В каком поле кадра ethernet записывают параметры сообщения arp
Протокол преобразования адресов ARP
Назначение протокола ARP. ARP-таблицы. Статические и динамические записи ARP-таблиц, ARP-кэш
ARP (англ. Address Resolution Protocol - протокол разрешения адресов) представляет собой сетевой протокол, предназначенный для преобразования IP-адресов (адресов сетевого уровня) в MAC-адреса (адреса канального уровня) в сетях TCP/IP. Т.е. для отображения IP-адресов в Ethernet адреса.
ARP-преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая также ARP-таблицей, хранится в памяти и содержит строки соответствия MAC/IP для каждого узла сети. Ниже приведен пример простейшей ARP-таблицы:
IP-адрес | Ethernet-адрес
192.168.0.1 |08:00:34:00:2F:C3
192.168.0.2 |08:00:5A:71:A7:72
192.168.0.3 |08:00:10:98:AC:24
ARP-таблицы строятся согласно документу RFC-1213 и для каждого IP-адреса содержит четыре кода:
ifindex | Физический порт (интерфейс), соответствующий данному адресу; |
Физический адрес | MAC-адрес, например Ethernet-адрес; |
IP-адрес | IP-адрес, соответствующий физическому адресу; |
тип адресного соответствия | это поле может принимать 4 значения: 1 - вариант не стандартный и не подходит ни к одному из описанных ниже типов; 2 - данная запись уже не соответствует действительности; 3 - постоянная привязка; 4 - динамическая привязка; |
ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой. IP-адрес выбирает менеджер сети с учетом положения машины в сети internet. Если машину перемещают в другую часть сети internet, то ее IP-адрес должен быть изменен. Ethernet-адрес выбирает производитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется плата сетевого адаптера, то меняется и ее Ethernet-адрес.
Эффективность функционирования ARP во многом зависит от ARP кэша (ARP cache), который присутствует на каждом хосте. В кэше содержатся Internet адреса и соответствующие им аппаратные адреса.
ARP кэш содержит:
- Динамические адреса - добавляются и удаляются автоматически. Имеют время жизни 10 минут. Если к адресу нет обращений в течении 2 минут, то он удаляется. В противном случае он удаляется через 10 минут. Если при добавлении нового адреса кэш переполнился, то удаляется самый старый адрес для освобождения места для нового.
- Статические адреса - остаются в кэше до перезагрузки компьютера
- Адрес широковещательной рассылки (Hardware broadcast address) FFFFFFFFFFFF - позволяет хосту принимать ARP запросы. Не появляется при просмотре ARP кэша.
Содержимое ARP кэша можно увидеть с использованием команды arp(8). Опция -a показывает все записи, содержащиеся в кэше:
bsdi % arp -a
sun (140.252.13.33) at 8:0:20:3:f6:42
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
Схема работы протокола ARP
- Всем машинам в сети посылается пакет с ARP-запросом (с широковещательным Ethernet-адресом места назначения).
- Исходящий IP-пакет ставится в очередь.
Каждая машина, принявшая ARP-запрос, в своем ARP-модуле сравнивает собственный IP-адрес с IP-адресом в запросе. Если IP-адрес совпал, то прямо по Ethernet-адресу отправителя запроса посылается ответ, содержащий как IP-адрес ответившей машины, так и ее Ethernet-адрес. После получения ответа на свой ARP-запрос машина имеет требуемую информацию о соответствии IP и Ethernet-адресов, формирует соответствующий элемент ARP-таблицы и отправляет IP-пакет, ранее поставленный в очередь. Если же в сети нет машины с искомым IP-адресом, то ARP-ответа не будет и не будет записи в ARP-таблицу. Протокол IP будет уничтожать IP-пакеты, предназначенные для отправки по этому адресу.
Формат пакета ARP
Функционально, ARP делится на две части. Одна - определяет физический адрес при посылке пакета, другая отвечает на запросы других машин. ARP-пакеты вкладываются непосредственно в ethernet-кадры.
Тип оборудования - это тип интерфейса, для которого отправитель ищет адрес; код содержит 1 для Ethernet.
Тип протокола - содержит код типа протокола. (для IP это 0800H)
HA-Len - длина аппаратного адреса;
PA-Len - длина протокольного адреса (длина в байтах, например, для IP-адреса PA-Len=4).
Поле код операции определяет, является ли данный пакет ARP-запросом (код = 1), ARP-откликом (2), RARP-запросом (3), или RARP-откликом (4). Это поле необходимо, как поле тип кадра в Ethernet пакетах, они идентичны для ARP-запроса и отклика.
Протокол Proxy- ARP
Еще одна разновидность протокола ARP служит для того, чтобы один и тот же сетевой префикс адреса можно было использовать для двух сетей. Этот протокол называется смешанным протоколом ARP (proxy).
В смешанном протоколе ARP нескольким IP-адресам ставится в соответствие один и тот же физический адрес. Поэтому системы, где предусмотрен контроль за соответствием физических и IP-адресов, не могут работать со смешанным протоколом ARP. Главным преимуществом этого протокола является то, что он позволяет путем добавления одного маршрутизатора (Gateway) подключить к Интернет еще одну сеть, не изменяя таблиц маршрутизации в других узлах. Протокол используется при построении сетей Интранет.
Протокол обратного адресного преобразования RARP
RARP (англ. Reverse Address Resolution Protocol - обратный протокол преобразования адресов) - протокол третьего (сетевого) уровня модели OSI - выполняет обратное отображение адресов, то есть преобразует аппаратный (MAC) адрес в IP-адрес.
Назначение протокола RARP
Протокол RARP предполагает наличие специального сервера, обслуживающего RARP-запросы и хранящего базу данных о соответствии аппаратных адресов протокольным.
Этот протокол работает с любой транспортной средой, в случае же кадра Ethernet в поле тип будет записан код 803516.
Здесь обозначения те же, что и в описании ARP-формата. Для Internet PA-Len=4 и тип протокола=2048, а для Ethernet равно HA-Len=6 и тип оборудования=1. В RARP используется два кода операции. Код операции=3 используется для RARP-запросов, а код операции=4 - для RARP-откликов. В первом случае поле протокольный адрес отправителя и протокольный адрес адресата не определены. Обычно локальная сеть имеет несколько RARP-серверов, что позволяет загрузиться бездисковым машинам, даже если какой-то из серверов выключен или не исправен.
Назначение протокола ICMP
Поле типа может иметь следующие значения:
Диагностическая программа: PING (отправитель пакетов Internet)
Программа Ping, которая отправляет запрос отклика, называется клиент, а адресованный хост называется сервер. Большинство TCP/IP реализаций поддерживают Ping-сервер непосредственно ядром, т.к. сервер это не пользовательский процесс.
Утилита traceroute позволяет просматривать путь маршрутизации пакета от пользователя до удаленного хоста. Она часто используется сетевыми и системными администраторами как средство отладки маршрутизации пакетов из локальной сети организации в Internet.
Протокол IGMP: протокол управления группами Internet
Назначение протокола IGMP
Поле версии IGMP (IGMP version) установлено в 1. Поле тип IGMP (IGMP type) устанавливается в 1 для запроса, посылаемого групповым маршрутизатором, и в 2 для ответа, отправляемого хостом.
Групповой адрес (group address) это IP адрес класса D. В запросе поле группового адреса устанавливается в 0. В отчете оно содержит групповой адрес.
Доброго времени суток, дорогие хабраюзеры. Этой статьей я хочу начать цикл повествования о протоколах, которые помогают нам прозрачно, быстро и надежно обмениваться информацией. И начать с протокола ARP.
Как известно, адресация в сети Internet представляет собой 32-битовую последовательность 0 и 1, называющихся IP-адресами. Но непосредственно связь между двумя устройствами в сети осуществляется по адресам канального уровня (MAC-адресам).
Так вот, для определения соответствия между логическим адресом сетевого уровня (IP) и физическим адресом устройства (MAC) используется описанный в RFC 826 протокол ARP (Address Resolution Protocol, протокол разрешения адресов).
ARP состоит из двух частей. Первая – определяет физический адрес при посылке пакета, вторая – отвечает на запросы других станций.
Протокол имеет буферную память (ARP-таблицу), в которой хранятся пары адресов (IP-адрес, MAC-адрес) с целью уменьшения количества посылаемых запросов, следовательно, экономии трафика и ресурсов.
Пример ARP-таблицы.
192.168.1.1 08:10:29:00:2F:C3
192.168.1.2 08:30:39:00:2F:C4
Слева – IP-адреса, справа – MAC-адреса.
Прежде, чем подключиться к одному из устройств, IP-протокол проверяет, есть ли в его ARP-таблице запись о соответствующем устройстве. Если такая запись имеется, то происходит непосредственно подключение и передача пакетов. Если же нет, то посылается широковещательный ARP-запрос, который выясняет, какому из устройств принадлежит IP-адрес. Идентифицировав себя, устройство посылает в ответ свой MAC-адрес, а в ARP-таблицу отправителя заносится соответствующая запись.
Записи ARP-таблицы бывают двух вид видов: статические и динамические. Статические добавляются самим пользователем, динамические же – создаются и удаляются автоматически. При этом в ARP-таблице всегда хранится широковещательный физический адрес FF:FF:FF:FF:FF:FF (в Linux и Windows).
Создать запись в ARP-таблице просто (через командную строку):
arp –s <IP-адрес> <MAC-адрес>
Вывести записи ARP-таблицы:
После добавления записи в таблицу ей присваивается таймер. При этом, если запись не используется первые 2 минуты, то удаляется, а если используется, то время ее жизни продлевается еще на 2 минуты, при этом максимально – 10 минут для Windows и Linux (FreeBSD – 20 минут, Cisco IOS – 4 часа), после чего производится новый широковещательный ARP-запрос.
- тип сети (16 бит): для Ethernet – 1;
- тип протокола (16 бит): h0800 для IP;
- длина аппаратного адреса (8 бит);
- длина сетевого адреса (8 бит);
- тип операции (16 бит): 1 – запрос, 2 — ответ;
- аппаратный адрес отправителя (переменная длина);
- сетевой адрес отправителя (переменная длина);
- аппаратный адрес получателя (переменная длина);
- сетевой адрес получателя (переменная длина).
А вот как происходит определение маршрута с участием протокола ARP.
Пусть отправитель A и получатель B имеют свои адреса с указанием маски подсети.
- Если адреса находятся в одной подсети, то вызывается протокол ARP и определяется физический адрес получателя, после чего IP-пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу, соответствующему IP-адресу назначения.
- Если нет – начинается просмотр таблицы в поисках прямого маршрута.
- Если маршрут найден, то вызывается протокол ARP и определяется физический адрес соответствующего маршрутизатора, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.
- В противном случае, вызывается протокол ARP и определяется физический адрес маршрутизатора по умолчанию, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.
Главным достоинством проткола ARP является его простота, что порождает в себе и главный его недостаток – абсолютную незащищенность, так как протокол не проверяет подлинность пакетов, и, в результате, можно осуществить подмену записей в ARP-таблице (материал для отдельной статьи), вклинившись между отправителем и получателем.
Бороться с этим недостатком можно, вручную вбивая записи в ARP-таблицу, что добавляет много рутинной работы как при формировании таблицы, так и последующем ее сопровождении в ходе модификации сети.
Существуют еще протоколы InARP (Inverse ARP), который выполняет обратную функцую: по заданному физическому адресу ищется логический получателя, и RARP (Reverse ARP), который схож с InARP, только он ищет логический адрес отправителя.
В целом, протокол ARP универсален для любых сетей, но используется только в IP и широковещательных (Ethernet, WiFi, WiMax и т.д.) сетях, как наиболее широко распространенных, что делает его незаменимым при поиске соответствий между логическими и физическими адресами.
Пусть компьютер A с именем Vito и компьютер B с именем Maxx так же, как и в первом случае, находятся в одной сети класса C 192.168.0.0, не разделенной на подсети, но компьютер B подключен и к внешней сети и помимо своих обычных функций выполняет функции шлюза (маршрутизатора). Компьютер A хочет обратиться через внешнюю сеть к некоторому компьютеру C с IP-адресом 195.5.27.10, т.е. получатель находится в другой сети. На рисунке 8 приведена соответствующая иллюстрация.
Компьютер C (получатель)
Рисунок 8 - Расположение отправителя и получателя в разных сетях
При обращении компьютера A к компьютеру C, например, при вводе на компьютере A команды ping –n 1 195.5.27.10 , компьютер A действует следующим образом.
Сначала компьютер A определяет, в какой сети – локальной или удаленной – находится компьютер C. Для этого он “накладывает” стандартную маску подсети класса C 255.255.255.0 на свой IP-адрес 192.168.0.147 и получает результат 192.168.0.0.
Затем он “накладывает” ту же маску на IP-адрес компьютера-получателя 195.5.27.10 и получает результат 195.5.27.0. Т.к. результаты этих двух операций различны, компьютер A делает вывод о том, что компьютер C находится в другой сети и передачу данных нужно выполнить через шлюз (компьютер B).
Затем компьютер A должен послать кадр Ethernet с эхо-запросом, указав в заголовке вложенного в этот кадр пакета ICMP IP-адрес компьютера-получателя 195.5.27.10, а в заголовке кадра Ethernet – MAC-адрес шлюза, т.е. компьютера B ( а не
MAC-адрес компьютера-получателя ), т.к. сначала кадр по сети Ethernet должен достигнуть шлюза. Следовательно, компьютер A должен знать MAC-адрес шлюза, но в настройках TCP/IP компьютера указывается не MAC-адрес, а IP-адрес шлюза. Если компьютер A недавно обращался к шлюзу, то MAC-адрес шлюза может находиться в таблице ARP компьютера A. Если же компьютер A после начальной загрузки еще не обращался к шлюзу или обращался к нему давно и соответствующая динамическая запись соответствия “IP-адрес – MAC-адрес” уже удалена, то таблица ARP компьютера A не будет содержать MAC-адреса шлюза (если только он не введен туда администратором вручную). В этом случае компьютер A должен выяснить MAC-адрес шлюза с помощью протокола ARP.
Процесс выяснения компьютером A MAC-адреса шлюза (компьютера B) описан выше. После определения MAC-адреса шлюза компьютер A посылает эхо-запрос компьютеру C. Этот эхо-запрос поступает на компьютер B, который, выполняя функцию маршрутизатора, направляет эхо-запрос компьютеру C через внешнюю сеть.
При передаче данных от отправителя получателю, находящемуся в удаленной сети, в заголовке IP-пакета указывается IP-адрес получателя, а в заголовке кадра Ethernet указывается MAC-адрес не получателя, а MAC-адрес шлюза, через который
должны быть переданы данные. Аналогично, при поступлении на отправитель (компьютер А) ответных данных от получателя (компьютера C) через шлюз (компьютер В) в поле MAC-адреса источника заголовка кадра Ethernet указывается MAC-адрес не компьютера C, а MAC-адрес шлюза (компьютера В), а в поле IP-адреса источника заголовка IP-пакета указывается IP-адрес не шлюза В, а IP-адрес компьютера C.
2.2.3 Использование протокола ARP для проверки наличия в сети дублированного IP-адреса
Кроме установления соответствия между MAC-адресам и IP-адресом, протокол ARP выполняет еще одну важную функцию. При включении (загрузке) компьютера и при изменении его IP-адреса протокол ARP позволяет определить, имеются ли в локальной сети компьютеры с одинаковыми IP-адресами. Для этого при загрузке компьютера и после изменения его IP-адреса компьютер посылает ARP-запрос, в котором в качестве получателя пакета (поле сетевой адрес получателя ) указывает свой собственный IP-адрес.
2.3 Протокол ICMP
2.4 Протокол DHCP
Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес клиенту из пула (массива) наличных IP-адресов без вмешательства администратора. Границы пула (массива) назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и присвоенным ему IP-адресом, как и при ручном назначении, существует соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах (на получение IP-адреса) сервер возвращает клиенту тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать этот IP-адреса другим компьютерами. Динамическое назначение адресов позволяет строить IP-сеть, количество узлов в которой, намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. По истечения срока аренды IP-адреса компьютер пытается обновить параметры аренды у DHCPсервера, а если этот IP-адрес не может быть выделен снова, то компьютеру выделяется другой IP-адрес. На рисунке 10 приведен формат DHCP пакета.
Рисунок 10 - Формат DHCP пакета
Использование протокола DHCP кроме своих достоинств имеет ряд недостатков. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS (система доменных имен). DNS служит для преобразования символьных имен в IP-адреса, если IP-адреса, будут, динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов.
В-третьих, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены за счет использования в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
Для работы с протоколом DHCP в ОС “Windows” используется команда ipconfig , которая служит для отображения всех текущих параметров сети TCP/IP и обновления параметров DHCP и DNS. При вызове команды ipconfig можно использовать ряд параметров, например:
• /all - вывод полной конфигурации TCP/IP для всех адаптеров. Без этого параметра команда ipconfig выводит только IP-адреса, маску подсети и основной шлюз для каждого адаптера.
Оглавление
Как работает протокол ARP
Задачи, стоящие перед протоколом, достаточно прозрачны. Как он будет настраиваться?
Базовые операции с ARP для Windows
Почистить локальный кэш ARP или удалить отдельную запись
Добавить статическую ARP-запись
Детально посмотреть кэш
Базовые операции с ARP на оборудовании Cisco
Как добавить статическую запись
Настроить включение-выключение ARP и его тип
Настроить время нахождения записи в ARP-кэше
Настройка идёт на интерфейсе, т.к. данный тайм-аут будет только у записей в ARP-кэше, сделанных через этот интерфейс.
Очистить кэш ARP
Настроить работу с incomplete ARP records
В NT 6.0 сетевой стек был ощутимо изменен (приведён в соответствие с RFC 4861), поэтому то, что действовало для XP/2003, работать в большинстве своём не будет. Схема работы ARP-кэша теперь следующая:
Как точнее считается время? Формула подсчёта такова:
ReachableTime = BaseReachableTime * (случайный коэффициент между MIN_RANDOM_FACTOR и MAX_RANDOM_FACTOR)
netsh interface ipv4 set interface имя интерфейса basereachable=количество миллисекунд
Суммарный же объём кэша IPv4-соседей можно установить так:
netsh interface ipv4 set global neighborcachelimit=количество
По умолчанию их 256. Как понятно, в случае, если соседей по среде передачи данных мало (например, есть единственный сетевой интерфейс в сеть с маской /28), этот кэш увеличивать не надо, а уменьшить вполне можно. Помните, это именно кэш ARP, т.е. явных адресов соседей по vlan плюс служебных мультикастов. Нет смысла его раздувать до огромных габаритов, если в сети банально мало узлов, нечего кэшировать особо будет.
ARP и QoS
В случае, когда сетевой интерфейс загружен трафиком, часть трафика может теряться. Увы, ни один из методов queuing не является от этого панацеей. Начиная с Cisco IOS 15.1 можно указать, что на данном интерфейсе необходимо всегда обрабатывать ARP-пакеты в первую очередь, что может значительно сократить процент потери ARP-данных. На общую загрузку это, как понятно, повлияет мало, а вот пользы может принести много. Ведь ARP-пакеты передаются без механизма подтверждения доставки и терять их не очень хорошо.
Данный механизм включается на L3-интерфейсах, командой:
arp packet-priority enable
Выключается, как понятно, no arp packet-priority enable . В Windows аналогичной процедуры нет.
ARP и NLB
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\EnableBcastArpReply
ARP и SNAP
По умолчанию, ARP вкладывается в 802.3 кадр простым, Ethernet II способом. Это можно поменять в случае, если необходима поддержка SNAP-механизма, который, как известно, нужен для мультиплексирования потоков данных на канальном уровне. Напомню, что по RFC 1042 данные IP и ARP всегда передаются поверх 802.x сетей используя связку LLC+SNAP, за исключением обычного Ethernet (802.3), где они вкладываются напрямую (см. RFC 894).
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\ArpUseEtherSNAP
По умолчанию он в нуле, установив в единицу Вы получите ситуацию, что ARP-запросы будут вкладываться в SNAP (притом в LLC+SNAP, что увеличит суммарный размер кадра на 3+5=8 байт).
ARP и NUD
netsh int ipv4 set int имя интерфейса nud=enabled
ARP и DAD
netsh int ipv4 set int имя интерфейса retransmittime=миллисекунды
netsh int ipv4 set int имя интерфейса dadtransmits=попытки
ARP и WOL
netsh int ipv4 set int имя интерфейса forcearpndwolpattern=enabled
Как выключается, надеюсь, понятно. Рекомендуется к выключению на узлах, у которых нет задачи просыпаться по WOL, т.к. ускоряет обработку путём раннего отбрасывания механизмом поиска Magic Pattern указанных пакетов.
Теперь про RARP.
Протокол RARP
ARP: Я знаю искомый L3-адрес, дайте мне соответствующий ему L2-адрес.
RARP: Я знаю искомый L2-адрес, дайте мне соответствующий ему L3-адрес.
У RARP-сервера есть табличка соответствий MAC и IP-адресов, из которой он берёт указанную информацию и отправляет её. Различия на технологическом уровне будут следующими: RARP-пакеты будут иметь код вложения 0x8035 , плюс коды операций у них будут 3 для RARP-запроса и 4 для RARP-ответа.
Реализация RARP-сервера в Windows
Реализация RARP-сервера на оборудовании Cisco
Она есть. Конфигурируется в несколько этапов. По порядку:
Шаг первый: Добавляем запись для потенциального RARP-клиента (т.е. того, кто хочет получить IP-адрес). В глобальной конфигурации:
Протокол InARP (Inverse ARP)
Протокол UnARP
Протокол SLARP (Serial Line ARP)
Протокол DirectedARP
Протокол описан в RFC 1433. Сейчас как отдельный протокол не используется, хотя многие мысли, высказанные в этом RFC, достаточно дельные и повлияли, например, на формирование современного IPv6.
Безопасность ARP
Есть ряд дополнительных механизмов (которых достаточно много), которые могут помочь в этом вопросе. Например, на оборудовании Cisco есть команда:
которая, в случае включения на интерфейсе, отключит динамические записи в кэш ARP. Т.е. интерфейс перестанет слушать ARP-ответы от неизвестных клиентов и дополнять ими кэш ARP.
Механизм Proxy ARP
Как включить Proxy ARP на оборудовании Cisco
Как включить Proxy ARP в Windows
В случае, когда у Вас используется RRaS, proxy ARP работает автоматически.
Что такое и как работает Gratuitous ARP
Соответственно, в ряде ситуаций (например, много клиентов, краткие сессии) такой механизм надо отключать. Зачастую проще привязать статически целую пачку ARP-соответствий (например, когда на сервере удалённого доступа выделен пул в 20 адресов, и абоненты подключаются, делают какую-то краткую операцию и отключаются), чем постоянно форвардить в сеть эти ARP Reply.
Как настроить Gratuitous ARP на оборудовании Cisco
Если добавить в конце команды слово non-local, то будет обрабатываться вышеописанная ситуация с PPP.
Как настроить Gratuitous ARP на Windows Server
Управлять же Gratuitous ARP со стороны узла вполне можно. Для этого есть ключ реестра:
HKLM\System\CurrentControlSet\Services\TcpIp\Parameters
Как настроить Cisco ARP Optimization Feature
Заключение
Если я вспомню ещё что-то, или меня наведут на мысль, то обязательно напишу сюда в качестве дополнения к статье.
Рассмотрим функции ARP для типичного Интернета. Рассмотрим шаги. Затем обсудим и четыре случая, в которых хост или маршрутизатор должны использовать ARP .
Шаги, составляющие процесс ARP
Четыре различных случая использования ARP
- Передатчик – это хост, и он хочет передать пакет другому хосту на той же самой сети. В этом случае логический адрес должен быть отображен в физический адрес в адресе IP пункта назначения в дейтаграммном заголовке.
- Передатчик – это хост, и он хочет передать пакет другому хосту на другой сети. В этом случае хост просматривает свою таблицу маршрутизации и находит адрес IP следующего переприемного участка (маршрутизатора) для этого пункта назначения. Если он не имеет таблицы маршрутизации, он ищет адрес IP заданного по умолчанию маршрутизатора. Адрес IP маршрутизатора становится логическим адресом , который должен быть отображен в физический адрес.
- Передатчик – маршрутизатор, который получил дейтаграмму, предназначенную для хоста на другой сети. Он проверяет свою таблицу маршрутизации и находит адрес IP следующего маршрутизатора. Адрес IP следующего маршрутизатора становится логическим адресом , который должен быть отображен в физический адрес
- Передатчик — это маршрутизатор, который получил дейтаграмму, предназначенную для хоста в той же самой сети. Адрес IP пункта назначения дейтаграммы становится логическим адресом , который должен быть отображен в физический адрес.
Пример 1
Хост с адресом IP 130.23.43.20 (побайтное отображение 0x82172B14 ) и физическим адресом 0xB23455102210 должен передать пакет другому хосту с адресом IP 130.23.43.25 (побайтное отображение 0x82172B19 ) и физическим адресом OxA46EF45983AB . Два хоста находятся на той же самой сети локальной сети Ethernet. Покажите запрос ARP и ответный пакет, инкапсулированный в кадр локальной сети Ethernet.
Решение
Рис. 5.3 показывает запрос ARP и ответный пакет. Обратите внимание, что поле данных ARP в этом случае — 28 байтов и что индивидуальные адреса не приспособлены к 4-байтовой границе. Именно поэтому мы не показываем правильные 4-байтовые границы для этих адресов. Также обратите внимание, что IP адреса показаны в шестнадцатеричном исчислении.
Читайте также: