В какой системе счисления выполняет арифметические расчеты компьютер
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).
- непозиционными (в этих системах значение цифры не зависит от ее позиции — положения в записи числа);
- позиционными (значение цифры зависит от позиции).
Непозиционные системы счисления
Позиционные системы счисления
Основание системы счисления — количество различных цифр, используемых в этой системе. Вес разряда — отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разрядеpi = s i ,
где i — номер разряда, а s — основание системы счисления.
Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:
Перевод в десятичную систему счисления
По определению веса разряда
pi = s i ,
где i — номер разряда, а s — основание системы счисления.
Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:
Например, для системы счисления с основанием 4:
1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1
Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:
1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5
Таким образом, для перевода числа из любой системы счисления в десятичную следует:
- пронумеровать разряды исходного числа;
- записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
- выполнить вычисления и записать полученный результат (указав основание новой системы счисления — 10).
Примеры:
Перевод из десятичной системы счисления
Вспомним пример перевода из системы счисления с основанием 4 в десятичную:
13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114
Иначе это можно записать так:
114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024
Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно
Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.
В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:
- Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
- Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)
Примеры:
Системы счисления с кратными основаниями
При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.
Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.
Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )
Арифметика
Арифметические операции в позиционной системе с любым основанием производятся по одним и тем же правилам: сложение, вычитарние и умножение «в столбик», а деление — «уголком». Рассмотрим пример выполнения действий сложения и вычитания в двоичной, восьмеричной и шестнадцатеричной системах счисления.Сложение
В первом разряде: 1 + 1 = 2. 2 переносится в старший (2-й) разряд, обращаясь в единицу переноса. В первом разряде остается 2 - 2 = 0. Во втором разряде: 0 + 1 + 1 (перенос) = 2; Переносим в старший разряд, В третьем разряде: 1 + 1 + 1 (перенос) = 3; В старший разряд переносим 2, здесь остается 3 - 2 = 1. Выполняем вычисления аналогично двоичной системе, но в старший разряд переносим 8. Получаем:Вычитание
Во втором разряде: 0 - 1; необходимо занять единицу старшего разряда. Поскольку веса разрядов двоичной системы отличаются в 2 раза: 2 + 0 - 1 = 1 Из третьего разряда занимали единицу, там остался 0, поэтому вновь нужно занимать из старшего разряда. Выполняем вычисления аналогично двоичной системе, но, занимая из старшего разряда, получаем 8. В результате:1. Системы счисления
Основные понятия
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).
- непозиционными (в этих системах значение цифры не зависит от ее позиции — положения в записи числа);
- позиционными (значение цифры зависит от позиции).
Непозиционные системы счисления
Позиционные системы счисления
Основание системы счисления — количество различных цифр, используемых в этой системе. Вес разряда — отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разрядеpi = s i ,
где i — номер разряда, а s — основание системы счисления.
Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:
Перевод в десятичную систему счисления
По определению веса разряда
pi = s i ,
где i — номер разряда, а s — основание системы счисления.
Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:
Например, для системы счисления с основанием 4:
1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1
Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:
1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5
Таким образом, для перевода числа из любой системы счисления в десятичную следует:
- пронумеровать разряды исходного числа;
- записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
- выполнить вычисления и записать полученный результат (указав основание новой системы счисления — 10).
Примеры:
Перевод из десятичной системы счисления
Вспомним пример перевода из системы счисления с основанием 4 в десятичную:
13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114
Иначе это можно записать так:
114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024
Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно
Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.
В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:
- Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
- Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)
Примеры:
Системы счисления с кратными основаниями
При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.
Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.
Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )
Здравствуйте. Если вы собираетесь изучить язык программирования python или любой другой язык, Вам необходимо знать, как компьютер хранит и обрабатывает числа. В привычной для нас системе исчисления десять знаков от 0 до 9, и называется она десятичной. А почему именно десять цифр? Видимо потому, что первобытные люди, которые изобрели эту систему, пользовались для счета пальцами рук.
Существует так же восьмиричная система исчисления. Она имеет только восемь цифр от 0 до 7. Есть еще и шестнадцатиричная система исчисления. В ней используются шестнадцать цифр. Для обозначения первых десяти цифр применяются цифры от 0 до 10, а недостающие шесть цифр дополняют буквами A, B, C, D, E, F. Но мы на них останавливаться не будем.
Сегодня поговорим о двоичной системе исчисления. Для записи любого числа используются две цифры 0 и 1. Процессор компьютера состоит из миллиардов маленьких транзисторов, которые имеют состояние логического нуля 0 – когда напряжение на выходе отсутствует, и состояние логической единицы 1 – когда на выходе присутствует напряжение. Компьютеру удобно использовать данную систему.
В привычной для нас десятичной системе, если нам нужно записать число меньше десяти, мы используем всего одну цифру. Для записи числа от 10 и 99, мы вводим новый разряд, который сначала мы приравниваем единице. Подставляя в младший разряд те же цифры от 0 до 9, после 9 опять идет 0 и мы получаем новый десяток. Когда во втором разряде мы дойдем до 99, вводим третий разряд от 100 до 999, потом четвертый, пятый и т. д.
В двоичной системе действует то же правило, только для записи числа используются две цифры 0 и 1. Поэтому, при увеличении на один, после 1 снова идёт 0, и при этом вводим следующий разряд. В двоичной системе числа от 0 до 10 выглядят так: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001.
Для выполнения операций над числами компьютер:
Переводит число из десятичной системы в двоичную;
выполняет необходимые операции (например, сложение);
результат обратно переводит в десятичную систему и выдает нам.
Давайте рассмотрим несколько примеров как можно число из десятичной системы исчисления, перевести в двоичную систему исчисления:
Возьмем число 123 и воспользуемся методом последовательным делением на число 2
Изучение любого языка высокого уровня обычно начинается с освоения основных команд и написания первых простейших программ. Но с ассемблером так сразу не получится. Это объясняется тем, что программы на ассемблере напрямую манипулируют устройствами компьютера, в первую очередь процессором и памятью. Языки высокого уровня скрывают от программиста все манипуляции с компьютерным «железом». Таким образом, чтобы научиться программировать на ассемблере, необходимо знать архитектуру компьютера.
1.1. Архитектура компьютера.
Успешное применение языка ассемблера невозможно без знания и понимания архитектуры компьютера и знания архитектуры конкретного процессора, для которого будет создаваться программа.
Архитектура компьютера – это логическая организация, структура и ресурсы компьютера, которые может использовать программист.
Архитектура компьютера включает в себя архитектуры отдельных устройств, входящих в компьютер. Хотя компьютер состоит из многих внешних и внутренних устройств, но реально программисту на ассемблере приходится работать только с тремя устройствами компьютерной системы: процессором, памятью и портами ввода-вывода. В сущности, эти три устройства определяют работу всего компьютера и работу всех внешних устройств подключенных к нему. Все эти три устройства соединены между собой при помощи трех основных шин: шиной данных (ШД), шиной адреса (ША) и шиной управления (ШУ) (рис. 1).
Рис. 1. Архитектура ЭВМ.
Процессор — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.
Оперативная память предназначена для загрузки программ и для временного хранения различных данных, необходимых для работы программ.
Порты ввода-вывода предназначены для взаимодействия с пользователем и другими устройствами.
Шина (bus) – это группа параллельных проводников, с помощью которых данные передаются от одного устройства к другому:
- Шина данных (data bus) используется для обмена команд и данных между процессором и оперативной памятью, а также между устройствами ввода-вывода и ОЗУ.
- Шина управления (control bus) используется для передачи специальных сигналов, которые синхронизируют работу всех устройств, подключенных к системной шине. Например, процессор должен знать, когда можно читать информацию с шины данных. Для этого используется специальный сигнал готовности шины данных.
- Шина адреса (address bus) используется для указания адреса ячейки памяти в ОЗУ, к которой в текущий момент происходит обращение со стороны процессора или устройства ввода-вывода (чтение или запись).
Все три шины вместе образуют системную шину или ее еще называют магистраль.
1.2. Системы счисления.
Слово "компьютер" (computer) с английского языка переводится как "вычислитель", т. е. машина для проведения вычислений. И это полностью соответствует действительности, т. к. на уровне "железа" компьютер выполняет только простейшие арифметические операции с числами, такие как сложение и умножение.
Сердцем компьютера является процессор, называемый часто центральным процессором (ЦП) или микропроцессором. Именно центральный процессор выполняет все вычисления.
Так исторически сложилось, что практически все цифровые микросхемы, в том числе компьютерные процессоры, работают только с двумя разрешенными уровнями напряжения. Один из этих уровней называется уровнем логической единицы (или единичным уровнем), а другой — уровнем логического нуля (или нулевым уровнем). Чаще всего логическому нулю соответствует низкий уровень напряжения (от 0 до 0,4 В), а логической единице — высокий уровень (от 2,4 до 5 В). Два уровня напряжения было выбрано исключительно из-за простоты реализации.
Таким образом, можно образно представлять, что в электронной цепи компьютера "бегают" только цепочки ноликов и единичек. За этими цепочками нулей и единичек закрепилось название машинные коды. Точно также можно представлять, что в память компьютера, а также на магнитные, оптические и прочие носители записываются нолики и единички, которые в совокупности составляют хранимую информацию.
То есть компьютер способен воспринимать только нолики и единички, а для нас (людей) эти нолики и единички представляются через устройства вывода (дисплеи, принтеры, звуковые колонки и пр.) в виде текста, графических изображений и звуков.
Так как компьютер способен воспринимать только два управляющих сигнала: 0 и 1, то и любая программа должна быть ему представлена только в двоичных кодах, т. е. в машинных кодах. В старые добрые времена операторы первых ЭВМ программировали напрямую в машинных кодах, переключая специально предусмотренные для этого тумблеры, или пробивали двоичные коды на перфолентах и перфокартах, которые затем считывала ЭВМ и выполняла операции согласно этим кодам.
Однако записывать и запоминать огромные двоичные цепочки, первым программистам было неудобно, поэтому они стали вместо двоичной системы использовать другие системы счисления, например десятичную, восьмеричную или шестнадцатеричную. Для сравнения: двоичное число 11001000 будет представлено в десятичном виде как 200, а в восьмеричной и шестнадцатеричной соответственно как 310 и С8.
Стоит еще раз отметить, что недвоичные системы счисления первые программисты стали использовать исключительно для личного удобства. Компьютер не способен воспринимать десятичные, шестнадцатеричные или восьмеричные числа, а только и только двоичные коды!
Таким образом, операторы первых ЭВМ стали составлять свои программы в более удобной системе счисления (восьмеричной, шестнадцатеричной или другой), а потом переводить их в двоичный машинный код. Наибольшее распространение у первых программистов из всех систем счисления получила шестнадцатеричная система счисления, которая до сих пор является основной в компьютерном мире. И все из-за того, что в отличие от других систем счисления перевод из шестнадцатеричной системы счисления в двоичную систему и обратно осуществляется очень легко — вместо каждой шестнадцатеричной цифры, подставляется соответствующее четырехзначное двоичное число.
Хотя шестнадцатеричная система облегчила работу с машинными кодами, но создавать программу в шестнадцатеричном виде все равно очень не просто. В итоге родился язык ассемблера, который давал возможность писать программы на более понятном человеку языке и в то же время позволял легко переводить их в машинный код.
Язык ассемблера прозвали низкоуровневым языком, потому что он максимально приближен к машинному языку, а значит к "железу" компьютера. После языка ассемблера стали появляться высокоуровневые языки, такие как Бейсик, Паскаль, Фортран, Си, С++ и пр. Они еще более понятны человеку, но преобразование в машинный код высокоуровневых программ значительно сложнее, из-за чего размер кода, как правило, получается большим и менее быстрым по сравнению с ассемблерными программами.
Если операторы первых ЭВМ переводили свои программы в машинный код вручную, то сейчас эту работу выполняют специальные программы— трансляторы (англ, translator — переводчик). Для языков высокого уровня транслятор принято называть компилятором (англ, compiler — составитель, собиратель). Для языка ассемблера обычно тоже не используется слово транслятор, а говорят просто: "ассемблер". Таким образом, ассемблером называют, как язык программирования, так и транслятор этого языка.
Соответственно процесс работы ассемблера называют ассемблированием. Процесс работы компилятора называют компилированием. Процесс обратный ассемблированию, т. е. преобразование машинного кода в программу на языке ассемблера называют дизассемблированием.
1.3. Биты и байты.
Цифра в двоичной арифметике называется разрядом (или точнее "двоичным разрядом") и может принимать значение ноль или единица. В компьютерном мире вместо разряда часто употребляют название бит.
Таким образом, минимальной единицей информации в компьютерной системе является бит, который может принимать только значение 0 или 1. Однако минимальным объемом данных, которым позволено оперировать любой компьютерной программе является не бит, а байт. Байт состоит из восьми бит. Если программе нужно изменить значение только одного бита, то она все равно должна считать целый байт, содержащий этот бит. Биты в байте нумеруются справа налево от 0 до 7, при этом нулевой бит принято называть младшим, а седьмой — старшим (рис. 2).
Так как в байте всего восемь бит, а бит может принимать только два значения, то простой арифметический подсчет показывает, что байт может принимать до 2 8 =256 различных значений. Поэтому в байте могут быть представлены целые числа в диапазоне от 0 до 255, или числа со знаком от -128 до +127.
Однако не только байтами может оперировать компьютерная программа, но и более крупными единицами данных— словами, двойными словами и учетверенными словами. Слово состоит из двух байт, при этом биты с 0 по 7 составляют младший байт в слове, а биты с 8 по 15— старший (рис. 3). Понятно, что слово может принимать до 2 16 =65536 различных значений.
Двойное слово, как следует из самого названия, состоит из двух слов или четырех байт, а значит из 32-х бит, а два двойных слова составляют учетверенное слово (64 бита).
Существует еще более крупная единица, которая называется параграф и представляет собой 16 смежных байт.
Алфавит системы счисления — это перечень символов, используемый в конкретной системе счисления.
Основание системы счисления — это количество символов в её алфавите.
В системах счисления, которые содержат больше \(10\) знаков, после цифры \(9\) начинаются латинские буквы. \(10\), \(11\), \(12\) использовать мы не можем, т. к. это уже числа, а для продолжения алфавита нужны ещё цифры, поэтому было принято использовать латинские буквы.
Это самая распространённая система счисления в мире. Её применяют для повседневного счёта. Для записи чисел используются арабские цифры \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), \(6\), \(7\), \(8\), \(9\).
Любое число позиционной системы счисления можно записать в развёрнутом виде. То есть в виде суммы произведений цифр числа на основание этой системы счисления с соответствующей степенью.
Представим десятичное число \(652,17\) в развёрнутом виде.
Сначала пронумеруем разряды числа, начиная с младшего — единиц. Нумерацию начинаем с \(0\). Цифра \(2\) находится в разряде единиц, ставим над ней \(0\), далее разряд десятков — над цифрой \(5\) ставим \(1\) и т. д.
Запишем сумму произведений цифр числа на основание системы счисления с соответствующей степенью:
652,17 10 = 6 × 10 2 + 5 × 10 1 + 2 × 10 0 + 1 × 10 − 1 + 7 × 10 − 2 .
Двоичные числа получили широкое применение в компьютерной технике. Два значения, используемые в двоичной системе счисления, позволяют идентифицировать два состояния: есть ток (\(1\)), нет тока (\(0\)); использовать булеву алгебру для работы логических устройств; легко производить арифметические операции.
Запишем двоичное число \(111001,101\) в развёрнутом виде.
111001,101 2 = 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 + 1 × 2 − 1 + 0 × 2 − 2 + 1 × 2 − 3 .
Восьмеричная и шестнадцатеричная системы счисления
У двоичной системы счисления есть один недостаток. Разряды чисел очень быстро растут. Поэтому в компьютерной технике стали широко применять восьмеричную и шестнадцатеричную системы счисления. Компьютер легко переводит числа из одной системы счисления в другую.
Рассмотрим развёрнутую запись восьмеричного числа \(452,214\).
452,214 8 = 4 × 8 2 + 5 × 8 1 + 2 × 8 0 + 2 × 8 − 1 + 1 × 8 − 2 + 4 × 8 − 3 .
Знание алгоритма записи развёрнутой формы числа пригодится нам в будущем для перевода чисел из любой позиционной системы счисления в десятичную.
В вычислительной технике используются позиционные системы счисления. Позиционная система счисления определяется целым числом b > 1, называемым основанием системы счисления. Система счисления с основанием b также называется b-ричной (в частности, двоичной, троичной, десятичной и т. п.). Целое число x в b-ричной системе счисления представляется в виде конечной линейной комбинации степеней числа b:[1]
Каждая степень в такой записи называется разрядом (позицией), старшинство разрядов и соответствующих им цифр определяется значением показателя степени . Обычно для ненулевого числа требуют, чтобы старшая цифра в b-ричном представлении была также ненулевой.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его b-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:[1]
Построение такой записи числа называют позиционным кодированием числа, а саму запись — позиционным кодом числа. Например, число сто три представляется в десятичной системе счисления в виде:
Во избежание путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса:
С помощью n позиций в b-ричной системе счисления можно записать целые числа от 0 до bn − 1, то есть, всего bn различных чисел.
Позиционные системы счисления
(1) или , где p — основание системы счисления, целое положительное число; a — cимвол (цифра); n — номер старшего разряда числа. Обозначения цифр берутся из алфавита, который содержит p символов. Каждой цифре соответствует определенный количественный эквивалент. Обозначение ak следует понимать как цифру в k-м разряде. Всегда выполняется неравенство: ak<p. Запись A(p) указывает, что число А представлено в системе счисления с основанием р: (2)
(3) Например, число 101101(2) можно записать так: 101101(2) = 1*25+0*24+1*23+1*22+0*21+1*20 Двоичная система счисления имеет особую значимость в информатике: внутреннее представление любой информации в компьютере является двоичным, т.е. описывается набором символов только из двух знаков 0 и 1. Шестнадцатеричная система счисления имеет набор цифр , p = 16. Для изображения чисел в шестнадцатеричной системе счисления требуются 16 цифр. Для обозначения первых десяти цифр используются цифры десятичной системы счисления, шесть остальных — первых шесть прописных букв латинского алфавита. По формуле (1) шестнадцатеричное число может быть представлено так: (4) Пример 1. Число E7F8140 по формуле (4) запишется так:
k 1 2 3 4 5 6 7 8 9 10 11 12 2k 2 4 8 16 32 64 128 256 512 1024 2048 4096 16k 16 256 4096 65536 1048576 Соответствие чисел в различных системах счисления Десятичная Шестнадцатеричная Двоичная 0 0 0 1 1 1 2 2 10 3 3 11 4 4 100 5 5 101 6 6 110 7 7 111 8 8 1000 9 9 1001 10 A 1010 11 B 1011 12 C 1100 13 D 1101 14 E 1110 15 F 1111
В вычислительной технике наиболее часто выполняется операция сложения. Пусть заданы два целых положительных числа в позиционной системе счисления с основанием р. Запишем эти числа в виде: (5) (6) Сумма этих чисел равна числу, которое может быть записано в аналогичном виде: (7)
• операция сложения выполняется поразрядно, начиная с младших разрядов в слагаемых; • в каждом одноименном разряде слагаемых суммируются соответствующие цифры и перенос из предыдущего разряда суммы; • если сумма цифр одноименных разрядов слагаемых и переноса меньше основания системы счисления, то перенос в следующий разряд равен нулю, если равна или больше — то равен единице.
Правила сложения Правила вычитания Правила умножения 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 0 - 0 = 0 0 - 1 = -1 1 - 0 = 1 1 - 1 = 0 0 * 0 = 0 1 * 0 = 0 0 * 1 = 0 1 * 1 = 1 Примеры 1. Сложить два числа: 1010(2) + 10101(2) = 11111(2) 2. Найти разность двух чисел 10101(2) и 1010(2): 10101(2) - 1010(2) = 1011(2) 3. Умножить два числа 1011(2) и 101(2): 1011(2) * 101(2) = 110111(2)
1. Последовательно делить заданное число и получаемые целые части на новое основание счисления (р) до тех пор, пока целая часть не станет меньше нового основания счисления. 2. Полученные остатки от деления, представленные цифрами из нового счисления, записать в виде числа, начиная с последней целой части.
12345667(8) = 001 010 011 100 101 110 110 111(2) =
1100111(2) = 001 100 111(2) = 147(8).
12345ABCDEF(16) = 1 0010 0011 0100 0101 1010 1011 1100 1101 1110 1111(2); 11001111010 1110(2) = 0110 0111 1010 1110(2) = 67AF(16).
Читайте также: