В каком режиме работают электроприводы вентиляторов
Режим работы электродвигателей, приводящих в действие вентиляционные системы, отличается от тех, что работают в силовых приводах. В первую очередь оно заключается в том, что нет необходимости удерживать постоянный вращающий момент на валу. Кроме того, разгон, торможение и остановка происходят с меньшей интенсивностью. Поэтому управление вентиляторами осуществляется так называемым скалярным методом, а частотные преобразователи для вентиляторов использующиеся для этого, наиболее конструктивно просты и обладают минимальным набором функциональных возможностей.
Что такое скалярное управление
Рисунок 1 – график зависимости частоты тока, питающего двигатель, от времени при скалярном управлении
Скалярное управление вентиляторами заключается в отслеживании и поддержании одного параметра – отношения напряжения к частоте (u/f). Если оно будет стабильным, то стабильной будет и величина магнитного потока в зазоре между статором и ротором асинхронного электродвигателя. А как раз она и определяет частоту вращения вала.
Рисунок 2 – изменение частоты тока и амплитуды напряжения при скалярном управлении
Особенностью управления на низких оборотах является необходимость учета сопротивления обмоток статора, вызывающего дополнительное падение напряжения, и изменение заданного соотношения u/f. Поэтому при скалярном управлении частоту питающего напряжения никогда не снижают менее 3 Гц, а максимальный вращающий момент на пуске ограничивают полуторным превышением номинала. Для вентиляторных установок, не испытывающих больших нагрузок в момент раскручивания это вполне нормальное значение.
Существует два способа осуществления скалярного управления:
1. Без датчика скорости вращения (энкодера) вала двигателя.
2. С датчиком вращения.
Скалярное управление без энкодера
Частотные преобразователи для вентиляторов, на валу которых не установлен энкодер, включаются по приведенной ниже схеме.
Недостатком этого метода является то, что не учитывается так называемое скольжение – отставание фазы вращающегося магнитного потока ротора от статора. Возникает оно вследствие электрических потерь, возникающих в воздушном зазоре между этими деталями асинхронного электродвигателя.
Если на валу нет нагрузки, то скольжение близко к нулю, хотя никогда не станет равным ему. В этом случае заданный паттерн – соотношение u/f будет провоцировать перевозбуждение и увеличение частоты вращения. Если возникнет перегрузка и двигатель остановится, то скольжение увеличится, спровоцировав возникновение короткого замыкания в роторе. Однако частотники для вентиляторов, включенные по такой схеме, не отреагируют на изменение, что может привести к аварии всей установки. Обычная ширина диапазона автоматической регулировки частоты вращения находится в пределах от 2 до 3 процентов от номинала, установленного значением u/f.
Диапазон регулирования в схеме без энкодера определяется соотношением 1:40. Например, если на электропривод будет подаваться переменное напряжение с частотой 60 Гц, то минимальным значением частоты является 1,5 Гц.
Скалярное управление с энкодером
При использовании датчика частоты вращения частотные преобразователи для вентиляций включаются по схеме, приведенной ниже.
Недостатком этого способа является сам датчик скорости, технические характеристики которого могут ограничивать максимальную частоту вращения вала. Поэтому диапазон регулирования сужается до соотношения 1:10. А это дополнительно снижает возможности управления вентиляторными установками на малых оборотах. Вращающий момент во время пуска будет еще меньшим.
Достоинства и недостатки скалярного управления
Управление вентиляторами скалярным методом имеет как достоинства, так и недостатки.
В первую очередь, он очень прост и не требует чрезмерно сложных устройств, а также высокой квалификации персонала, обслуживающего вентиляторную установку. Кроме того, один частотный преобразователь может управлять несколькими электродвигателями, суммарная мощность которых не превышает ту, что указана в его паспорте.
Однако этот способ не позволяет реагировать на отклонения от нормы быстро, кроме того, диапазон изменения скоростей вращения вала ограничен. На величину вращающего момента нельзя влиять совсем, для этого требуется векторное управление.
Частотные преобразователи для управления вентиляторами
Большинство производителей силовой электронной продукции выпускают специальные серии частотных преобразователей, для которых управление вентиляторами является узкоспециализированной задачей.
ESQ-210
Приборы бренда Toshiba. Управляют только трехфазными электродвигателями мощностью от 0,4 до 300 кВт. Имеют девять режимов работы и возможность подключения к локальным вычислительным сетям для дистанционного управления.
Вентилятор служит для увеличения потока воздуха через сердцевину радиатора. Как правило, он устанавливается непосредственно за радиатором по ходу движения автомобиля. Такое размещение исключает попадание в вентилятор крупных частиц и предметов, задерживаемых сотами радиатора.
Для увеличения эффективности работы вентилятора его размещают в направляющем кожухе – диффузоре.
Для работы вентилятора расходуется значительная доля мощности, развиваемой двигателем – до 5 % (для сравнения – жидкостный насос отнимает у двигателя до 1 % мощности).
Тем не менее, без этого элемента системы охлаждения не обойтись – отказавшись от вентилятора, конструкторам пришлось бы существенно увеличить теплообменную площадь радиатора. А это повлекло бы за собой увеличение габаритов радиатора, его материалоемкость, дополнительный объем охлаждающей жидкости в системе и, как следствие - повышение производительности жидкостного насоса и расходуемой им мощности двигателя.
Как видите, благодаря применению вентилятора можно избавиться от многих проблем технического и экономического характера.
Наибольшее распространение получили осевые вентиляторы (направляющие воздух вдоль оси своего вращения) с числом лопастей от четырех до восьми. Лопасти вентилятора изготавливают литьем, выполняя их совместно со ступицей, или штамповкой, соединяя их со ступицей при помощи клепаного соединения.
Литые лопасти изготавливают из синтетических материалов (пластмасс), а штампованные – из стали или алюминиевых сплавов. Литые вентиляторы имеют более высокий КПД по сравнению со штампованными, но последние проще в изготовлении.
Повысить производительность осевого вентилятора можно несколькими способами – увеличением длины и количества лопастей, а также повышением частоты вращения. Увеличение длины лопастей неизбежно приводит к увеличению динамических нагрузок, особенно при высокой или переменной частоте вращения вентилятора.
Динамическими перегрузками ограничивается и максимальная частота вращения вентилятора.
Увеличение количества лопастей приводит к повышению уровня шума, вызываемого работой вентилятора.
По этим причинам конструкторам, при проектировании, приходится решать ряд комплексных взаимосвязанных задач по определению оптимальных параметров вентиляторов и их приводов.
Некоторые конструкции систем охлаждения двигателей включают два вентилятора, которые устанавливаются за радиатором рядом. Такая конструкция позволяет снизить высоту или ширину радиатора, а также более гибко использовать возможности автоматических приводов, включая вентиляторы раздельно, совместно, или выключая их.
Для снижения уровня шума при работе вентилятора их лопасти размещают вокруг ступицы неравномерно, с переменным шагом. Подобное конструктивное решение требует тщательной балансировки вентилятора при помощи специальных грузиков и перераспределения масс.
Типы приводов вентиляторов
Существуют следующие приводы вентиляторов:
- клиноременные (наиболее распространенные);
- зубчатые (от зубчатого колеса ГРМ);
- фрикционные;
- электрические;
- электромагнитные;
- гидравлические.
Электрический привод устроен относительно просто, и включает в себя электродвигатель, который включается и выключается автоматически в зависимости от температуры охлаждающей жидкости в радиаторе, контролируемой термодатчиком. Непосредственно на валу электродвигателя размещают вентилятор.
При использовании резисторного температурного датчика (изменяющего напряжение и ток в зависимости от температуры двигателя) появляется возможность изменения интенсивности потока воздуха, создаваемого вентилятором. Однако такие конструкции широкого применения не нашли, поскольку вентилятор при этом почти постоянно работает, создавая ненужный шум.
Электромагнитный привод имеет электромагнитную муфту ( рис. 2 ), совмещенную с жидкостным насосом. Она состоит из электромагнита 6, установленного вместе со шкивом 1 на ступице 5 насоса и ступицы 3 вентилятора, соединенной пластинчатой пружиной с якорем, свободно вращающимся вместе со ступицей на двух шарикоподшипниках.
Катушка электромагнита соединена с тепловым реле, датчик которого расположен в верхнем бачке радиатора. При температуре охлаждающей жидкости в верхнем бачке радиатора 85…90 ˚С тепловое реле подает ток в катушку электромагнита. Якорь притягивается к электромагниту, и ступица вместе с лопастями вентилятора начинает вращаться.
Когда температура снизится до 80 ˚С, контакты реле разомкнутся и вентилятор отключится.
Гидравлический привод реализуется посредством гидромуфты, которая передает крутящий момент от коленчатого вала к вентилятору и гасит инерционные нагрузки, возникающие при резком изменении частоты вращения коленчатого вала.
На рис. 3 изображена конструкция гидропривода вентилятора двигателя КамАЗ-740.
Передняя крышка 1 и корпус 2 подшипника соединены винтами и образуют полость, в которой установлена гидромуфта.
Ведущий вал 6 в сборе с кожухом 3, ведущее колесо 10, вал 12 шкива и шкив 11 соединены между собой болтами и составляют ведущую часть гидромуфты, которая вращается в шарикоподшипниках 8 и 19.
Ведущая часть гидромуфты приводится во вращение от коленчатого вала через шлицевой валик 7.
Ведомое колесо 9 в сборе с валом 16, на котором закреплена ступица 15 вентилятора, составляет ведомую часть гидромуфты, вращающуюся в шарикоподшипниках 4 и 13.
Гидромуфта уплотнена резиновыми манжетами 17 и 20.
На внутренних тороидальных поверхностях ведущего и ведомого колес отлиты радиальные лопатки. Межлопаточное пространство колес образует рабочую полость гидромуфты.
Передача крутящего момента с ведущего колеса 10 на ведомое колесо 9 происходит при заполнении рабочей полости маслом. Частота вращения ведомого колеса гидромуфты зависит от частоты вращения ведущего колеса и от количества масла, поступающего в рабочую полость гидромуфты.
Масло поступает через выключатель ( рис. 4 ), который управляет работой гидромуфты вентилятора. Выключатель имеет три фиксированных положения, обеспечивающих различные режимы работы вентилятора.
Некоторой разновидностью гидравлического привода вентиляторов системы охлаждения является вязкостная муфта , принцип работы которой основан на снижении вязкости некоторых жидкостей при нагревании и повышении вязкости при охлаждении.
Вязкостные муфты в автоматическом режиме включают или выключают вентилятор в зависимости от температуры двигателя и изменении вязкости жидкости в рабочем объеме муфты. Кроме того, при использовании таких муфт вентилятор может работать с разной эффективностью, опять же, в зависимости от вязкости рабочей жидкости.
Преимущества и недостатки автоматических приводов вентилятора
Как показывает практика, во время работы автомобильного двигателя применение вентилятора для повышения эффективности системы охлаждения требуется далеко не всегда. Он необходим лишь при жаркой погоде и движении в напряженном режиме нагрузок, например, движении в городском потоке машин, на длительных подъемах, при полностью загруженном автомобиле и т. п.
В других условиях вентилятор выгоднее отключить, поскольку он не только отнимает полезную мощность у двигателя, но и создает шум.
Гидравлический, электрический и электромагнитный приводы вентилятора, в отличие от механического (ременного или зубчатого) привода, обеспечивают более выгодный температурный режим двигателя. Их применение позволяет избежать охлаждения непрогретого двигателя вентилятором, а также уменьшить потери мощности из-за рационального использования вентилятора, благодаря чему снижается расход топлива.
Кроме того, использование автоматических приводов делает управление автомобилем более комфортным, поскольку отпадает необходимость в применении жалюзи для регулировки воздушного потока через радиатор.
Использование автоматического привода вентилятора позволяет добиться снижения уровня шума при движении в оптимальном режиме, что особенно актуально для легковых автомобилей.
Еще одно немаловажное достоинство электрического, электромагнитного и гидравлического привода вентилятора – исключение значительных динамических нагрузок на лопасти, имеющее место при использовании прямых механических приводов от коленчатого вала в периоды резкого изменения частоты вращения.
Тем не менее, автоматика не лишена и некоторых недостатков, из которых наиболее существенным является усложнение конструкции привода вентилятора, что приводит к увеличению его стоимости и снижению надежности.
Применение температурных датчиков и клапанов не всегда позволяет включать и отключать вентилятор точно при достижении заданной температуры в связи с некоторой погрешностью их работы, однако этот недостаток в большинстве конструкций автомобильных двигателей существенным не является.
Кроме того, электрический привод управления вентилятором имеет еще один недостаток – включение электродвигателя привода вентилятора при помощи управляющего датчика возможно даже при заглушенном двигателе, если температура охлаждающей жидкости не снизилась до оптимальной величины.
Это, в свою очередь, требует от водителя внимательности при техническом обслуживании двигателя – осуществлять ремонт и регулировки вблизи вентилятора можно лишь убедившись в том, что двигатель остыл. Электромагнитный и гидравлический приводы этого недостатка не имеют.
Применение гидравлического привода вентилятора влечет за собой некоторое увеличение объема смазочной системы двигателя за счет использования масла для работы гидромуфты.
Тем не менее, преимущества автоматических приводов вентиляторов значительно перекрывают их недостатки, и в настоящее время они практически полностью вытеснили механические приводы, особенно в конструкциях систем охлаждения двигателей легковых автомобилей.
Электроприводами насосов, вентиляторов и компрессоров, работающих на переменном токе в основном являются асинхронные короткозамкнутые электродвигатели. При малой и средней мощности эти двигатели запускаются в работу прямым включением в сеть, без каких-либо ограничивающих устройств.
Так работают максимальная защита и нулевое блокирование, исключающие самопроизвольный повторный пуск.
При чрезмерном снижении напряжения питания контактор К не в состоянии удержать свой якорь притянутым. Отпускание якоря приводит к отключению электродвигателя. Так срабатывает минимальная защита.
На рис. 1, б показана схема электропривода переменного тока, управляемая с помощью реверсивного магнитного пускателя.
Для уменьшения пусковых токов и получения более плавного процесса пуска применяют схемы пуска с понижением напряжения.
На рис. 2 показаны схемы главного тока, обеспечивающие более низкое напряжение на двигатель в момент пуска с последующим переключением на полное напряжение сети. Цепи управления не показаны.
При замыкании контактов К (см. рис. 2, а) начинается пуск с введенным пусковым резистором Rп. Двигатель получает пониженное напряжение. После разгона размыкаются контакты К и замыкаются контакты ускорения КУ — теперь двигатель включен на полное напряжение.
При использовании автотрансформаторов (см. рис. 2, б) в момент пуска (замкнуты контакты К) двигатель получает также пониженное напряжение. По истечении некоторого времени контакты К размыкаются и замыкаются контакты КУ.
В рассмотренных схемах переключение контактов К и КУ осуществляется автоматически, реже—ручным управлением.
Электродвигатели постоянного тока менее приспособлены к пуску (прямым включением в цепь питания. Такой пуск допустим только для электродвигателей мощностью не более 1 кВт. Для пуска электродвигателей большей мощности применяют пусковые (рис. 3) и пускорегулировочные реостаты.
С маховичком реостата связана контактная щетка КЩ. Пуск начинается после перемещения контактной щетки на вывод 1. При этом для катушки контактора К обеспечена цепь питания: Л1 — вывод 1 — щетка КЩ — контактный сегмент КС1 — катушка К — контакт РМ — Л2. Контактор К срабатывает, и теперь он обеспечивает себе цепь питания независимо от положения контактной щетки: Л1 — замкнувшийся контакт К — резистор экономический Rэ, — катушка К — контакт РМ — Л2. Из схемы следует, что в цепь контактора К включен резистор Rэ, он уменьшает напряжение на катушке К и тем самым уменьшает ее нагрев (после срабатывания контактора напряжение на нем можно понизить).
После срабатывания контактора К начинается пуск электродвигателя. Цепь питания якоря: Л1 — контакт К — сегмент КС2 — пусковой резистор Rп— катушка реле максимального тока РМ — якорь двигателя М — обмотка СОВ — Л2. Цепь питания обмотки возбуждения: Л1—К— ШОВ — Л2. Полностью включенный резистор Rп в цепь якоря в момент пуска обеспечивает плавность трогания электродвигателя. Для вывода электродвигателя на номинальную частоту вращения следует контактную щетку КЩ плавно перемещать вправо (положения 2, 3, 4, 5 и 6). При этом величина пускового резистора Rп, введенного в цепь якоря, постепенно уменьшается до нуля, а частота вращения двигателя растет.
После окончания процесса пуска цепь якоря: Л1—К—КС2—КЩ — вывод 6 — РМ—М—СОВ— Л2. Резистор Rп не предназначен для длительной работы, поэтому нельзя контактную щетку КЩ оставлять в промежуточном положении, ее следует плавно повернуть в крайнее правое положение.
Пусковой реостат имеет максимальную защиту по току нагрузки. При перегрузках двигателя по цепи якоря (и, конечно, по катушке РМ) протекает недопустимый ток. Этот ток заставляет сработать реле максимального тока РМ, его контакт в цепи контактора К разомкнется.
Контактор К отпустит свой якорь, и его разомкнувшийся контакт К отключит электродвигатель от питания. Повторный пуск электродвигателя возможен только после постановки КЩ в положение 1. Таким образом исключается возможность самопроизвольного пуска при снятии перегрузки и возврате РМ в исходное положение. Эта защита называется нулевой (или нулевым блокированием).
Контактор К обеспечивает минимальную защиту по напряжению. При снижении напряжения ниже установленной нормы контактор К отпускает свой якорь и отключает электродвигатель.
Электродвигатели насосов и вентиляторов обычно работают в длительном режиме, и реле РМ настраивается на ток срабатывания Iср= 1,25 Iном.
Схемы автоматизированного управления
На рис. 4 показана схема управления электроприводом поршневого пожарно-балластного насоса. Привод выполнен с помощью электродвигателя со смешанным возбуждением постоянного тока и магнитной станции управления типа СУ-6011-5121. В магнитную станцию входит вся электроаппаратура схемы, кроме резисторов R1—R4. Мощность электродвигателя 29,5 кВт, пуск автоматизирован. Для уменьшения пусковых токов в режиме пуска в цепь якоря включены резисторы R1—R4.
При подаче питания на схему, еще до начала работы двигателя, срабатывают электромагнитные реле времени РУ1, РУ2, РУ3 (реле ускорения). Их замыкающие контакты РУ1, РУ2, РУ3 разомкнутся. Все контакторы ускорения У1, У2, У3 обесточены, их контакты разомкнуты, поэтому в цель якоря включены пусковые резисторы R1—R4.
При нажатии на кнопку КнП получают питание линейные контакторы Л1, Л2 и своими контактами подсоединяют электродвигатель к сети. Начинается разгон через ограничивающие резисторы R1—R4. Одновременно блок-контакт Л1 размыкается и обесточивает реле РУ1. Но реле не сразу отпускает свой якорь, это произойдет после истечения выдержки времени.
Отпущенный якорь реле РУ1 замыкает свой контакт РУ1 в цепи контактора ускорения У1, последний включается и своим контактом шунтирует резисторы R1—R2; теперь двигатель разгоняется на резисторах R2—R4. Одновременно контактор У1 своим блок-контактом отключает реле РУ2. После реализации его выдержки времени это реле отпускает свой якорь и замыкает свой контакт РУ2 — включается контактор У2 и резистор R2—R3 выводится из цепи якоря электродвигателя. Разгон продолжается на резисторах R3 — R4. Одновременно контактор У2 размыкает свой блок-контакт в цепи катушки РУ3. Это реле после окончания выдержки времени отпускает свой якорь и замыкает контакт РУ3 — включается контактор У3. Теперь все резисторы зашунтированы и двигатель вышел на номинальную частоту вращения.
Схемой предусмотрено дальнейшее увеличение скорости путем ослабления магнитного потока. Если ползунок реостата возбуждения R передвигать, то в цепь обмотки ШОВ будет вводиться резистор. Ток и магнитный поток электродвигателя уменьшаются, а частота вращения увеличивается. С ползунком реостата Rв связан конечный выключатель в цепи КнП. Причем этот конечный выключатель замкнут только при полностью зашунтированном резисторе Rв (номинальная чистота вращения). При движении ползунка вправо Rв сразу размыкается, но это на работу двигателя не влияет, так как контакторы Л1, Л2 получают питание через экономический резистор Rэ1 и блок-контакт Л2.
Для остановки двигателя нажимают на кнопку КнС. Повторный пуск кнопкой КнП возможен при замкнутом в ее цепи контакте Rв, что соответствует положению ползунка Rв справа. Так исключается возможность пуска при ослабленном потоке (сразу на повышенную скорость).
При перегрузках реле максимального тока РМ срабатывает и своим контактом выключает Л1, Л2.
На рис. 5 показана схема автоматического управления электродвигателем насоса в функции давления. По такой схеме выполняют электроприводы санитарных и других насосов, которые должны включаться при снижении уровня жидкости в цистернах и выключаться при их наполнении. Электродвигатель насоса — асинхронный, имеет небольшую мощность, поэтому его пуск прямой. Схема предусматривает ручное и автоматическое управление.
Переключение осуществляется одним переключателем, имеющим контакты Kl, К2, К3. При ручном управлении эти контакты находятся в нижнем положении. Нажатием на кнопку КнП включают контактор Л и запускают двигатель. При автоматическом управлении контакты K1, К2, К3 переключателя переводятся в верхнее (на схеме) положение. На рис. 4 положение переключателя соответствует автоматическому управлению.
При снижении уровня жидкости в расходной цистерне ниже минимального замыкается реле РДmin. Получает питание цепь линейного контактора: Л2—К1—РДmin—РДmax—К3—РТ1—Л—РТ2—Пр—Л3. Насос начинает работать, уровень жидкости повышается, и через некоторое время контакт РДmin размыкается. Однако электродвигатель из-за этого не отключится — линейный контактор Л после срабатывания получит питание через собственный блок-контакт, помимо контакта РДmin.
При достижении заданного уровня реле снова сработает и разомкнет контакт РДmax. Электродвигатель в связи с этим остановится, а схема управления возвратится в исходное состояние, будучи готовой к новому циклу работы.
Для управления применяют двухпозиционное реле давления с контактами РДmin, РДmax или поплавковое реле. При перегрузках в режиме ручного или автоматического управления срабатывает одно из тепловых реле РТ1 или РТ2, что приводит к отключению электродвигателя.
Схема управления автоматизированного электропривода копрессора
На рис. 6 показана схема управления автоматизированного электропривода компрессора. Схема предусматривает управления: ручное — кнопками управления КУП и КУС; автоматическое — в функции давления в баллонах.
При нажатии на кнопку КУП срабатывает контактор К и начинает работать компрессор и через клапаны ЭМП выдувает скопившийся конденсат. Одновременно с началом вращения компрессора блок-контакт К включает реле времени РВ1, которое по истечению 15 с размыкает свой контакт в цепи клапана продувания ЭМП. Клапан закрывается, и продувание прекращается — теперь компрессор нагнетает воздух в баллоны.
Второй контакт РВ1 через 15 с включает сигнальное реле Р2, его замкнувшийся контакт может вызвать срабатывание тревожной сигнализации, но к этому времени насос, навешенный на компрессор, успевает создать нужное давление в системе смазки, и реле давления масла РДМ размыкается, обрывая цепь тревожной сигнализации. Если же давление в системе смазки компрессора упадет, то замкнется контакт РДМ, создастся замкнутая цепь тревожной сигнализации и сработает звонок (на схеме не показан).
При повышении давления воздуха в баллонах выше 6 кгс/см 2 контакт РДmin размыкается, но реле Р1 продолжает получать питание через свой блок-контакт Р1, шунтирующий реле РДmin. При достижении давления воздуха в баллонах 8 кгс/см 2 размыкается контакт реле РДmax, что приводит к остановке компрессора. При падении давления ниже 8 кгс/см 2 контакт РДmax замыкается, но пуск компрессора произойдет только после того, как снизится давление воздуха до 6 кгс/см 2 и замкнется контакт реле РДmin.
Cхема электропривода холодильной фреоновой установки
На рис. 7 показана схема электропривода холодильной фреоновой установки системы кондиционирования воздуха. Электродвигатели насосов охлаждающего M1 и рассольного М2 запускают вручную. Для этого включают автоматы управления АУ1, АУ2 и замыкают кнопки пуска КнП1, КнП2. Срабатывают контакторы ВК1, ВК2, двигатели начинают работать.
Одновременно включаются блокировочные реле Р, Р1, замыкаются их контакты в схеме пуска компрессора.
Если не работает охлаждающий или рассольный насос, то пуск компрессора невозможен (контакт Р или Р1 разомкнут в цепи контактора пуска компрессора ВК3).
После запуска двигателя M1 должны установиться нормальные параметры рассола и охлаждающей воды, о чем сигнализируют контакты: ДТР (датчик температуры рассола); РР (реле расхода рассола); РД (реле давления, размыкает свой контакт в том случае, если давление в магистрали слишком понизится или повысится).
После включения автомата компрессора АУ3 при нормальных параметрах рассола и охлаждающей воды включаются защитные реле Р3, Р4, Р5, их контакты в цепи промежуточного реле Р6 замыкаются. Теперь нажатием на кнопку КВ можно включить реле Р6. Его контакт замкнется в цепи контактора ВК3. Только теперь возможен пуск компрессора вручную.
При перегрузке любого из двигателей схемы срабатывают тепловые реле РТ1—РТ6, что приводит к остановке электродвигателей. При автоматическом режиме работы, как и при ручном, в случае недопустимого изменения параметров рассола или охлаждающей воды теряет питание одно из реле Р3, Р4 или Р5, выключается реле Р6 и пуск компрессора невозможен.
Рассмотренная схема, по сравнению с действительной, упрощена, не показаны элементы сигнализации.
Рис. 8. Принципиальная схема электропривода балластного насоса самовыгружающегося балкера "Ambassador"
2020-11-21 Промышленное 11 комментариев
Разработка, внедрение приточно-вытяжных систем вентиляции является одной из самых востребованных задач в современной автоматизации. Сложно представить современные торговый центр, жилой комплекс или производство без инженерных систем вентиляции, а сами вентиляционные системы без системы автоматики.
Вот об этом мы сегодня и поговорим, акцентируя внимание в первую очередь на автоматизацию данного процесса, но также рассмотрим устройство систем вентиляции и особенности их управления.
Приточно-вытяжная вентиляция представляет собой совокупность устройств, направленных на создание оптимальных параметров воздуха в помещении, согласно нормативным документам, путем постоянного притока свежего воздуха, а так же удалении отработанного воздуха. В частности, регламентируется чистота воздуха в помещении, согласно ГОСТ 12.1.005-88 (Общие санитарно-гигиенические требования к воздуху рабочей зоны), уровень шума в помещениях СНиП 23-03-2003 (Защита от шума), минимальный расход свежего воздуха на одного человека, температура, влажность воздуха СНиП 41-01-2003 (Отопление, вентиляция и кондиционирование).
Вентиляция, в зависимости от назначения, может быть только приточной, осуществляющей подачу очищенного свежего воздуха заданной температуры и влажности, только вытяжной, осуществляющей удаление воздух из помещения с помощью вытяжных вентиляторов, либо смешанной. В зависимости от зоны обслуживания — общеобменная и местная.
В зависимости от технических условий, состав вентиляционной системы может видоизменяться — с использованием либо без использования рекуперации воздуха, при использовании рекуператоры могут быть пластинчатого, либо роторного типа, для нагрева воздуха могут применяться водяной либо электрокалориферы, использоваться резервирование системы, путем установки дополнительных вентиляторов,либо без резервирования. Но в целом общий принцип работы вентустановки остается неизменным.
Приточный воздух подается в систему воздуховодов, пройдя предварительную фильтрацию, нагрев, либо охлаждение, в зависимости от температуры наружнего воздуха. Нагрев воздуха производится горячей водой или с помощью электричества, в зависимости от комплектации приточной системы. Охлаждение воздуха в летнее время производится с помощью водяного теплообменника, либо фреонового охладителя, расположенных в холодной секции вентустановки, в случае если она предусмотрена проектом. После этого очищенный воздух подается в помещения в необходимом объеме. В это же время отработанный воздух удаляется из помещений на улицу в таком же объеме. Оба потока воздуха циркулируют в системе одновременно, но при этом нигде не смешиваются.
Основные элементы приточной системы
Типовая система вентиляции состоит из различных элементов, одни из которых являются обязательными для установки, без них не будет корректной работы, другие опциональны, их наличие определяется техническими условиями.
Понятно, что любая система должна иметь в своем составе воздуховоды, шумоглушители, воздушные клапаны, воздухозаборные решетки и т.д. но мы рассмотрим только те элементы, которые так или иначе задействованы в системе автоматизации.
Ниже представлена типичная функциональная схема приточной вентиляции с водяным калорифером без рекуперации.
На данной схеме изображены следующие элементы:
1 — Датчик температуры наружний
Предназначен для измерения температуры окружающей среды. По данному датчику система автоматики осуществляет переход зима/лето.
В основном используются уличные датчики, представляющие собой термосопротивление Pt1000, Pt100, либо на основе термисторов NTC10k, NTC20k.
2 — Воздушная заслонка с электроприводом (жалюзи)
Используется для открытия/закрытия вентиляционных каналов и регулирования объёма подачи воздуха. При отключении вентустановки, например при наладке, заслонка препятствуют проникновению в систему холодного воздуха.
Зачастую заслонки оснащаются системой обогрева в виде нагревательных элементов, либо греющего кабеля, хотя на вышеприведенной схеме данная функция отсутствует.
Приводы воздушных заслонок различаются по типу управляющего сигнала — двухпозиционный (открыть/закрыть), трехпозиционный и аналоговый 0-10V. Соответственно от типа провода меняются и функциональные возможности заслонок.
Двухпозиционный привод типа открыть/закрыть используется только для полного открытия либо закрытия жалюзей, никаких промежуточных положений не предусмотрено.
В случае, если необходимо регулирование расхода воздуха, применяются аналоговые или трехпозиционные привода. При использовании аналогового привода, створки заслонки открываются в зависимости от напряжения управляющего сигнала 0-10V.
Трехпозиционные привода имеют три состояния — открыть, закрыть и останов. Изменение положения происходит прямо пропорционально длительности импульса электрического сигнала. При отсутствии сигнала привод останавливается, при подаче сигнала на один контакт привод открывается (закрывается), при замыкании второго контакта привод закрывается (открывается). Помимо этого, могут быть задействованы вспомогательные контакты. На рисунке ниже показана схема подключения трехпозиционного привода.
3- Фильтр
Воздушный фильтр служит для защиты от попадания в систему различных частиц пыли и других примесей.
4 - Реле перепада давления на фильтре
Измеряет разность давления воздуха до и после фильтра. В случае выхода перепада давления за пределы порога срабатывания (уставки) контакты реле переключаются и сигнал о необходимости замены фильтрующего элемента поступает в систему управления. При этом установка продолжает работу в штатном режиме.
5 — Водяной калорифер
Служит для подогрева поступаемого в помещения наружнего воздуха. Представляет собой теплообменник с медными либо стальными трубками, по которым проходит горячая вода из системы отопления здания.
6 — Циркуляционный насос
Обеспечивает циркуляцию теплоносителя в калорифере. При работе калорифера должна осуществляться постоянная работа насоса, даже в дежурном режиме. В летний период, во время останова системы, насос выключен, но при этом системой автоматики предусмотрен запуск насоса раз в сутки на непродолжительное время во избежание закисания ротора насоса.
Для защиты насоса от работы на сухом ходу может применяться термореле, блокирующее его работу при понижении температуры воды на входе в калорифер.
7 — Трехходовой запорно-регулирующий клапан с приводом
Регулирующие клапаны предназначены для плавного регулирования количества теплоносителя, поступающего в калорифер, при необходимости часть потока воды проходит через байпас. В зависимости от температуры приточного воздуха, либо температуры обратной воды, регулирующий клапан повышает, либо уменьшает поступление обратной воды в теплообменник.
Регулировка осуществляется управляющими сигналами 0-10V либо 4-20мА.
8 — Датчик температуры обратной воды
Применяется для контроля температуры на выходе теплообменника, что обеспечивает дополнительную защиту водяного калорифера от замерзания.
9 — Термостат защиты калорифера от замораживания
Термостат является основной защитой калорифера от заморозки. Контролирует температуру воздуха после теплообменника и в случае понижения температуры ниже уставки (примерно 5-6 °C) выдает сигнал в щит управления вентустановкой.
Измерение температуры производится при помощи чувствительного элемента в виде газонаполненной капиллярной трубки, при этом необходимо уделить внимание ее правильному монтажу, в частности минимальный радиус изгиба капилляра должен быть примерно 20 мм, трубка должна монтироваться равномерно по всей площади теплообменника.
10 — Вентилятор
Обеспечивает направленное движение воздушного потока по воздуховодам. Управление скоростью вращения вентилятора осуществляется частотным преобразователем.
В основном применяют вентиляторы осевого и радиального (центробежные) типов с асинхронными электродвигателями, которые соединяются между собой через ременную передачу, либо вентиляторы непосредственно крепятся на вал двигателя. Управление вращением осуществляется при помощи частотных преобразователей.
В последнее время набирают популярность ЕС (Electronically Commutated — электронно коммутируемые) вентиляторы на основе бесколлекторных синхронных двигателей со встроенным электронным управлением. Вращение ротора ЕС-двигателя осуществляется за счет подачи питания на обмотку статора в зависимости от положения ротора.
Для определения положения ротора применяются датчики Холла. Также регулирование может осуществляться от внешних датчиков при помощи унифицированных сигналов 4-20 мА или 0-10 В.
11 — Реле перепада давления на вентиляторе
Контролирует перепад давления и в случае неисправности самого вентилятора или обрыва ремня привода выдает сигнал на управляющий контроллер. Происходит останов системы в аварийном режиме.
При монтаже реле перепада есть один нюанс. Если прессостат используется на фильтре,то трубка со штуцером с маркировкой + подключается перед фильтром, а с маркировкой — после фильтра. На вентиляторе, наоборот, штуцер + подключается после вентилятора, штуцер — перед вентилятором. В случае применения систем с рекуперацией, штуцер + подключается перед рекуператором, штуцер — после рекуператора, ориентируясь по движению воздуха.
12 — Канальный датчик температуры приточного воздуха
Осуществляет контроль температуры приточного воздуха. По показаниям датчика температуры притока происходит управление нагревом вентустановки.
Система автоматики приточной вентиляции
Управление работой вентиляционной установкой производится контроллером, находящимся в щите управления и обеспечивающим автоматическое поддержание температуры приточного воздуха по заданной уставке.
На контроллер приходят основные сигналы с установки — значение с датчика температуры наружнего воздуха, сигнал открытия приточной заслонки, температура воды до и после калорифера, положение и сигнал обратной связи привода клапана калорифера водяного нагрева, сигнал о состоянии насоса, состояние вентиляторов и их скорость вращения в процентном соотношении от максимального.
В зависимости от полученных данных автоматика осуществляет управление исполнительными устройствами — регулирование температуры воздуха в приточном воздуховоде, управление приводом воздушной заслонки, управление циркуляционным насосом нагревателя , управление приводом регулирующего вентиля нагревателя, управление скоростью вентиляторов с помощью частотных преобразователей.
Система автоматики помимо температурных режимов должна обеспечивать:
Общий алгоритм управления работой вентиляционной системы следующий:
Переход в автоматический режим производится переключателем на двери щита управления. Система автоматически по датчику температуры переходит в режим Зима/Лето в зависимости от температуры воздуха на улице. Режим Лето включается при температуре 11-13 °С, при понижении температуры до 8 °С осуществляется переход в режим Зима.
При запуске системы в режиме Зима воздушный клапан закрыт, вентилятор приточной установки выключен, трехходовой клапан открыт на 100%, циркуляционный насос работает постоянно, пока в работе водяной калорифер (в том числе и в дежурном режиме). Водяной калорифер должен прогреться до заданной температуры, определяемой по датчику обратной воды теплоносителя.
После прогрева калорифера поступает команда на запуск вентустановки. При этом вентиляторы не включаются, идет открытие воздушного клапана. Одновременно с началом открытия клапана начинается отсчет задержки перед запуском приточного вентилятора. После запуска вентилятора происходит регулирование температуры воздуха в приточном канале при помощи ПИД-регулятора. Управление нагревом вентиляционной установки осуществляется по датчику температуры в приточном воздуховоде.
При включении режима работы Лето воздушный клапан закрыт, вентилятор приточно установки выключен, циркуляционный насос не работает. При пуске системы, также как и режиме Зима, открывается воздушный клапан и одновременно, с задержкой подается команда на включение вентилятора.
Для вентиляторов предусмотрены следующие виды аварийных сигналов:
При поступлении сигнала аварии насоса с термоконтакта или при размыкании дополнительного контакта автоматического выключателя насос выключается, вентустановка переходит в дежурный режим и в журнал контроллера записывается данное событие.
Управление и контроль за системой вентиляции могут осуществляться удаленно в систему диспетчеризации здания, куда передаются все необходимые сигналы с контроллера.
Также в щит управления вентиляцией могут приходить сигналы с системы пожарной сигнализации. При срабатывании сигнала о пожаре приток свежего воздуха в помещение должен прекращаться, поэтому вентиляционная установка должна останавливаться, переходя в дежурный режим.
Конечно, данное описание алгоритма работы обобщенное, не рассмотрены некоторые важные моменты при работе, но наверное лучше это рассмотреть в будущем на примере реальной программы управления вентустановкой.
В завершении хочется отметить, что данная тема является очень объемной и в рамках одной статьи невозможно рассказать о всех аспектах работы вентиляционных систем, поэтому в дальнейшем мы еще вернемся к данной тематике.
Читайте также: