах.
Ферритовая «бусинка» FBI (Ferrite Bead) представляет собой проводник, пропущенный через ферритовое кольцо или цилиндр. Этот элемент способствует снижению высокочастотных излучений, которые можно зафиксировать лишь специальными измерительными радиоприёмниками в экранированной «безэхо-вой» камере. Такие испытания обязательны при сертификации продукции.
В любительской практике фильтр FBI ставится редко, разве что в связной спортивной аппаратуре, где помехи от МК могут существенно повлиять на качество принимаемого радиосигнала и значительно ухудшить чувствительность.
В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов - Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)
В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр - сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.
Рис. Пример реального участка схемы блока питания - фильтра от ВЧ помех.
Варистор
Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.
Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.
Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.
Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.
Обозначение варистора на плате.
| | |
VZ (Принтер) | MV (Источник бесперебойного питания) | ZNR (Блок питания АТХ) |
| | |
MOV (Источник бесперебойного питания) | Z (Блок питания светодиодного прожектора) | DNR |
фото отсутствует | фото отсутствует | фото отсутствует |
RU | RV | VAR |
фото отсутствует | ||
VDR |
Обозначение варистора на схеме.
Рис. Условное обозначение варистора на схеме
Особенности применения варисторов.
- Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
- Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.
Терморезистор
Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) - сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) - сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания
Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания - ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.
Обозначение термистора на плате.
| | |
TH | THR | TR |
| | |
RTH | RT | PTC |
Обозначение термистора на схеме.
Рис. Условное обозначение терморезистора на схеме
На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.
Рис. Пример комбинации при обозначении терморезистора
Особенности применения термисторов.
- Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
- Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
- Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.
Помехоподавляющие конденсаторы
Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.
Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения. |
Конденсатор X типа
Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.
Рис. Принцип работы Х конденсатора.
Обозначение X конденсатора на плате.
| |
Cx | С |
Обозначение X конденсатора на схеме.
Обосначается как обычный конденсатор, с суффиксом x, например Cx
Рис. Обозначение Х конденсатора на схеме .
Особенности применения Х конденсаторов.
- Конденсатор невозгораемый при любых условиях
- Неисправность конденсатора не приведет к поражению электрическим током.
- Емкость Х конденсатора, чем больше - тем лучше.
- X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
- Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Конденсатор Y типа
Конденсатор Y типа – конденсатор для подавления помехи возникающей между
- фазой и землей (не путать с нулем)
- нулем и землей.
Рис. Принцип работы Y конденсатора.
Обозначение Y конденсатора на плате.
Нет изображения | Нет изображения |
CY | С |
Обозначение Y конденсатора на схеме.
Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.
Рис. Обозначение Y конденсатора на схеме .
Особенности применения Y конденсаторов.
- Конденсатор в случае пробоя уходит в обрыв
- Неисправность конденсатора может привести к поражению электрическим током.
- Емкость Y конденсатора, чем меньше - тем лучше.
- Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
- Y конденсатор можно применять вместо X конденсатора, наоборот нет.
- Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Быстродействующие диоды.
В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.
Читайте также: