В какой технологии ethernet используется твинаксиальный кабель
Ethernét (эзернет, от лат. aether — эфир) — пакетная технология компьютерных сетей, преимущественно локальных.
Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token Ring.
Содержание
История
Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks» R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks. // ACM Communications, 19(5):395--404, July 1976.
Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных вычислительных сетей (ЛВС). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: Token Ring и Arcnet, — которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.
Технология
В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.
Популярные разновидности Ethernet обозначаются как 10Base2, 100BaseTX и др. Здесь первый элемент обозначает скорость передачи, Мбит/с. Второй элемент:
- Base — прямая (немодулированная) передача,
- Broad — использование широкополосного кабеля с частотным уплотнением каналов.
Третий элемент: округленная длина кабеля в сотнях метров (10Base2 — 185 м, 10Base5 — 500 м) или среда передачи (T, ТХ, Т2, Т4 — витые пары, FX, FL, FB, SX и LX — оптоволокно, СХ — твинаксиальный кабель для Gigabit Ethernet).
Причинами перехода на витую пару были:
- возможность работы в дуплексном режиме;
- низкая стоимость кабеля "витой пары";
- более высокая надёжность сетей при неисправности в кабеле;
- большая помехозащищенность при использовании дифференциального сигнала;
- возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
- отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным "выгоранием" системного блока.
Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.
Метод управления доступом (для сети на коаксиальном кабеле) — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.
В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптоволокну и еще через два года для передачи по витой паре.
Формат кадра
Существует несколько форматов Ethernet-кадра.
- Первоначальный Version I (больше не применяется).
- Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) — наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.
- Novell — внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).
- Кадр IEEE 802.2 LLC.
- Кадр IEEE 802.2 LLC/SNAP.
- Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.
В качестве дополнения Ethernet-кадр кадр может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.
Разные типы кадра имеют различный формат и значение MTU.
Разновидности Ethernet
В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.
В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется оптоволоконный кабель.
Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние модификации Ethernet
- Xerox Ethernet — оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.
- 10BROAD36 — широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.
- 1BASE5 — также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.
10 Мбит/с Ethernet
- 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») — первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
- 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») — используется кабель RG-58, с максимальной длиной сегмента 200 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.
- StarLAN 10 — Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем эволюционировал в стандарт 10BASE-T.
Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в отличие от работы с коаксиальным кабелем. Поэтому, все сети на витой паре используют топологию "звезда", в то время как, сети на коаксиальном кабеле построены на топологии "шина". Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.
- 10BASE-T, IEEE 802.3i — для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.
- FOIRL — (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.
- 10BASE-F, IEEE 802.3j — Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.
- 10BASE-FL (Fiber Link) — Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.
- 10BASE-FB (Fiber Backbone) — Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.
- 10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители — никогда не применялся.
Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)
- 100BASE-T — общий термин для обозначения стандартов, использующих в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
- 100BASE-TX, IEEE 802.3u — развитие стандарта 10BASE-T для использования в сетях топологии "звезда". Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
- 100BASE-T4 — стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
- 100BASE-T2 — стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Практически не используется.
- 100BASE-SX — стандарт, использующий многомодовое оптоволокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
- 100BASE-FX — стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков.
- 100BASE-FX WDM — стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик на 1310 нм, а с другой — на 1550 нм.
Fast Ethernet
Fast Ethernet (IEEE802.3u, 100BASE-X) — набор стандартов передачи данных в компьютерных сетях, со скоростью до 100 Мбит/с, в отличие от обычного Ethernet (10 Мбит/с).
Гигабит Ethernet (Gigabit Ethernet, 1 Гбит/с)
- 1000BASE-T, IEEE 802.3ab — стандарт, использующий витую пару категорий 5e. В передаче данных участвуют все 4 пары. Скорость передачи данных — 250 Мбит/с по одной паре.Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц.
- 1000BASE-TX был создан Ассоциацией Телекоммуникационной Промышленности (англ. Telecommunications Industry Association, TIA) и опубликован в марте 2001 года как «Спецификация физического уровня дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6 (ANSI/TIA/EIA-854-2001)» (англ. «A Full Duplex Ethernet Specification for 1000 Mbis/s (1000BASE-TX) Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). Стандарт, использует раздельную приёмо-передачу (1 пару на передачу, 1 пару на приём, по каждой паре данные передаются со скоростью 500 Мбит/с), что существенно упрощает конструкцию приёмопередающих устройств. Но, как следствие, для стабильной работы по такой технологии требуется кабельная система высокого качества, поэтому 1000BASE-TX может использовать только кабель 6 категории. Ещё одним существенным отличием 1000BASE-TX является отсутствие схемы цифровой компенсации наводок и возвратных помех, в результате чего сложность, уровень энергопотребления и цена процессоров становится ниже, чем у процессоров стандарта 1000BASE-T. На основе данного стандарта практически не было создано продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T, и поэтому может использовать более простую электронику.
- 1000BASE-X — общий термин для обозначения стандартов со сменными приёмопередатчиками GBIC или SFP.
- 1000BASE-SX, IEEE 802.3z — стандарт, использующий многомодовое оптоволокно. Дальность прохождения сигнала без повторителя до 550 метров.
- 1000BASE-LX, IEEE 802.3z — стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 80 километров.
- 1000BASE-CX — стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T и сейчас не используется.
- 1000BASE-LH (Long Haul) — стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 100 километров.
10 Гигабит Ethernet
Новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.
- 10GBASE-CX4 — Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.
- 10GBASE-SR — Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).
- 10GBASE-LX4 — использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.
- 10GBASE-LR и 10GBASE-ER — эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.
- 10GBASE-SW, 10GBASE-LW и 10GBASE-EW — Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.
- 10GBASE-T, IEEE 802.3an-2006 — принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния — до 100 метров.
Стандарт 10 Гигабит Ethernet ещё слишком молод, поэтому потребуется время, чтобы понять, какие из вышеперечисленных стандартов передающих сред будут реально востребованы на рынке. 10 Гигабит / секунду — это ещё не предел. Уже ведутся разработки 1000 G Ethernet и выше.
В течение нескольких лет для внутренних соединений ЦОД в основном использовались кабельные соединения категории CAT5e и стандарт 1000BASE-T, однако, их обновление до скорости 10GE, 40GE и выше значительно затруднено из-за повышения как энергопотребления, так и стоимости. Теперь их вытесняет высокоскоростной кабель прямого соединения (DAC), который становится неотъемлемой частью соединений коммутаторов в пределах стойки и стоечных коммутаторов верхнего уровня (ToR-коммутаторов). Здесь рассказывается, что такое DAC кабель.
Что такое DAC кабель — определение, структура и спецификация
Что такое DAC кабель? Кабель прямого соединения, сокращенно DAC кабель, является оконеченным на заводе-изготовителе сдвоенным коаксиальным (твинаксиальным) кабелем, используемым для подключения коммутаторов к маршрутизаторам или серверам. Эти кабели состоят из экранированного медного коаксиального или волоконно-оптического кабеля фиксированной длины с закрепленными на обоих концах подключаемыми трансиверами различного калибра от 24 до 30 AWG. Длина DAC кабеля для внутренних соединений может достигать 15 м при использовании твинаксиального медного кабеля и 100 м при использовании активного оптического кабеля на скорости 10 Гбит/с, 40 Гбит/с или выше.
Типы высокоскоростных кабелей прямого соединения
Теперь вы знаете, что такое DAC кабель, а знаете ли вы типы DAC кабелей? Высокоскоростной кабель прямого соединения можно разделить на медный кабель прямого соединения (DACC) и активный оптоволоконный кабель прямого соединения (DAOC). На следующем рисунке показаны основные типы пассивных и активных кабелей прямого соединения для внутренних подключений ToR-коммутаторов ЦОД:
Медный кабель прямого соединения (DACC) представляет собой неразъемную медную кабельную сборку, подключенную непосредственно к «трансиверам». Может иметь длину до 15 м и используется для коротких расстояний. DACC кабель может быть либо пассивным, либо активным. Активный оптический кабель прямого соединения связывает волоконное соединение внутри оконечивающих трансиверов, создавая полную сборку из волоконно-оптического кабеля подобно медному кабелю прямого соединения, но может достигать длины 3 – 200 м.
Ethernet
Ethernet — пакетная технология передачи данных. Разработана преимущественно для локальных компьютерных сетей.
Стандартами Ethernet определяются проводные соединения и электрические сигналы на физическом уровне, а на канальном уровне модели OSI определяются формат кадров и протоколами управления доступом. В основном, Ethernet описывают стандарты IEEE группы 802.3.
Это самая распространенная технология ЛВС, особенно в середине 90-х годов прошлого века. Своим появлением Ethernet вытеснила такие устаревшие технологии, как Arcnet, FDDI и Token ring.
История
Корпорация Xerox PARC разработала Ethernet одновременно со многими другими своими первыми проектами. Общепринято, что технология Ethernet была изобретена 22 мая 1973 года Робертом Меткалфом (Robert Metcalfe). Он составил докладную записку для главы PARC о потенциале технологии Ethernet, что и стало свидетельством ее создания. Однако, законное право на технологию разработчик получил, лишь спустя несколько лет.
В 1976 году Меткалф вместе со своим ассистентом Дэвидом Боггсом (David Boggs) выпустили брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks». Меткалф покинул Xerox в 1979 году и основал компанию 3Com, которая занималась продвижением компьютеров и локальных вычислительных сетей (ЛВС). Он убедил руководство компаний DEC, Intel и Xerox работать совместно с целью разработки стандарта Ethernet (DIX).
Впервые стандарт Ethernet был опубликован 30 сентября 1980 года. По выходу на рынок он вступил в соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET. Они в скором времени были раздавлены под потоками хлынувшей на рынок продукции Ethernet. Так, 3Com стала основной компанией в своей отрасли.
Технология
Стандарт первых версий (Ethernet v1.0 и Ethernet v2.0) говорит о том, что в качестве передающей среды в нем используется коаксиальный кабель. Впоследствии стали использовать витую пару и оптический кабель.
Каковы преимущества использования витой пары перед использованием коаксиального кабеля?
- возможность работы в дуплексном режиме;
- низкая стоимость кабеля;
- высокая надежность сети в случае неисправности кабеля (при соединении типа «точка-точка» в случае обрыва кабеля связи лишаются два узла). В коаксиальном соединении используется топология «шина», поэтому в случае обрыва кабеля связи лишится сразу весь сегмент;
- В витой паре минимально допустимый радиус изгиба меньше, чем в коаксиале;
- В витой паре большая помехозащищенность, ввиду использования дифференциального сигнала;
- Имеется возможность питания по кабелю маломощных узлов, к примеру, IP-телефонов (стандарт POE);
- Гальваническая развязка трансформаторного типа. Используя коаксиальный кабель в российских условиях, где обычно отсутствует заземление компьютеров, эксплуатация часто сопровождается пробоями сетевых карт, а иногда даже и полным сгоранием системного блока.
В качестве веской причины перехода на оптический кабель стала необходимость в увеличении длины сегмента без повторителей. Управление доступом в случае с сетью на коаксиальном кабеле представляет собой множественный доступ с обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных достигает 10 Мбит/с, размер пакета от 72 до 1526 байт.
Полудуплексный режим работы (узел не может передавать и принимать информацию одновременно) сопряжен с ограничением по количеству узлов в одном сегменте сети. Оно ограничено предельным значением (1024 рабочих станции). На физическом уровне можно устанавливать более жесткие ограничения, к примеру, к сегменту тонкого коаксиала можно подключить не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100. Впрочем, сеть, которая построена на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов. Это происходит из-за полудуплексного режима работы.
В 1995 году был принят стандарт IEEE 802.3u Fast Ethernet, его скорость составляла 100 Мбит/с, появилась возможность работы в режиме полный дуплекс.
В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet, его скорость составляла 1000 Мбит/с, передача осуществлялась по оптическому волокну. А через два года после его выхода, передача осуществлялась уже посредством витой пары - инженеры доработали стандарт.
Формат кадра
Существует несколько форматов Ethernet-кадра:
- Version I (в настоящее время не применяется);
- Ethernet Version 2 или Ethernet-кадр II (также его называют DIX - аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox). Является наиболее распространенной, используется и по сей день. Зачастую применяется непосредственно протоколом Интернет;
- Novell — внутренняя модификация IEEE 802.3 без LLC (Logical Link Control);
- Кадр IEEE 802.2 LLC;
- Кадр IEEE 802.2 LLC/SNAP;
- Часть сетевых карт Ethernet, выпускаемых компанией Hewlett-Packard, используют при работе кадр формата IEEE 802.12, он соответствует стандарту 100VG-AnyLAN.
Как дополнение Ethernet-кадра он может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности. Разные типы кадра обладают разным форматом и значением MTU.
MAC-адреса
В ходе разработки стандарта Ethernet предусматривалось, что каждая сетевая карта должна обладать уникальным 6-байтным номером (MAC-адресом), зашитым в нее во время изготовления. Данный номер применяется в целях идентификации отправителя и получателя кадра. Предполагается, что при появлении в сети нового компьютера, сетевому администратору не придется вновь настраивать MAC-адрес.
Как достигается уникальность MAC-адресов? Каждый производитель получает в координирующем комитете (IEEE Registration Authority) специальный диапазон, состоящий из шестнадцати миллионов (2^24) адресов, по мере истечения которых, запрашивает новый диапазон. Так, по трем старшим байтам MAC-адреса можно определить производителя. Кроме того, существуют специальные таблицы, которые позволяют определить производителя по MAC-адресу.
Все без исключения современные сетевые платы позволяют программным образом изменить MAC-адрес, но если плата будет, к примеру, обесточена, то при сбросе данных, восстановится исходный MAC-адрес.
Разновидности Ethernet
Скорость передачи данных и передающая среда определяют несколько видов технологии Ethernet. Вне зависимости от способа передачи стек сетевого протокола и программы работают одинаково почти во всех вариантах.
Большая часть Ethernet-карт имеет поддержку нескольких скоростей передачи данных (применяется автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами). Если автоопределение не работает, скорость подстраивается под партнера, активируется режим полудуплексной передачи. К примеру, присутствие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 имеет поддержку стандартов 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние версии Ethernet
- Xerox Ethernet — технология с максимальной скоростью в 3 Мбит/с. Существовала в двух вариантах: Version 1 и Version 2. Формат кадра последней версии до сих пор имеет широкое применение.
- 1BROAD36 — технология не получила широкого распространения. Один из первых стандартов, который позволяет работать на больших расстояниях. Использовалась технология широкополосной модуляции (как в кабельных модемах). В качестве среды передачи данных применялся коаксиальный кабель.
- 1BASE5 — технология, также известная, как StarLAN. Стала первой модификацией Ethernet-технологии, в которой использовалась витая пара. Работала на скорости 1 Мбит/с. Коммерчески непопулярна.
10 Мбит/с Ethernet
- 10BASE5, IEEE 802.3 (также имеет название «Толстый Ethernet»). Является первоначальной разработкой, обладающей скоростью передачи данных в 10 Мбит/с. По раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
- 10BASE2, IEEE 802.3a (также имеет название «Тонкий Ethernet»). В данном стандарте применяется кабель RG-58, с максимальной длиной сегмента 185 метров. ПК присоединялись один к другому, для подключения кабеля к сетевой карте требуется T-коннектор, а на кабеле должен быть BNC-коннектор. Также необходимо наличие терминаторов на каждом конце. Долгие годы данный стандарт являлся основным в технологии Ethernet.
- StarLAN 10 - первая разработка, использующая витую пару для передачи данных. Скорость 10 Мбит/с. В дальнейшем данная технология эволюционировала в стандарт 10BASE-T.
Схема, при которой к одному кабелю витой пары подключается более двух устройств, работающих в симплексном режиме, никогда не применялась в Ethernet, однако, в теории это вполне возможно реализовать. Но такой принцип применялся в работе с коаксиальным кабелем. Вот почему все сети на витой паре применяют топологию «звезда», тогда как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, поэтому применять дополнительные внешние терминаторы в линии нет необходимости.
- 10BASE-T, IEEE 802.3i — стандарт, при котором для передачи данных применяется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента составляет 100 метров.
- FOIRL — (Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet. Он использует для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя составляет 1 км.
- 10BASE-F, IEEE 802.3j — главный термин для обозначения семейства 10 Мбит/с ethernet-стандартов, применяющих оптический кабель (расстояние до 2 км.): 10BASE-FL, 10BASE-FB и 10BASE-FP. Однако из всех лишь 10BASE-FL получил широкое распространение.
- 10BASE-FL (Fiber Link) — модернизированная версия стандарта FOIRL. Улучшения коснулись увеличения длины сегмента до 2 км.
- 10BASE-FB (Fiber Backbone) — неиспользуемый в настоящее время стандарт предназначался для объединения повторителей в магистраль.
- 10BASE-FP (Fiber Passive) — стандарт, созданный по топологии «пассивная звезда». В ней не нужны повторители. Стандарт никогда не применялся.
Fast Ethernet (100 Мбит/с)
- 100BASE-T — общий термин для обозначения стандартов, которые используют витую пару в качестве среды передачи данных. Длина сегмента достигает 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
- 100BASE-TX, IEEE 802.3u — усовершенствованный стандарт 10BASE-T, предназначенный для использования в сетях топологии «звезда». Применяется витая пара категории 5, фактически используются только две неэкранированные пары проводников, имеется поддержка дуплексной передача данных. Расстояние до 100 м.
- 100BASE-T4 — стандарт, который использует витую пару категории 3. Задействованы все четыре пары проводников, передача данных осуществляется в полудуплексе. Не используется на практике.
- 100BASE-T2 — стандарт, в котором применяется витая пара категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Не используется на практике.
- 100BASE-SX — стандарт, в котором применяется многомодовое волокно. Максимальная длина сегмента составляет 400 метров в полудуплексе или 2 километра в полном дуплексе.
- 100BASE-FX — в данном стандарте используется одномодовое волокно. Максимальная длина ограничена величиной затухания в оптическом кабеле и мощностью передатчиков. Составляет от 2-х до 10 километров.
- 100BASE-FX WDM — в данном стандарте используется одномодовое волокно. Максимальная длина ограничена лишь величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы делятся на два вида, отличаются длиной волны передатчика и маркируются либо цифрами, либо одной латинской буквой A(1310) или B(1550). В паре могут работать исключительно парные интерфейсы.
Gigabit Ethernet (1 Гбит/с)
- 1000BASE-T, IEEE 802.3ab — стандарт, в котором используется витая пара категории 5e. В передаче данных задействовано 4 пары. Скорость передачи данных составляет 250 Мбит/с по одной паре. В данном стандарте применяется метод кодирования PAM5, частота основной гармоники - 62,5 МГц. Расстояние - до 100 метров.
- 1000BASE-TX - данный стандарт был создан Ассоциацией Телекоммуникационной Промышленности (Telecommunications Industry Association, TIA), был обнародован в марте 2001 года как «Спецификация физического уровня дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6 (ANSI/TIA/EIA-854-2001)» («A Full Duplex Ethernet Specification for 1000 Mbit/s (1000BASE-TX) Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). В стандарте используется раздельная приемо-передача, ввиду чего конструкция приемопередающих устройств значительно упрощается. Также существенным отличием 1000BASE-TX является отсутствие схемы цифровой компенсации наводок и возвратных помех, из-за этого сложность, уровень энергопотребления и цена процессоров сокращается, в сравнении с процессорами стандарта 1000BASE-T. Однако, как следствие, для стабильной работы по такой технологии необходима кабельная система высокого качества. Вот почему 1000BASE-TX может использовать лишь кабель 6 категории. На рынке практически не создавались продукты, построенные на основе данного стандарта, хотя 1000BASE-TX использует более простой протокол (соответственно, более простую электронику), чем стандарт 1000BASE-T.
- 1000BASE-X — общий термин, использующийся для обозначения стандартов со сменными приемопередатчиками GBIC или SFP.
- 1000BASE-SX, IEEE 802.3z — в данном стандарте используется многомодовое волокно. Дальность сигнала (без повторителя) достигает 550 метров.
- 1000BASE-LX, IEEE 802.3z — в данном стандарте используется одномодовое волокно. Дальность сигнала (без повторителя) зависит от типа используемых приемопередатчиков. Обычно она составляет от 5 до 50 километров.
- 1000BASE-CX — данный стандарт используется для коротких расстояний (до 25 метров). В нем применяется твинаксиальный кабель с волновым сопротивлением 75 Ом. Он был заменен стандартом 1000BASE-T, в настоящее время не используется.
- 1000BASE-LH (Long Haul) — в данном стандарте, используется одномодовое волокно. Дальность сигнала (без повторителя) достигает 100 километров.
Ethernet 10G (10 Гбит/с)
Новый 10 Гбит-ный стандарт Ethernet состоит из семи стандартов физической среды для LAN, MAN и WAN. Сегодня он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.
- 10GBASE-CX4 — стандарт 10-гигабитного Ethernet, предназначенный для коротких расстояний (до 15 метров). Применяется медный кабель CX4 и коннекторы InfiniBand.
- 10GBASE-SR — стандарт 10-гигабитного Ethernet, предназначенный для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля). Применяется многомодовое волокно. Также имеется поддержка расстояния до 300 метров, с использованием нового многомодового волокна (2000 МГц/км).
- 10GBASE-LX4 — данный стандарт использует уплотнение по длине волны с целью поддержки расстояний от 240 до 300 метров, по многомодовому волокну. Также имеется поддержка расстояния до 10 километров при использовании одномодового волокна.
- 10GBASE-LR и 10GBASE-ER — данные стандарты поддерживают расстояния до 10 и 40 километров соответственно.
- 10GBASE-SW, 10GBASE-LW и 10GBASE-EW — данные стандарты применяют физический интерфейс, который совместим по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, поскольку в них применяются те же самые типы кабелей и расстояния.
- 10GBASE-T, IEEE 802.3an-2006 — стандарт принят в июне 2006 года, спустя 4 года разработки. В нем используется экранированная витая пара. Расстояние работы — до 100 метров.
Компания Harting объявила о выходе первого в мире 10-гигабитного соединителя RJ-45, который не требует инструментов для установки. Модель получила название HARTING RJ Industrial 10G.
Ethernet: 40 Гбит/с и 100 Гбит/с
По наблюдениям Группы 802.3ba, требования к пропускной полосе для приложений сетевого ядра и прочих вычислительных функций растут с разными скоростями. Это, в свою очередь, определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet: 40GbE и 100GbE.
Внедрение услуг передачи голоса, данных и видеоинформации по единой мультисервисной сети ( Triple Play ) привело к необходимости повышения пропускной способности линий связи . Поэтому была разработана технология Gigabit Ethernet, предусматривающая передачу данных со скоростью 1 Гбит/с. В данной технологии, так же как в Fast Ethernet , была сохранена преемственность с технологией Ethernet : практически не изменились форматы кадров, сохранился метод доступа CSMA /CD в полудуплексном режиме. На логическом уровне используется кодирование 8B/10B .
Поскольку скорость передачи увеличилась в 10 раз по сравнению с Fast Ethernet , то было необходимо либо уменьшить диаметр сети до 20 – 25 м, либо увеличить минимальную длину кадра. В технологии Gigabit Ethernet пошли по второму пути, увеличив минимальную длину кадра до 512 байт , вместо 64 байт в технологии Ethernet и Fast Ethernet . Диаметр сети остался равным 200 м, так же как в Fast Ethernet . Поскольку на практике часто передаются короткие кадры, для снижения непроизводительной загрузки сети разрешается передавать несколько коротких кадров подряд с общей длиной до 8192 байт .
Современные сети Gigabit Ethernet , как правило, строятся на основе коммутаторов и работают в полнодуплексном режиме. В этом случае говорят не о диаметре сети, а о длине сегмента, которая определяется физической средой передачи данных . Gigabit Ethernet предусматривает использование:
- одномодового оптоволоконного кабеля ( 802.3z );
- многомодового оптоволоконного кабеля ( 802.3z );
- симметричного кабеля UTP категории 5 ( 802.3ab );
- коаксиального кабеля .
При передаче данных по оптоволоконному кабелю в качестве излучателей применяются либо светодиоды, работающие на длине волны 830 нм, либо лазеры на длине волны 1300 нм. В соответствии с этим стандарт 802.3z определил две спецификации – 1000Base-SX и 1000Base- LX. Максимальная длина сегмента, реализованного на многомодовом кабеле 62,5/125 спецификации 1000Base-SX, составляет 220 м, а на кабеле 50/125 – не более 500 м. Максимальная длина сегмента, реализованного на одномодовом волокне спецификации 1000Base-LX, составляет 5000 м. Длина сегмента на коаксиальном кабеле не превышает 25 м.
Для использования уже имеющихся симметричных кабелей UTP категории 5 был разработан стандарт 802.3ab. Поскольку в технологии Gigabit Ethernet данные должны передаваться со скоростью 1000 Мбит/с, а витая пара 5-й категории имеет полосу пропускания 100 МГц, было решено передавать данные параллельно по 4 витым парам и задействовать UTP категории 5 или 5е с шириной полосы более 125 МГц. Таким образом, по каждой витой паре необходимо передавать данные со скоростью 250 Мбит/с, что в 2 раза превышает возможности UTP категории 5е. Для устранения этого противоречия используется код 4D-PAM5 с пятью уровнями потенциала (-2, -1, 0, +1, +2). По каждой паре проводов одновременно производится передача и прием данных со скоростью 125 Мбит/с в каждую сторону. При этом происходит постоянная коллизия , при которой формируются сигналы сложной формы пяти уровней. Разделение входного и выходного потоков производится за счет использования схем гибридной развязки H ( рис. 5.3). В качестве таких схем применяются сигнальные процессоры. Для выделения принимаемого сигнала приемник вычитает из суммарного (передаваемого и принимаемого) сигнала собственный передаваемый сигнал.
Таким образом, технология Gigabit Ethernet обеспечивает высокоскоростной обмен данными и применяется главным образом для передачи данных между подсетями, а также для обмена мультимедийной информацией. Стандарт IEEE 802 .3 рекомендует, что технология Gigabit Ethernet с передачей данных по волокну должна быть магистральной ( backbone ).
Рис. 5.3. Передача данных по 4 парам UTP категории 5
Временные интервалы, формат кадра и передача являются общими для всех версий 1000 Мбит/с. Физический уровень определяют две схемы кодирования сигнала ( рис. 5.4). Схема 8B/10B используется для оптического волокна и медных экранированных кабелей. Для симметричных кабелей UTP применяется модуляция амплитуды импульсов (код PAM5).
В волоконно-оптических линиях используют логическое кодирование 8B/10B и линейное кодирование ( NRZ ).
Рис. 5.4. Спецификации технологии Gigabit Ethernet
Сигналы NRZ передаются по волокну, задействуя либо коротковолновые ( short - wavelength ), либо длинноволновые ( long-wavelength ) источники света. В качестве коротковолновых источников используются светодиоды с длиной волны 850 нм для передачи по многомодовому оптическому волокну (1000BASE-SX). Этот менее дорогостоящий вариант применяется для передачи на короткие расстояния в 200-300 м. Длинноволновые лазерные источники (1310 нм) используют одномодовое или многомодовое оптическое волокно (спецификация 1000BASE-LX). Лазерные источники в совокупности с одномодовым волокном способны передавать информацию на расстояние до 5000 м.
В соединениях " точка-точка " ( point-to-point ) для передачи (Tx) и приема (Rx) задействованы раздельные волокна, поэтому реализуется полнодуплексная связь . Технология Gigabit Ethernet позволяет устанавливать только единственный ретранслятор между двумя станциями. Ниже приведены параметры технологий 1000BASE (таблица 5.3).
Сети технологии Gigabit Ethernet , как правило, строятся на основе коммутаторов , когда расстояние полнодуплексных соединений ограничено только средой, а не временем двойного оборота. При этом используются топология " звезда " или "расширенная звезда ".
Стандарт 1000BASE-T предусматривает применение практически такого же кабеля UTP , что и стандарты 100BASE-T и 10BASE -T. Кабель UTP технологии 1000BASE-T такой же, как кабель 10BASE -T и 100BASE-TX , за исключением того, что рекомендовано использовать кабель категории 5e. Предельная длина кабеля аппаратуры 1000BASE-T не превышает 100 м.
5.3. Технология 10-Gigabit Ethernet
Технология 10- Gigabit Ethernet (10GbE) описывается стандартом IEEE 802.3ae, который определяет полнодуплексную передачу данных со скоростью 10 Гбит/с по волоконно-оптическому кабелю. Максимальные расстояния передачи зависят от типа применяемого волокна. Используя одномодовое волокно как среду передачи , максимальное расстояние передачи – 40 километров. В настоящее время разрабатываются стандарты для технологий Ethernet со скоростью передачи 40 Гбит/с, 80 Гбит/с и 160- Гбит/с.
Стандарт 10GbE на физическом уровне позволяет увеличить расстояние связи до 40 км по одномодовому волокну и обеспечить совместимость с сетями синхронной цифровой иерархии ( SDH ) и фотонными сетями, использующими уплотнение по длине волны DWDM . Функционирование на 40-километровом расстоянии, скорость передачи до 10 Gbps и совместимость с системами SDH делает технологию 10GbE не только технологией локальных, но и технологией глобальных сетей. Таким образом, стандарт развивается не только для LAN , но также для MAN и WAN . Поскольку в технологии 10GbE задействована только полнодуплексная связь , в режиме CSMA /CD нет необходимости. Следовательно, в сетях исключается использование концентраторов hub .
Стандарт 802.3ae управляет семейством 10GbE, которое включает следующие новые технологии:
- 10GBASE-SR – для коротких расстояний по уже установленному многомодовому волокну, поддерживает связь на расстоянии от 26 м до 82 м;
- 10GBASE-LX4 – использует технологию уплотнения по длины волне ( WDM ), поддерживает связь на расстоянии от 240 м до 300 м по уже установленному многомодовому волокну и до 10 км по одномодовому волокну;
- 10GBASE-LR и 10GBASE-ER – обеспечивает связь от 10 км до 40 км по одномодовому волокну;
- 10GBASE-SW, 10GBASE-LW и 10GBASE-EW – технологии с общим названием 10GBASE-W ; предназначены, чтобы обеспечить работу оборудования глобальных сетей с модулями SONET / SDH .
Для 10- Gigabit Ethernet не предусмотрены повторители , поскольку полудуплексный режим не поддерживается.
Ниже приведены некоторые параметры спецификаций технологии 10GbE.
В заключение следует отметить, что в настоящее время технология Ethernet является стандартом для различных соединений: горизонтальных, вертикальных и связи между зданиями. Новые версии Ethernet стирают различие между локальными и глобальными сетями. Трудно назвать сеть локальной, когда в сегменте, использующим технологию 10GbE, передаются данные на расстояние в 40 км.
В сетях Ethernet передача информации производится по трем составляющим сетевой среды:
- по медным кабелям со скоростью примерно 1000 Мбит/с, и возможно больше;
- по беспроводной среде (радиоканалы) – примерно 100 Мбит/с и больше;
- по оптическим кабелям со скоростью примерно 10000 Мбит/с и в ближайшем будущем до 100 Гбит/с и больше.
Медная и беспроводная среда имеют определенные физические и практические ограничения на высокочастотные сигналы. В волоконнооптических системах ограничивающим фактором является электронная технология и производственные процессы волокна.
В ранних версиях технологии Ethernet , использующих концентраторы в полудуплексном режиме, с возможностью возникновения коллизий ( CSMA /CD), не рассматривался вопрос качества обслуживания ( QoS ). Однако на современном этапе при передаче определенных видов трафика, например IP-телефонии и видео, этот вопрос стал очень важным. Полнодуплексные быстродействующие технологии ( Gigabit Ethernet , 10GbE) обеспечивают достаточную поддержку разнообразных приложений. Это расширяет потенциальные приложения Ethernet -совместимых технологий.
Твинаксиальный кабель , или "Твинакс" , представляет собой тип кабеля, подобного коаксиальному кабелю , но с двумя внутренними проводниками вместо одного. Из-за экономической эффективности это становится обычным явлением в современных (2013 г.) приложениях высокоскоростной дифференциальной сигнализации с очень коротким радиусом действия .
СОДЕРЖАНИЕ
Устаревшие приложения
Исторически Twinax был кабелем, предназначенным для терминалов и принтеров IBM 5250 , который использовался с хостами среднего уровня IBM System / 34 , System / 36 , System / 38 и IBM AS / 400 , а также с машинами IBM Power Systems под управлением IBM i . Передача данных полудуплексная, сбалансированная, со скоростью 1 Мбит / с, по одной экранированной витой паре 110 Ом.
С Twinax можно адресовать семь устройств, от адреса рабочей станции от 0 до 6. Устройства не обязательно должны быть последовательными.
Twinax - это шинная топология, для правильной работы которой требуется терминирование. Большинство тройников Twinax имеют функцию автоматического подключения. Для использования в зданиях с витой парой категории 3 или выше существуют балуны, которые преобразуют Twinax в витую пару, и концентраторы, которые преобразуют топологию шины в топологию звезды.
Twinax был разработан IBM. Его основными преимуществами были высокая скорость (1 Мбит / с против 9600 бит / с) и наличие нескольких адресуемых устройств на одно соединение. Основным недостатком было требование использовать проприетарные кабели Twinax с громоздкими винтовыми разъемами.
Физический слой
Сигналы передаются дифференцированно по проводам со скоростью 1 Мбит / с (1 мкс / бит ± 2%), в манчестерском коде , с упреждением . Кодирование сигнала является только приблизительно дифференциальным и не полностью дифференциально сбалансированным. Как правило, на одну из двух сигнальных линий подается напряжение -0,32 В ± 20%, а на другой - 0 В. Это само по себе можно рассматривать как два дифференциальных сигнала ± 0,16 В, наложенных на синфазный уровень -0,16 В. . Однако, чтобы сделать упор, в течение первых 250 нс (время 1/4 бита) после того, как сигнал переходит в низкий уровень, отрицательная сигнальная линия приводится в состояние -1,6 В. В течение этого времени синфазное напряжение составляет -0,8 В.
Этот сигнал предназначен для обеспечения минимум ± 100 мВ на конце кабеля длиной 152 м (500 футов).
Два провода обозначены A и B. Для кодирования бита 0 A> B для первой половины битового времени и A <B для второй половины. 1 бит - это наоборот. Таким образом, на каждую сигнальную линию подается низкий уровень на 500 или 1000 нс за раз, из которых выделяются первые 250 нс.
Уровень канала передачи данных
Когда команда требует ответа, ожидается, что устройство ответит через 30–80 мкс. Ответ устройства также состоит из 256 кадров и включает его адрес во все кадры, кроме последнего. В этом случае однокадровый ответ включает адрес EOM, и контроллер предполагает, что он исходит от устройства, к которому он обращался последним.
MIL-STD-1553
MIL-STD-1553 указывает, что характеристическое сопротивление шины данных должно составлять от 70 до 85 Ом, в то время как в промышленности стандартизовано 78 Ом. Точно так же в отрасли стандартизован кабель, известный как твинаксиальный кабель, с характеристическим импедансом 78 Ом.
Текущие приложения
SFP + Медь с прямым подключением (10GSFP + Cu)
Это медный кабель 10 Gigabit Ethernet, который поставляется в виде активной или пассивной кабельной сборки Twinax (твинаксиальный) и подключается непосредственно к корпусу SFP + . Активный кабель Twinax имеет активные электронные компоненты в корпусе SFP + для улучшения качества сигнала; Пассивный кабель Twinax в основном представляет собой прямой «провод» и содержит несколько компонентов. Как правило, твинаксиальные кабели короче 7 метров являются пассивными, а кабели длиной более 7 метров - активными, но это может варьироваться от поставщика к поставщику. SFP + Direct Attach Copper (DAC) - популярный выбор для сетей 10G Ethernet, длина которых достигает 10 м из-за низкой задержки и низкой стоимости.
Одно из основных приложений - подключение сетевого оборудования через интерфейсы SFP +. Этот тип соединения позволяет передавать со скоростью полнодуплексного режима 10 гигабит / с на расстояние 5 метров. Более того, эта установка предлагает в 15-25 раз меньшую задержку приемопередатчика, чем существующие кабельные системы 10GBASE-T Cat 6 / Cat 6a / Cat 7 : 0,1 мкс для Twinax с SFP + по сравнению с 1,5 до 2,5 мкс для текущей спецификации 10GBASE-T. Потребляемая мощность Twinax с SFP + составляет около 0,1 Вт, что также намного лучше, чем 4–8 Вт для 10GBASE-T.
Как всегда с кабельной разводкой, одним из важных моментов является коэффициент ошибок по битам (BER). Согласно Cisco, твинаксиальный медный кабель имеет BER выше 10–18 , поэтому он приемлем для приложений в критических средах.
Размер кабеля AWG | Устойчивый радиус изгиба |
---|---|
24 | 1,5 дюйма (38 мм) |
26 год | 1,3 дюйма (33 мм) |
28 год | 1.0 дюймов (25 мм) |
30 | 0,9 дюйма (23 мм) |
Кабели не должны изгибаться ниже минимального радиуса изгиба , который зависит от размера кабеля, выраженного в AWG . В таблице справа приведены минимальные значения, обычно допускаемые для устойчивых радиусов изгиба SFP + .
Этот SFP + Twinax DAC также упоминается некоторыми производителями как «10GBASE-CR», хотя IEEE или другой стандарт с таким названием не существует.
100 Гбит Ethernet
Физические уровни 40GBASE-CR4 и 100GBASE-CR10 с использованием двухосевого кабеля длиной 7 м разрабатываются рабочей группой IEEE 802.3bj как часть спецификаций 100 Gbit Ethernet ; ЦАП QSFP28 100 Гбит / с является основным типом для этого приложения.
Кабели SATA 3.0
Кабели SATA 3.0 реализованы с использованием Twinax (твинаксиальный кабель).
DisplayPort
Многие производители кабелей DisplayPort также используют конфигурации Twinax для соответствия строгим требованиям вносимых потерь, возвратных потерь и перекрестных помех для скорости передачи сигналов 2,7 Гбит / с.
MIL-STD-1553
Кабель, используемый для соединения шины MIL-STD-1553 и заглушек, имеет характеристическое сопротивление 78 Ом на частоте 1 МГц. Двухжильный кабель типа «витая пара», известный как Twinax, используется для соединения шины и оконечных устройств. Изолированные пары сбалансированы и имеют общую экранирующую оплетку вокруг пар. Скручивание пар, несущих сигнал, теоретически нейтрализует любой случайный наведенный шум, вызванный парой. Два внутренних диэлектрических наполнителя отделяют оплетку от пар, чтобы минимизировать емкость утечки на землю. Наполнители также способствуют равномерному скручиванию пар. Покрытие оплеткой на 90% защищает пару от внешнего шума. Кабель с внешней оболочкой из ПВХ подходит для использования в лаборатории, а кабель с внешней оболочкой, рассчитанный на высокие температуры, - для использования в транспортных средствах.
Читайте также: