В каком случае на трансформаторах с системой охлаждения д электродвигатели вентиляторов должны
Способы охлаждения. Конструктивное выполнение трансформатора определяется в значительной мере способом его охлаждения, который зависит от номинальной мощности. При увеличении мощности трансформатора необходимо увеличивать и интенсивность его охлаждения. В силовых трансформаторах для отвода теплоты от обмоток и магнитопровода применяют следующие способы охлаждения: воздушное, масляное и посредством негорючего жидкого диэлектрика. Каждый вид охлаждения имеет соответствующее условное обозначение.
Трансформаторы с воздушным охлаждением (сухие трансформаторы) . При естественном воздушном охлаждении магнитопровод, обмотки и другие части трансформатора имеют непосредственное соприкосновение с окружающим воздухом, поэтому охлаждение их происходит путем конвекции воздуха и излучения. Сухие трансформаторы (рис. 2.18) устанавливают внутри помещений (в зданиях, производственных цехах и пр.), при этом главным требованием является обеспечение пожарной безопасности.
Рис. 2.18. Сухой трансформатор мощностью 320 кВА без кожуха:
В эксплуатации сухие трансформаторы удобнее масляных, так как исключают необходимость периодической очистки и смены масла . Следует, однако, отметить, что воздух обладает меньшей электрической прочностью, чем трансформаторное масло, поэтому в сухих трансформаторах все изоляционные промежутки и вентиляционные каналы делают большими, чем в масляных. Из-за меньшей теплопроводности воздуха по сравнению с маслом электромагнитные нагрузки активных материалов в сухих трансформаторах меньше, чем в масляных, что приводит к увеличению сечения проводов обмотки и магнитопровода. Как следствие этого, масса активных частей (обмоток и магнитопровода) сухих трансформаторов больше, чем масляных. В настоящее время сухие трансформаторы имеют мощности до 20 MBА и напряжения обмотки ВН до 35 кВ. Их устанавливают только в сухих закрытых помещениях с относительной влажностью воздуха до 80% во избежание чрезмерного увлажнения обмоток.
Сухие трансформаторы с естественным воздушным охлаждением могут иметь открытое (С), защищенное (СЗ) или герметизированное (СГ) исполнение. Трансформаторы типа СЗ закрывают защитным кожухом с отверстиями, а типа СГ— герметическим кожухом. Для повышения интенсивности охлаждения применяют обдув обмоток и магнитопровода потоком воздуха от вентилятора. Сухие трансформаторы с воздушным дутьем имеют условное обозначение СД.
Трансформаторы малой мощности выполняют, как правило, с охлаждением типа С. В некоторых случаях их помещают в корпус, залитый термореактивными компаундами на основе эпоксидных смол или других подобных материалов. Такие компаунды обладают высокими электроизоляционными и влагозащитными свойствами. После затвердевания они не расплавляются при повышенных температурах и обеспечивают надежную защиту трансформатора от механических и атмосферных воздействий.
Трансформаторы с масляным охлаждением . В трансформаторах с естественным масляным охлаждением (М) магнитопровод с обмотками погружают в бак, наполненный тщательно очищенным минеральным (трансформаторным) маслом (рис. 2.19).
Рис. 2.19. Устройство трехфазного масляного трансформатора средней мощности:
Трансформаторное масло обладает более высокой теплопроводностью, чем воздух, и хорошо отводит теплоту от обмоток и магнитопровода трансформатора к стенкам бака, имеющего большую площадь охлаждения, чем трансформатор. Погружение трансформатора в бак со специальным маслом обеспечивает также повышение электрической прочности изоляции его обмоток и предотвращает ее увлажнение и потерю изоляционных свойств под влиянием атмосферных воздействий. При правильной эксплуатации масляных трансформаторов, когда температура изоляции в наиболее нагретом месте не превышает 105 °С, трансформатор может служить 20—25 лет. Повышение температуры на 8 °С приводит к сокращению срока службы трансформатора примерно в два раза.
В трансформаторах мощностью 20—30 кВА выделяется сравнительно небольшое количество теплоты, поэтому их баки имеют гладкие стенки; у более мощных трансформаторов (20—1800 кВА) поверхность охлаждения бака искусственно увеличивают, применяя ребристые или волнистые стенки либо окружая бак системой труб, в которых масло циркулирует за счет концепции. Для повышения интенсивности охлаждения в трансформаторах мощностью более 1800 кВА к баку пристраивают навесные или отдельно установленные трубчатые теплообменники (радиаторы), которые с помощью патрубков с фланцами сообщаются с внутренней полостью бака (рис. 2.20,а). В радиаторе происходит усиленная циркуляция масла и интенсивное охлаждение. Масляные трансформаторы типа М применяют для мощностей 10—10000 кВА.
Рис. 2.20. Трансформатор большой мощности с навесными радиаторами (а) и установка вентиляторов для обдува радиаторов (б):
Трансформаторы мощностью 10000—63000 кВА выполняют обычно с дутьем (тип Д). В этом случае теплоотдача с поверхности радиаторов форсируется путем обдува их вентиляторами. Каждый радиатор обдувается двумя вентиляторами (рис. 2.20, б), при этом теплоотдача увеличивается в 1,5 —1,6 раза. В трансформаторах с охлаждением типа ДЦ масло насосом откачивается из бака и прогоняется через навесные или отдельно установленные теплообменники (охладители), обдуваемые воздухом. Охлаждение с принудительной циркуляцией масла применяют при мощностях 16000—250000 кВ•А и выше. При использовании масляноводяного охлаждения нагретое масло проходит через теплообменники, охлаждаемые водой. Циркуляция масла осуществляется за счет естественной конвекции (при охлаждении типа MB) или же с помощью насоса (при охлаждении типа Ц).
Трансформаторы, охлаждаемые негорючим жидким диэлектриком. Трансформаторы с охлаждением типов Н и НД выполняют с герметизированным баком, который заполняют негорючим жидким диэлектриком. Обычно применяют синтетические изоляционные материалы — совтол и др., которые имеют примерно такие же электроизоляционные свойства и теплопроводность, как и трансформаторное масло. Трансформаторы с охлаждением типов Н и НД пожаробезопасны и могут устанавливаться в закрытых помещениях. Их выпускают мощностью 160—2500 кВА при напряжении 6 и 10 кВ.
Совтол представляет собой смесь полихлордифенила (совола) с трихлорбензолом, который добавляется для уменьшения вязкости и температуры застывания смеси. При использовании совтола в умеренном климате он содержит 65% полихлордифенила и 35% трихлорбензола; для тропических условий соответственно 90 и 10%. Он дороже трансформаторного масла, токсичен, что требует тщательной герметизации системы охлаждения.
Защита масла от соприкосновения с атмосферным воздухом. Во время работы масло в трансформаторе нагревается и расширяется. При уменьшении нагрузки оно, охлаждаясь, возвращается к первоначальному объему. Поэтому масляные трансформаторы мощностью 25 кВА и выше имеют небольшой дополнительный бак-расширитель (рис. 2.21), соединенный с внутренней полостью основного бака. При нагревании трансформатора изменяется объем масла, находящегося в расширителе. Объем его составляет около 10% от объема масла в баке. Применение расширителя позволяет значительно сократить поверхность соприкосновения масла с воздухом, что уменьшает его загрязнение и увлажнение.
Рис. 2.21. Установка расширителя и выхлопной трубы:
Расширители имеют воздухоосушитель, заполненный сорбентом — веществом, поглощающим влагу из воздуха, поступающего в расширитель. При мощности 160 кВА и выше на них устанавливают также термосифонный фильтр для непрерывного обезвоживания и очистки масла. Для более надежного предохранения масли от окисления трансформаторы большой мощности выполняют герметизированными с полной изоляцией масла, находящегося в расширителе, от атмосферного воздуха. Это осуществляется с помощью подушки, образующейся из инертного газа (азота) и расположенной между поверхностью масла и гибкой растягивающейся мембраной — азотная защита. Трансформаторы с азотной защитой можно выполнять также и без расширителя.
Арматура и подъемные устройства. При работе трансформатора масло нагревается, разлагается и загрязняется продуктами окисления (стареет), поэтому его периодически очищают или заменяют. Масляные трансформаторы во избежание опасности пожара и взрыва устанавливают на открытых ограждаемых площадках или в специально сооруженных помещениях с огнестойкими стенами, опорами и перекрытиями. Для заливки, отбора пробы, спуска и фильтрации масла масляные трансформаторы снабжают соответствующей арматурой (кранами, вентилями, пробками).
Все трансформаторы имеют различные устройства для их подъема и перемещения: рым-болты, крюки, переставные катки и поворотные тележки.
Устройства для контроля за состоянием масла и системы охлаждения. Чтобы осуществлять контроль за уровнем и температурой масла, масляные трансформаторы имеют указатели уровня и температуры. Указатель уровня обычно устанавливают на расширителе, а указатель температуры — на крышке основного бака. В трансформаторах мощностью до 1000 кВА для этой цели используют ртутный термометр, а в трансформаторах большей мощности и в герметизированных трансформаторах — специальный электрический термосигнализатор. Трансформаторы с охлаждением типов Д, ДЦ и НД имеют два термосигнализатора, один из которых служит для измерения температуры верхних слоев масла, а другой — для автоматического управления процессом дутья.
Система автоматики должна обеспечивать: автоматическое включение и отключение системы охлаждения одновременно с включением в сеть и отключением трансформатора, регулирование интенсивности охлаждения в зависимости от нагрузки, включение резервного охладителя взамен вышедшего из строя, ввод резервного источника питания при снижении или исчезновении питания электродвигателей вентиляторов и насосов системы охлаждения и соответствующую сигнализацию о прекращении работы системы охлаждения. Трансформаторы мощностью 10000 кВА и выше оборудуют также реле низкого уровня масла, находящегося в расширителе, которое сигнализирует о снижении уровня масла и автоматически отключает трансформатор при недопустимом его уменьшении.
Защита трансформатора от аварий. Для защиты от возможных аварий трансформаторы мощностью более 1000 кВА имеют специальные газовые реле, которые устанавливают в трубопроводе между основным баком и расширителем. При значительном выделении взрывоопасных газов, возникающих в результате разложения масла, реле автоматически выключает трансформатор, предупреждая развитие аварии. В этих трансформаторах устанавливают также выхлопную трубу (см. рис. 2.21), закрытую стеклянной мембраной. При внезапном повышении внутреннего давления образовавшиеся газы выдавливают мембрану и выходят в атмосферу, предотвращая деформацию бака.
Чтобы предотвратить появление высокого потенциала на обмотке НН при повреждении изоляции обмотки ВН, в трансформаторах, у которых обмотка НН имеет напряжение до 0,69 кВ, между этой обмоткой и заземленным баком включают пробивной предохранитель, который пробивается при напряжении 1000 В.
При работе трансформатора происходит нагрев обмоток и магнитопровода за счет потерь энергии в них. Предельный нагрев частей трансформатора ограничивается изоляцией, срок службы которой зависит от температуры нагрева. Чем больше мощность трансформатора, тем интенсивнее должна быть система охлаждения.
Ниже приводится краткое описание систем охлаждения трансформаторов.
Естественное воздушное охлаждение
Допустимое превышение температуры обмотки сухого трансформатора над температурой охлаждающей среды зависит от класса нагревостойкости изоляции и согласно ГОСТ 11677-85 должно быть не больше: 60°С (класс А); 75°С (класс Е); 80°С (класс В); 100°С (класс F); 125°С (класс Н).
Данная система охлаждения малоэффективна, поэтому применяется для трансформаторов мощностью до 1600 кВА при напряжении до 15 кВ.
Естественное масляное охлаждение
Естественное масляное охлаждение (М) выполняется для трансформаторов мощностью до 16000 кВА включительно. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается окружающему маслу, которое, циркулируя по баку и радиаторным трубам, передает его окружающему воздуху. При номинальной нагрузке трансформатора температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С.
Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжается ребрами, охлаждающими трубами или радиаторами в зависимости от мощности.
Рис.1. Трансформатор трехфазный трехобмоточный ТДТН-16000-110-80У1
1 - бак, 2 - шкаф автоматического управления дутьем,
3 - термосифонный фильтр, 4 - ввод ВН, 5 - ввод НН,
6 - ввод СН, 7 - установка трансформаторов тока 110 кВ,
8 - установка трансформаторов тока 35 кВ, 9 - ввод 0 ВН,
10 - ввод 0 СН, 11 - расширитель, 12 - маслоуказатель стрелочный,
13 - клапан предохранительный, 14 - привод регулятора напряжения,
15 - электродвигатель системы охлаждения, 16 - радиатор,
17 - каретка с катками
Масляное охлаждение с дутьем и естественной циркуляцией масла
Масляное охлаждение с дутьем и естественной циркуляцией масла (Д) применяется для более мощных трансформаторов. В этом случае в навесных охладителях из радиаторных труб помещаются вентиляторы (рис.1). Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов могут осуществляться автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100% номинальной, а температура верхних слоев масла не более +55°С, также при минусовых температурах окружающего воздуха и при температуре масла не выше +45°С независимо от нагрузки. Максимально допустимая температура масла в верхних слоях при работе с номинальной нагрузкой +95°С.
Форсированный обдув радиаторных труб улучшает условия охлаждения масла, а следовательно, обмоток и магнитопровода трансформатора, что позволяет изготовлять такие трансформаторы мощностью до 80000 кВА.
Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители
Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители (ДЦ) применяется для трансформаторов мощностью 63000 кВА и более.
Охладители состоят из системы тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители (рис.2).
Рис.2. Принципиальная схема охладителя системы ДЦ:
1 - бак трансформатора;
2 - электронасос;
3 - адсорбный фильтр;
4 - охладитель;
5 - вентиляторы обдува
Благодаря большой скорости циркуляции масла, развитой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Переход к такой системе охлаждения позволяет значительно уменьшить габариты трансформаторов.
Охладители могут устанавливаться вместе с трансформатором на одном фундаменте или на отдельных фундаментах рядом с баком трансформатора.
Рис.3. Автотрансформатор однофазный АОДЦТН-500/330:
1 - бак (нижняя часть); 2 - бак (съемная часть); 3 - скоба для подъема съемной части бака;
4 - стрелочный маслоуказатель; 5 - предохранительная труба; 6 - газовое реле;
7 - ввод 35 кВ; 8 - вводы НН; 9 - ввод ВН; 10 - установка трансформаторов тока ВН;
11 - выносные маслоохладители; 12 - ввод СН; 13 - ввод нейтрали;
14 поворотная каретка; 15 - регулятор напряжения
На рис.3 показан однофазный автотрансформатор с системой охлаждения ДЦ с выносными охладителями, связанными с баком маслопроводами. Бак колокольного типа с нижним разъемом.
Направленный поток масла (НДЦ)
В трансформаторах с направленным потоком масла (НДЦ) интенсивность охлаждения повышается, что позволяет увеличить допустимые температуры обмоток.
Масляно-водяное охлаждение с принудительной циркуляцией масла (Ц)
Масляно-водяное охлаждение с принудительной циркуляцией масла (Ц) принципиально устроено так же, как система ДЦ, но в отличие от последнего охладители состоят из трубок, по которым циркулирует вода, а между трубками движется масло.
Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях должно превышать давление циркулирующей в них воды не менее чем на 0,02 МПа (2 Н/см 2 ). Эта система охлаждения эффективна, но имеет более сложное конструктивное выполнение и применяется на мощных трансформаторах (160 MBА и более).
Масляно-водяное охлаждение с направленным потоком масла (НЦ)
Масляно-водяное охлаждение с направленным потоком масла (НЦ) применяется для трансформаторов мощностью 630 MBА и более.
На трансформаторах с системами охлаждения ДЦ и Ц устройства принудительной циркуляции масла должны автоматически включаться одновременно с включением трансформатора и работать непрерывно независимо от нагрузки трансформаторов. В то же время число включаемых в работу охладителей определяется нагрузкой трансформатора. Такие трансформаторы должны иметь сигнализацию о прекращении циркуляции масла, охлаждающей воды или об останове вентилятора.
Следует отметить, что в настоящее время ведутся разработки новых конструкций трансформаторов с обмотками, охлаждаемыми до очень низких температур. Металл при низких температурах обладает сверхпроводимостью, что позволяет резко уменьшить сечение обмоток. Трансформаторы с использованием принципа сверхпроводимости (криогенные трансформаторы) будут иметь малую транспортировочную массу при мощностях 1000 MBА и выше.
Каждый трансформатор имеет условное буквенное обозначение, которое содержит следующие данные в том порядке, как указано ниже:
- число фаз (для однофазных - О; для трехфазных - Т);
- вид охлаждения - в соответствии с пояснениями, приведенными выше;
- число обмоток, работающих на различные сети (если оно больше двух), для трехобмоточного трансформатора Т; для трансформатора с расщепленными обмотками Р (после числа фаз);
- буква Н в обозначении при выполнении одной из обмоток с устройством РПН;
- буква А на первом месте для обозначения автотрансформатора.
За буквенным обозначением указывается номинальная мощность, кВА; класс напряжения обмотки (ВН); климатическое исполнение и категория размещения по ГОСТ 15150-69 и ГОСТ 15543-70.
Например, ТДТН-16000/110-У1 - трехфазный трансформатор с системой охлаждения Д, трехобмоточный, с регулированием напряжения под нагрузкой, номинальной мощностью 16000 кВА, напряжением ВН 110 кВ; климатическое исполнение У (умеренный климат); категория размещения 1 (на открытом воздухе).
Для повышения надежности и увеличения сроков эксплуатации электродвигателя в его конструкции предусмотрено наличие эффективной системы охлаждения.
Классификация типов охлаждения электродвигателей
Вентиляция электродвигателя подразделяется на два типа это:
Замкнутый цикл вентиляции, в паспортных данных электродвигателя обозначен индексом – ICW37
Разомкнутый цикл – индекс IC31.
В обоих циклах подача воздуха осуществляется в оболочку или камеру электродвигателя, но в замкнутом цикле выброс воздуха наружу не производится, а по воздуховоду поступает в охладитель, после чего при помощи добавочного вентилятора охлажденный воздух подается обратно в двигатель.
Замкнутый охлаждающий цикл
Замкнутый цикл можно охарактеризовать тем, что воздух циркулирует в системе воздушного охлаждения. Воздухоохладитель, в котором осуществляется теплообмен между воздухом и охлаждающей водой, устанавливается перед электродвигателем. В воздушном пространстве перед вентилятором наблюдается воздушное давление равное атмосферному давлению. Температура охлаждающей жидкости на входе в охлаждающее устройство не должна превышать +30 о С, а давление воды внутри воздухоохладителя не должно превышать 300 кПа. Согласно договоренности с изготовителем в воздухоохладителях может применяться морская вода.
Охлаждающий цикл разомкнутого типа
Разомкнутый цикл подразумевает удаление отработанного воздуха при помощи отверстий жалюзи в корпусе статора электродвигателя. Разомкнутый цикл выполняется двух типов:
Исполнение системы с забором воздуха в двигатель из машинного зала и выбросом воздуха наружу из зоны обслуживания.
Забор воздуха из специального помещения (подвала) и выбросом его внутрь машинного зала.
Разомкнутый цикл подразумевает использование, для электродвигателей большой мощности от 6300 до 8000 кВт. Для этого типа охлаждения непременным является наличие воздушных фильтров, предназначенных для получения чистого воздуха. Обязательно использование фильтров грубой и тонкой очистки, они используются совместно с коробами для отвода отработанного воздуха за границы рабочей зоны, где установлено оборудование. Выброс воздуха при разомкнутом цикле не должен происходить во взрывоопасное помещение. Для осуществления нормального режима охлаждения, расход воздуха должен быть не менее 3м 3 , для этой цели предназначен специально установленный вентилятор.
Конструктивные особенности системы охлаждения асинхронного двигателя
Вентиляция асинхронного электродвигателя осуществляется по замкнутому циклу за счет использования специально для этого предназначенных воздухоотделителей. Вентиляторы располагаются на валу ротора электродвигателя. Отработанный воздух высокой температуры подвергается охлаждению в трубчатых воздухоохладителях, монтаж которых в двигателях со значением мощности до 2000 кВт выполнен в специальном туннеле фундамента. Асинхронные машины с более высокой мощностью располагают воздухоохладителями, расположенными в верхней части статорного корпуса.
Система охлаждения синхронного двигателя
Синхронные электродвигатели выполняют, как правило, продуваемого типа. Для продувки используется исключительно чистый воздух, согласно требованиям правил эксплуатации электроустановок. Нормальное исполнение двигателя подразумевает наличие замкнутого или разомкнутого охлаждающего цикла. В случае с синхронными машинами охлаждение происходит за счет вентиляторов установленных на валу двигателя между наружными щитами и специальными защитными кожухами, прикрывающими контактные кольца. Воздухоохладители представляют собой трубки с проволочным оребрением. Давление в системе охлаждения контролируется приборами типа СПДМ.
Система вентиляции машин постоянного тока
Существует два типа охлаждения машин, это:
Естественная вентиляция, без применения специальных устройств охлаждения.
Машины с внутренней и наружной самовентиляцией.
Внутренняя самовентиляция заключается в прохождении воздушного потока во внутренней части машины, при наружном охлаждении, вентилятор расположен вне двигателя, он обдувает ребристую поверхность двигателя.
Внутренняя вентиляция подразделяется на нагнетательный или вытяжной тип, это зависит от установки вентилятора относительно к воздушному потоку, задействованному в охлаждении.
Вытяжная вентиляция аксиального или осевого типа, осуществляется за счет создания внутри машины разряженного воздуха, в этом случае воздух из атмосферы нагнетается в машину, а затем выбрасывается наружу. Осевая или аксиальная нагнетательная вентиляция, работает на основе забора вентилятором воздуха, нагнетании его в машину с последующим удалением. Аксиальная вентиляция осуществляется при помощи вентиляционных каналов, расположенных внутри корпуса, параллельно валу.
При использовании радиальной вентиляционной конструкции, воздушный поток движется по каналам, расположенным перпендикулярно валу.
Недостаток самовентиляции заключается в том, что следствии уменьшения скорости вращения падает производительность вентилятора.
Для машин постоянного тока используется независимая вентиляция. Она бывает протяжного и замкнутого вида. Протяжная вентиляция, несмотря на свою эффективность, обладает существенным недостатком, на внутренних поверхностях машины происходит скопление грязи и пыли, что ведет к ухудшению охлаждения и может привести к аварии. Фильтры в этом случае использовать неэффективно, они слишком быстро засоряются, и требую частой замены.
Использовать замкнутый цикл более рационально, загрязнения отсутствуют, кроме воздуха можно использовать водород. Водородное охлаждение способствует десятикратному снижению вентиляционных потерь, повышается срок службы изоляции, так как отсутствуют окислительные процессы. Для предупреждения взрыва и скопления гремучих газов по воздуховодам предварительно пропускают углекислый газ. Заполнение машины постоянного тока осуществляется под давлением выше атмосферного, что не дает воздуху попасть внутрь машины.
Требования к системе охлаждения
Для эффективности системы вентиляции, при необходимости в одновременном применении нескольких электродвигателей, предусматривается использование индивидуальной или групповой системы охлаждения. В том случае, когда первый вариант невозможен, используют систему вентиляции общую для всех электродвигателей.
Необходимо использовать вентиляторы для основного рабочего периода с возможностью применения дополнительного (резервного) вентилятора.
Групповая система охлаждения, при замкнутом цикле, подразумевает дополнительное применение самостоятельной, предварительной продувки всех машин, перед пуском, в индивидуальном порядке. Это делается с целью обеспечить эффективный воздухообмен, позволяющий увеличить его стандартное значение в контуре электродвигателя в определенное, заданное время в пять раз.
Система вентиляции в обязательном порядке должна быть оборудована:
Клапанами перекидного или лепесткового типа для отключения вентилятора, находящегося в резерве
В вентиляционной камере должны быть установлены обратные клапаны, они служат для отключения воздуховода от помещения, в котором находится взрывоопасное оборудование на время остановки вентиляционной системы.
Для электродвигателя продуваемого типа должна быть предусмотрена блокировка вентиляционных систем, не разрешающая запуск двигателя без выполнения предварительной продувки, и без создания требуемого давления в вентиляционном контуре электродвигателя.
Должен быть выполнен монтаж шибера, который отключит продуваемый электродвигатель от воздуховодовода на время простоя.
Рекомендуется монтаж воздуховодов вести открыто, выполнять его необходимо из сваренных труб, с толщиной минимум 1.6 мм. На протяжении всего воздуховода необходимо использовать минимум фланцевых соединений, использовать фланцы допускается только в области подключения к электродвигателю для его последующего демонтажа.
Скрытые воздуховоды разрешаются только в исключительных случаях, при условии наличия засыпных каналов, там, где присоединение к электродвигателю выполняется ниже высоты пола. В этом случае фланцевые соединения необходимо исключить из конструкции.
Выброс воздуха, для электродвигателей, расположенных во взрывозащищенном помещении, при разомкнутом цикле охлаждения, извне помещения, выше уровня крыши не менее 1 м.
Нагрев любой электрической машины обусловлен преобразованием части электроэнергии в тепловую, трением отдельных конструктивных элементов, величиной нагрузки на валу. Учитывая то, что обмотки большинства промышленных электродвигателей могут работать при температуре, не превышающей 90-95 градусов, становится актуальным вопрос выбора эффективных систем охлаждения.
На практике применяют несколько конструктивных решений, способных обеспечить снижение температуры ЭД различных типов до нормируемых значений. Наибольшее распространение в промышленных электродвигателях средней и большой мощности получили следующие варианты.
Принципы самовентиляции электродвигателей
Самый простейший способ — естественное охлаждение двигателя, обеспеченное за счет передачи накопленного тепла в окружающий воздух через корпус электродвигателя. Но такой вариант приемлем только для маломощных модификаций, в промышленных установок подобного отвода тепла уже недостаточно.
В большинстве электродвигателей реализована схема охлаждения за счет самовентиляции. Благодаря созданию воздушных потоков скорость отвода тепла от нагретых деталей повышается на порядок. Для этой цели на вал двигателя с нерабочей стороны устанавливается крыльчатка, действующая по принципу обычного вентилятора. В отдельных случаях создание устойчивых воздушных потоков обеспечено конструкцией самого ротора. Различают два основных типа системы охлаждения:
Наружная самовентиляция — поток охлаждающего воздуха проходит вдоль поверхности корпуса электродвигателя, который для увеличения теплоотдачи имеет специальное оребрение. Увеличение площади соприкосновения позволяет обеспечить более эффективный отвод тепловой энергии.
Внутренняя самовентиляция — воздушный поток циркулирует между основными конструктивными элементами по специальным каналам. Благодаря такому решению тепловая энергия отбирается непосредственно с нагретых обмоток и деталей двигателя, что позволяет поддерживать требуемую температуру даже при работе с максимально допустимой мощностью.
Для большинства электродвигателей, работающих с постоянной частотой вращения ротора, этот вариант считается наиболее простым. Но, при в системах для которых требуется регулировка скорости, такой вариант уже неэффективен, и требуется применение принудительного охлаждения.
Принудительное охлаждение
Принцип системы заключается в том, что частота вращения крыльчатки вентилятора не зависит от режима работы самого двигателя. Вентилятор обеспечен отдельным двигателем. Поэтому, при работе в режимах с небольшим количеством оборотов ротора производительность системы охлаждения не снижается.
Особенно актуален такой тип охлаждения для электродвигателей с частотными преобразователями и другими регуляторами частоты вращения ротора. Практически все ЭД постоянного тока комплектуются охлаждающими устройствами такого же типа. При этом наиболее эффективным считают замкнутые системы охлаждения, в том числе и с жидкостными воздухоохладителями. Воздух при этом циркулирует по замкнутой системе между электродвигателем и воздухоохладителями, благодаря чему отпадает необходимость в его постоянной очистке.
Особенности систем охлаждения синхронных электродвигателей
В синхронных электродвигателях различной мощности чаще всего реализована проточного (продуваемого) типа. Воздух, необходимый для отвода тепла, забирается из машинного зала, проходит через ЭД, нагревается и удаляется за пределы рабочей зоны. В отдельных случаях применяют схемы, при которых охлаждающий воздух забирается непосредственно у места установки электродвигателя и отводится из рабочей зоны по вентиляционной сети. В отдельных случаях тепловую энергию воздуха используют в системах рекуперации, позволяющих организовать обогрев других производственных и бытовых помещений.
Системы охлаждения асинхронных двигателей
При небольшой мощности двигателей (обычно до 15 кВт) используется схема с наружным охлаждением, причем могут применяться системы как с самовентиляцией, так и с принудительным охлаждением. Для более мощных электродвигателей характерна схема с внутренним охлаждением.
Для асинхронных двигателей большой мощности чаще всего реализованы системы охлаждения с замкнутым циклом. При этом воздухоохладители могут монтироваться как в опорном фундаменте электрической машины, так и на ее корпусе.
Альтернативные способы охлаждения электродвигателей
Читайте также: