Трехфазный обогреватель с вентилятором схема подключения
Прежде всего, нужно исследовать помещение, в котором планируется установить тепловентилятор. Зачем это нужно? Ответ очевиден – если это не продумать, то даже правильный подбор мощности тепловентилятора, не сможет обеспечить быстрый и эффективный прогрев помещения.
Поток нагретого воздуха, должен равномерно распределяться по всему помещению. Чем меньше, на его пути препятствий, тем лучше будет прогреваться помещение. Немаловажным будет и экономия, на количестве тепловентиляторов (к примеру, можно установить один более мощный, вместо двух, с меньшей производительностью), и соответственно на материале, для их обвязки.
Приведу несколько вариантов расположения водяных тепловентиляторов, рекомендуемых производителями.
Как видно на фото, можно расположить тепловентиляторы:
- На потолке помещения;
- На стене;
- В углу помещения.
Конечно, всё зависит от специфики помещения и от его конфигурации. Принять решение о месте установки тепловентилятора можно, повторюсь, учтя все эти моменты.
Схема подключения электрического калорифера
Калорифер электрический ЭКОЦ. Схема электрическая.
Недавно пришлось мне подключать электрический калорифер ЭКОЦ-25. Его фото и параметры можно легко найти в интернете, а схема приведена в начале статьи.
Калорифер состоит из корпуса, в котором установлены три ступени электронагревателей и электродвигатель вентилятора. Вентилятор калорифера засасывает уличный воздух, ТЭНы его нагревают, и далее воздух поступает в обогреваемое помещение.
Как следует из названия, главный параметр – мощность калорифера – имеет значение 25 кВт. Кроме того, калорифер – источник повышенной пожароопасности, поэтому к его установке и подключению надо подходить ответственно.
ТЭНы в таких схемах, как правило, включены в систему “Звезда”, напряжение каждого ТЭНа – 220В. Подробнее рассказано в статье про системы Звезда и Треугольник, которые используются в однофазной и трехфазной сетях 220 В и 380 В.
Предыдущий калорифер имел примерно такую же мощность, и был подключен по такой схеме:
Как нельзя подключать калорифер. Неправильная схема промышленного калорифера на 380 В.
Как видно из схемы, двигатель вентилятора (воздуходува) мощностью менее 1 кВт подключен параллельно с тенами мощностью почти 25 кВт.
Будет ли работать такая схема? Конечно, будет. Вот только около такого калорифера надо постоянно дежурить с огнетушителем и быть готовым отключить в случае чего рубильник.
У этой схемы есть только одна защита – термореле, которое должно в ответственный момент отключить пускатель и не допустить перегрев и возникновение пожара. Есть и преимущество – от шкафа управления к калориферу идет только один трехфазный провод (плюс земля и два проводка на термо реле). Это тот случай, когда экономятся деньги в ущерб безопасности.
В данном случае оказалось, что двигатель крутиться перестал (пропала фаза или что было – уже не известно), термореле сработать не успело или совсем не сработало, в результате чудом удалось избежать пожара.
Я принялся искать более толковую схему подключения калорифера. Оказалось, что есть специальный Блок Управления калорифером БУ-3-25. Из названия следует, что он имеет 3 степени регулирования и мощность нагрузки 25 кВт. Схемы его не оказалось, имеется только схема подключения:
Схема подключения блока управления калорифером
Из этой схемы видно, что блок управления переключает секции ТЭНов в соответствии с заданной температурой. Из описания следует, что блок контролирует температуру в обогреваемом помещении и в случае, если она ниже, чем заданная, включает калорифер.
Также в моделях калориферов ЭКОЦ с мощностью 40 и более кВт обеспечивается задержка выключения вентилятора при выключении ТЭНов. Температура задается плавно потенциометром, а включением количества секций нагрева изменяется мощность (скорость) нагрева (достижения заданной температуры).
Термореле ТК-20 обеспечивает аварийную защиту от перегрева в случае нагрева корпуса калорифера выше 140 0С.
Мне требовалось создать шкаф управления без особых изысков, ступенчатого и тем более плавного изменения мощности и температуры не требовалось. Обогревать необходимо производственное помещение площадью около 120 кв.м в зимнее время.
За основу решено было взять такую схему:
Схема пульта управления калорифером (исходный вариант)
Эта схема имеет температурную защиту, защиту двигателя вентилятора, блокировку включения ТЭНов без вентилятора (на схеме показана как-то не явно), индикацию включения. В результате блок управления калорифером собран по нижеприведенной схеме:
Калорифер для приточной вентиляции – электрическая схема подключения
Работает схема следующим образом. Сначала первой кнопкой ПУСК включается пускатель КМ1 и запускается вентилятор калорифера. Двигатель вентилятора защищен тепловым реле РТЛ на соответствующий ток. При срабатывании теплового реле (проблема с вентилятором) цепь питания пускателя КМ1 размыкается, и питание двигателя отключается.
Когда включен вентилятор калорифера, возможно включение ТЭНов, благодаря замыканию блокировочных контактов КМ1.5. ТЭНы включаются нажатием второй кнопки ПУСК. При этом включается промежуточный пускатель КМ2, который включает мощный пускатель 4-й величины, включающий через свои контакты собственно ТЭНы. Нагреватели подключены все сразу для максимальной мощности нагрева помещения.
В этой схеме для обеспечения пожарной безопасности предусмотрены такие способы защиты:
- защита от остановки двигателя (тепловое реле RT1)
- защита от включения нагрева без включения вентилятора (КМ1.5)
- защита от проблем (перегрева) мощного пускателя (контакты RT2) – это ставить не обязательно
- защита от перегрева корпуса калорифера выше 140 0С (тепловое реле RT3). При этом вентилятор продолжит вращаться в обычном режиме, что легко устранит перегрев.
Схему можно дополнить индикацией включения пускателей и индикацией аварий (замыкающие контакты тепловых реле). Также можно ввести трехполюсный автоматический выключатель на цепь питания ТЭНов. Ток – 40 или 50 Ампер. И автомат на 63 Ампера на вход устройства, так как пусковой ток небольшой.
Но ставить автомат на цепь питания вентилятора категорически не рекомендую (разве что с доп.контактами). Ведь если он отключится, защиту обеспечит только термореле RT3, а после его срабатывания температура корпуса калорифера может достигнуть 200 0С из-за тепловой инерции. Кроме того, надежность срабатывания термореле у меня лично вызывает сомнение.
И в заключение о реализации блока управления. Схема собрана на пускателях, параметры которых приведены на схеме. Шкаф управления калорифером необходимо установить по возможности ближе к калориферу. Это позволит избежать большой длины трассы, а главное – проводов большого сечения. Однако, на шкаф не должен воздействовать горячий воздух.
Трасса состоит из таких кабелей:
- кабель 4х6 – питание ТЭНов, заземление. Провод заземления рекомендуется прокладывать отдельно.
- кабель 4х1,5 – питание электродвигателя вентилятора калорифера, заземление двигателя.
- кабель 2х1,0 (2х0,75) – провода к термореле.
Электрический промышленный калорифер является очень энергоемким устройством, потребляющим в данном случае 25 кВт в час. Так как стоимость обогрева электрическим способом высока, гораздо выгоднее применять водяные калориферы, а электрические устанавливать на крупных предприятиях. Например, в моём случае мощность промышленного оборудования в обогреваемом цеху составляет более 100 кВт. На настоящий момент калорифер работает более года (прошло 2 зимних периода) без нареканий.
Понравилось? Поставьте оценку, и почитайте другие статьи блога! (5 оценок, среднее: 3,40 из 5)
Подводка коммуникаций
Необходимо учесть, что теплотрасса, должна обеспечить необходимое сечение (диаметр должен соответствовать техническим требованиям). И ещё, должен быть обеспечен необходимый проток теплоносителя, через тепловентилятор. Если диаметр труб и температура теплоносителя будет достаточными, но скорость движения (протока) очень слабой, это отрицательно скажется на тепловой мощности прибора!
Также, продумайте, как подвести электропитание, цепи управления. Просчитайте необходимые расстояния, для закупок нужного метража электропровода.
И ещё один момент. Убедитесь, что стена (или потолок), на которой будет закреплён тепловентилятор, достаточной прочности, выдержит нагрузку.
Варианты тепловых завес
Ассортимент тепловых завес включает в себя несколько видов устройств, отличающихся устройством и внешним видом, местом размещения. Электрические модели востребованы и практичны в эксплуатации, но потребляют большое количество электроэнергии для нагрева воздуха. Нагревательный элемент в таких приборах — электроспираль.
Электрические модели просты в использовании, но не экономичны
Существует и водяной тип, в котором присутствует калорифер. Этот элемент выдерживает перепады и низкие температуры, что обеспечивает надёжность оборудования. Подключается прибор к центральному горячему водоснабжению, в результате чего монтаж и цена конструкции более высокие, чем у электрических вариантов.
Водяные модели сложны в монтаже и обладают высокой стоимостью
Эти варианты являются основными и самыми востребованными для обеспечения тепла на входе в помещение. Размеры и мощность устройств представлены в различных вариантах, что позволяет выбрать оптимальное оборудование в зависимости от параметров проёма, температуры воздуха снаружи и желаемого уровня обогрева внутри помещения.
Видео: особенности выбора тепловой завесы
Как устроен и как функционирует водяной тепловентилятор?
Водяной тепловентилятор состоит из корпуса (короба), медно-алюминиевого радиатора-теплообменника и мощного вентилятора. Теплообменник и вентилятор установлены внутри короба. Снаружи на коробе есть жалюзи, через которые выходит теплый воздух. Угол открытия жалюзи можно регулировать, направляя таким образом потоки теплого воздуха в нужный сектор помещения.
Принцип работе водяного тепловентилятора схож с принципом работы обычного электрического тепловентилятора или тепловой пушки. Теплые потоки воздуха распространяются по помещению благодаря работе встроенного вентилятора. Только вырабатывает тепло не электрический нагревательный элемент, а горячая вода, которая поступает в теплообменник прямо из системы отопления.
Таким образом, вся функция обогрева лежит на воде из центральной системы отопления. Дополнительные расходы влечет только работа вентилятора, но они не столь значительны. По сути, водяной тепловентилятор – это отопительная батарея, оснащенная вентилятором. Все исключительно просто, а эффект превосходит все ожидания. Помещение отапливается быстро, качественно и равномерно с минимально возможными финансовыми затратами.
Выпускаемые модельные линейки
Далее мы рассмотрим самые популярные в России модели тепловентиляторов Volcano. Их не очень много, поэтому с выбором можно определиться довольно быстро. Начнём с самых простых и маломощных моделей.
Volcano Mini
Данный модельный ряд включает в себя тепловентиляторы Вулкано Мини мощностью от 3 до 20 кВт. В их конструкции предусмотрены два теплообменника, в которые может поступать теплоноситель с температурой до +130 градусов. Мощность применяемых электродвигателей составляет 0,115 кВт при частоте вращения 1450 об/мин. Поток воздуха из недр данных вентиляторов вырывается вперёд на расстояние до 14 метров, обеспечивая прогрев довольно больших помещений. При работе в вертикальном положение высота тёплой струи составляет до 8 метров.
Расход воздуха для тепловентиляторов Volcano Mini составляет 2100 куб. м/час. Благодаря этому они подходят для работы в составе систем отопления помещений малого и среднего объёма. Двигатели нельзя назвать самыми тихими – они шумят на уровне 52 дБ. Вес оборудования составляет 17,5 кг. Ориентировочная стоимость – от 21 тыс. рублей.
Volcano VR1
Перед нами довольно популярная линейка тепловентиляторов. Стоимость оборудования стартует с отметки 28,6 тыс. рублей без учёта возможных скидок. Мощность моделей варьируется в диапазоне от 5 до 30 кВт. Количество рядов теплообменников в агрегатах – 1 шт., их объём составляет 1,25 куб. дм. В качестве теплоносителя используется обыкновенная вода с максимальной температурой до +130 градусов. её давление не должно превышать 1,6 Мпа.
Для прогона воздуха через теплообменники в данных тепловентиляторах используются электродвигатели мощностью 0,28 кВт с уровнем шума 56 дБ. Они питаются от однофазной сети с напряжением 220-230 В. Частота вращения электродвигателей составляет 1380 об/мин.
Volcano VR2
Представленные тепловентиляторы обладают внушительными техническими характеристиками. Их мощность составляет от 8 до 50 кВт, что позволяет отапливать помещения большой площади – они хорошо подходят для спортзалов, автомастерских и супермаркетов. Максимальный расход воздуха для данных агрегатов составляет до 4850 куб. м/час. Теплоноситель – горячая вода с температурой до +130 градусов и давлением до 1,6 Мпа.
Внутри тепловентиляторов Volcano установлены 2 ряда теплообменников, их суммарный объём составляет 2,16 куб. дм. За прогон воздушных масс отвечает небольшой электродвигатель мощностью 280 Вт. Для питания вентиляторов необходимо электропитание с напряжением 220-230 В. Длина горизонтальной струи тёплого воздуха составляет до 22 м, вертикальной – до 11 метров. Стоимость оборудования составляет от 32 тыс. рублей.
Volcano VR3 EC
Этот модельный ряд включает в себя довольно мощные тепловентиляторы – их мощность варьируется от 13 до 75 кВт. Оборудование пропускает через себя до 5700 куб. м воздуха в час, показывая высокую производительность. Длина горизонтальной струи воздуха достигает 25 м, вертикальной – 15 м. За всё это отвечает электродвигатель мощностью всего 370 Вт – это энергосберегающая модель, потребляющая минимум электроэнергии.
Водяные тепловентиляторы Volcano оснащаются сразу тремя рядами теплообменников. Их совокупный объём составляет 3,1 куб. дм, используемый теплоноситель – подогретая вода с температурой до +130 градусов, давление в отопительном контуре не должно превышать показатель в 1,6 Мпа. В конструкции вентиляторов используются особо прочные сорта пластика с защитой от ультрафиолетового излучения. Он выдерживает любые эксплуатационные нагрузки, успешно перенося жару, холод и воздействие влаги. Также серия отличается привлекательным дизайном и компактностью.
Volcano Mini EC
Нельзя пройти и мимо этой серии, оснащённой всё теми же энергосберегающими электродвигателями. Данные тепловентиляторы оснащаются двумя рядами производительных теплообменников – за час через них проходят 2100 куб. м воздушных масс. Допустимые параметры теплоносителя стандартные – не выше 1,6 Мпа и не выше + 130 градусов, объём теплообменников составляет 1,12 куб. дм.
За нагнетание в помещения теплого воздуха отвечает миниатюрный электродвигатель. Он потребляет всего 95 Вт электроэнергии, вращаясь с частотой 1450 об/мин. Несмотря на минимальную мощность, вентилятор создаёт горизонтальный поток воздуха длиной до 14 метров или вертикальный длиной до 8 метров. Оборудование отличается предельной компактностью – оно предназначено для обогрева малогабаритных помещений. Кстати, тепловая мощность тепловентиляторов Volcano Mini EC составляет от 3 до 20 кВт.
Трубчатые нагревательные элементы являются наиболее универсальным и подходящим промышленным нагревательным решением для широкого спектра применений. Трубчатые элементы имеют заводскую конфигурацию практически любой формы и размера. По запросу могут быть изготовлены нагреватели любого диаметры изгиба. Трубчатые элементы часто рассматриваются как основа всех нагревательных элементов. Им характерна прочная внешняя оболочка, которая помогает защитить технологический нагреватель от физических нагрузок, а высококачественные сплавы обеспечивают эффективную передачу тепла от резистивной катушки к теплоносителю.
Преимущества трубчатых нагревателей и их использование:
Усовершенствованный механизм управления для точной передачи тепла и поддержания температуры
Компактный размер, который позволяет легко устанавливать, чистить, обслуживать и даже заменять нагреватель в случае повреждения, не занимая много времени
Доступны различные формы и размеры для каждой категории, специально разработанной с использованием надежной технологии для увеличения срока службы изделия
Все электронагреватели можно подключать и к однофазной и к трехфазной сети. Для подключения нагревательных элементов к трехфазной сети можно использовать одну из двух схем:
Данная схема предполагает подсоединение к соответствующей фазе каждого второго вывода нагревателя. Каждый первый вывод нагревателей соединены между собой, что способствует образованию общей точки, которая в свою очередь определяется, как нулевая. Соединённая нагрузка — трехпроводная.
Трехпроводное соединение используется для напряжения 380 Вольт. Далее предлагаем рассмотреть подключение ТЭНа в трехфазную сеть. Здесь включение и отключение напряжение осуществляется в автоматическом режиме за счет наличия трехполюсных выключателей.
Приведенная схема показывает, что контактные выводы электронагревателей, которые располагаются с правой стороны подключены к фазам А, В, С. Выводы расположенные слева соединены в общую нейтральную точку. Напряжение при работе нагревательных элементов между выводами расположенными справа и нулевой точкой составляет 230 Вольт.
На имеющейся схеме видно, что правые выводы ТЭНов соединены с соответствующими фазами. Левые выводы замкнуты в единой точке, которая в свою очередь соединена с нейтральной шиной питающего источника. Между нулевой точкой и контактными выводами рабочее напряжение составляет 230 Вольт.
ПОДКЛЮЧЕНИЕ ТЭНОВ ЭЛЕКТРОКОТЛА
Подключая фазные провода к выводам электронагревателей следует в первую очередь накрутить гайку м4. После этого нужно наложить шайбу и одеть наконечник-кольцо питающего проводка. Далее опять накладывается шайба, а сверху на нее ложится пружинная шайба-гровер. Все это зажимается гайкой м4.
Провод, который будет подключен к нейтральной фазе, затягивается болтом м8. Он будет располагаться в перемычке между контактами отверстий нагревателя.
После подключения проводов следует провести заземление корпуса нагревателя и проводов подключения ТЭНа. Обычно у котлов для заземления с левой стороны у блока электронагревателей находится болт, к которому и следует подключать проводник заземления.
В качестве защитного заземлителя можно использовать отдельный проводник дополнительной системы уравнивания потенциалов или взять его с клеммы заземления управляющего блока.
После того как нагреватель электрокотла подключили, следует установить защитный кожух на блок теплообменника. С целью контроля температуры нагреваемой жидкости следует использовать термодатчик. Также можно установить датчик температуры воздуха. На панели блока управления для таких датчиков есть регуляторы с соответствующими маркировками. У каждого регулятора есть градуировка с кодовым обозначением температуры. Таким образом, вы сможете легко выставлять температуру для теплоносителя. Когда температура теплоносителя достигнет установленного уровня, датчик подаст сигнал и нагреватель автоматически отключится. Если же уровень температуры упадет ниже требуемых значений, по принципу того же отклика нагревательное устройство включится в работу и нагрев возобновится.
За счет наличия таких коммуникаций работа электрокотла практически полностью автоматизируется. Вам нужно будет только выставить все необходимые режимы настройки.
Температурный датчик для воды размещают внутри теплообменника в специально отведенном месте посадки. Также его можно монтировать самому, прицепив к отопительной трубе.
По этому же принципу действует и датчик температуры воздуха. Его просто устанавливают в помещении, где он измеряет общие термические значения воздуха.
Электрический котел будет прогревать теплоноситель до тех пор, пока воздух в помещении не достигнет нужных температурных значений.
Разные модификации котлов отличаются внутренней начинкой, дополнительными функциями, уровнем автоматики.… Не меняются лишь проводка, сечение кабеля, защита и вид сетевого подключения.
Данная схема подразумевает соединение выводов ТЭНа поочередно.
Мощность нагревателей и их температурная подача зависимо от схемы подключения ТЭНа
Выбирая нагреватель, покупатель в первую очередь обращают внимание на его мощность. Техническая практика же показывает, что при постоянном подключении к определенной сети, когда не используются трансформаторы, показатели мощности зависят только от электросопротивления резистивного элемента, который находится в самом нагревательном устройстве. Зависимость определена формулой:
где P - мощность,
U - напряжение между концами греющего элемента,
I – ток, протекающий по резистивному элементу.
По той причине, что ток, проходящий по спирали зависим только от напряжения, приложенного к концам и собственного электросопротивления (R) конкретного участка спирали, формулу можно упростить:
Из этого можно сделать вывод, что в условиях постоянного напряжения мощность будет повышаться только тогда, когда сопротивление будет падать.
Электрическое сопротивление большинства нагревательных приборов напрямую зависит от температуры подаваемой самим нагревателей. Но сопротивление в пределах нескольких сотен градусов будет немного отличаться. Следует понимать, что с карбидокремниевыми нагревателями ситуация будет совершенно иной. Поскольку они выполняют функцию нагревательного элемента, выполняемого неметаллическим стержнем, сопротивление здесь не будет изменяться линейно. Сопротивление таких устройств может находиться в диапазоне 0,5 . 5 Ом, что не позволит напрямую подключить нагревательное устройство к сети напряжением 220 вольт и тем более 380 вольт. По техническим стандартам карбидокремниевые нагреватели могут быть подключены к стандартной сети при условии, что они собраны в последовательную цепь. Но. Стоит отметить, что такая методика неэффективна, если необходимо осуществлять точное регулирование мощности и регулировать определенную температуру печи. Наилучшим способом является подключение к сети электрических нагревателей с использованием автотрансформаторов с лабораторным управлением или стандартных статистических электромагнитных устройств.
Подключение нагревательного блока по схеме звезда и треугольник
Вы публикуете как гость. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Последние посетители 0 пользователей онлайн
Объявления
Топ авторов темы
IMXO 20 постов
Yurkin2015 12 постов
andrey.drabchuck 42 постов
ART_ME 8 постов
Популярные посты
alend
Не правильно. Что будет если нажать только одну из шести кнопок, SW 4 например. Это где планируется использовать? и сколько ступеней мощности требуется? 1.Можно включить три тена в звез
Dr. West
11 февраля, 2020
Поэтому оба способа комбинируют - на вводе стоит один мощный контактор, который включается один раз (и отключается при нештатных ситуациях), а оперативное регулирование осуществляют симисторы. Либо ав
Изображения в теме
тихими вечерами, как УМ ПК, до 10Вт на 8 Ом - достаточно. По мне, пятиножки встроенные в АС - по лучше (и ящик отсутствует, и плеер от телефончика всегда мобильный) интересно посмотреть как они мосфеты открыли.
Я для себя считаю просто (могу ошибаться) Известно, что при частоте 100Гц, конденсатор емкостью 1600мкФ имеет импеданс 1 Ом. Далее, берем конкретный мостовой выпрямитель и прикидываем, что хотим от него получить. Допустим, хотим ток 1А при напряжении на нагрузке 30В. Такой ток получится при нагрузке 30В/1А=30 Ом. Очевидно, что отношение сопротивления нагрузки к импедансу подключенного параллельно ей конденсатора, пропорционально напряжению пульсаций на этой сладкой парочке. То есть, если хотим получить на выходе пульсации 0,3В, ставим конденсатор с импедансом 0,3 Ом. То есть, 1600 мкФ х 3,3 ~ 5000мкФ. Все это, разумеется, довольно приблизительно, зато ясно и понятно. На самом деле, хотя мостовая схема очень простая, процессы, происходящие при ее работе, довольно не простые.
А оно вообще тебе надо? Какому верблюду ты собрался горбы выправлять этой железякой. Отдай этот хлам какому-нибудь пийонэру для тренировки с паяльником. При взгляде на этот Пионер в золоте чёта становиться печально - неужели у самураев теперь всё так плохо (?).
Делайте таблицу на полный период, и выбирайте по счетчику для каждой фазы значение со смещением 120. Если будете регулировать обороты, вам еще скалярность пригодится.
откуда вы взяли 310. 380 линейного это 540 постоянного т.е. =1, разбивается на -0,5/+0,5 т.е. 540/2=270 , 270 это амплитудное (оно же мин/мах) , или 270/sqrt(2)=191 действующего фазного , получаем действующее линейное: 191∙√3=330В.
Датчик уровня жидкости
Сегодня предлагаю вашему вниманию материал, где вы сможете ознакомиться с монтажом тепловентилятора. Найдёте ответы на то, как установить водяной тепловентилятор, что учесть при этом, и какие могут возникать трудности в эксплуатации?
Подключение тепловентилятора
Если мощность вашего устройства не будет превышать 6 кВт, тогда выполнить подключение тепловентилятора можно к однофазной сети. Единственным моментом, который вам необходимо учесть является определение сечения кабеля. Схема подключения тепловентилятора к сети 220 Вольт выглядит следующим образом:
Если мощность будет превышать 6 кВт, тогда вам необходимо будет использовать трехфазную проводку. В этом случае подключить провода вам нужно в следующем виде:
Как видите, схема подключения тепловентилятора на 380 Вольт не имеет особых отличий от стандартного варианта. Вам также следует помнить, что нулевой проводник следует подсоединять не всегда. Обычно просмотреть выполнение этого момента можно в инструкции тепловентилятора. Если вам интересно можете прочесть про обогрев водопроводных труб кабелем.
Теория
Что такое ТЭН в электрическом котле? С точки зрения электротехники это активное сопротивление, которое выделяет тепло при прохождении по нему электрического тока.
По внешнему виду одиночный ТЭН выглядит, как согнутая или завитая трубка. Спирали могут быть самой разной формы, но принцип подключения одинаков, у одиночного ТЭНа два контакта для подключения.
При подключении одиночного ТЭНа к напряжению питания нам нужно просто подсоединить его клеммы к электропитанию. Если ТЭН рассчитан на 220 Вольт, то подключаем его к фазе и рабочему нулю. Если ТЭН на 380 Вольт, то подключает ТЭН к двум фазам.
Но это одиночный ТЭН, который мы можем увидеть в электрочайнике, но не увидим в электрическом котле. ТЭН котла отопления это три одиночных ТЭНа, закрепленные на единой платформе (фланце) с выведенными на ней контактами.
Самый распространённый ТЭН котла состоит из трёх одиночных тэнов закрепленных на общем фланце. На фланце выводится для подключения 6 (шесть) контактов ТЭНа электрического ТЭН котла. Есть котлов с большим количеством одиночных тэнов, например, так:
Каждый второй вывод нагревательного элемента подключается к соответствующей фазе. Первые выводы при этом соединены вместе и образовывают общую точку определяющуюся как нулевая или нейтральная. Соединённая нагрузка в данном случае считается трехпроводной.
Трехпроводное подключение предназначено для рабочего напряжения 380 Вольт. Ниже рассмотрим схему подсоединения трубчатого нагревателя к трехфазной сети. Включение и отключение напряжения производится в указанном случае автоматически за счет трехполюсных выключателей.
В приведенной схеме можно увидеть, что выводы нагревателей справа подсоединены к фазам А, В, С. Выводы, которые находятся слева — соединяются в общей нейтральной точке. Рабочее напряжение между выводами справа и нейтральной точкой равно 220 Вольт.
Представленная схема показывает соединение правых выводов трубчатых элементов нагрева к соответствующим фазам, левые при этом замыкаются в одной точке, подключенной к нейтральной шине источника питания. Между нулем и выводами нагревателей напряжение 220 Вольт.
2. При монтаже требуется соблюдать:
2.1 Установка такого устройства нужно осуществлять в помещениях где температура не опускается ниже 0°С, соблюдения данной рекомендации требуется чтобы избежать замерзания воды в трубках тепловентилятора, или использовать жидкость в виде незамерзающего вещества, например (пропилен гликоль).
2.2 Перед началом монтажа воздушно отопительного прибора нужно внимательно изучитьвсе части на наличие разных дефектов. Для соединения тепловентилятора к системе отопления используются патрубки размером 3/4” (наружная резьба).
2.3 Обвязка данной системы, включающая в себя водяной тепловентилятор и его врезку в систему отопления, установку запорной арматуры весьма несложный процесс, но если Вы не уверены тогда лучше обратится к специалистам для правильного и качественного монтажа Вашей системы.
2.4 При использовании в качестве теплоносителя воды тепловентилятор может эффективно функционировать в закрытом помещении. Для монтажа данного оборудования снаружи здания можно использовать незамерзающие жидкости. Учитывая доступность и простоту установки, можно заявлять о том, что водяной тепловентилятор самый эффективный вариант для обогрева помещения.
Подводка коммуникаций
Необходимо учесть, что теплотрасса, должна обеспечить необходимое сечение (диаметр должен соответствовать техническим требованиям). И ещё, должен быть обеспечен необходимый проток теплоносителя, через тепловентилятор. Если диаметр труб и температура теплоносителя будет достаточными, но скорость движения (протока) очень слабой, это отрицательно скажется на тепловой мощности прибора!
Также, продумайте, как подвести электропитание, цепи управления. Просчитайте необходимые расстояния, для закупок нужного метража электропровода.
И ещё один момент. Убедитесь, что стена (или потолок), на которой будет закреплён тепловентилятор, достаточной прочности, выдержит нагрузку.
3. Пример монтажа тепловентиляторов от производителя Volcano
3.1 Монтажная консоль поставляется в комплекте с тепловентилятором Volcano. Для установки консоли к тепловентилятору необходимо вырезать отверстия в верхней и нижней части аппарата как отображено на рисунке 1, а потом вмонтировать в них втулки. На них нужно надвинуть монтажную консоль. Следующий шаг в нижнюю и верхнюю втулки закрутить винты (M10), а также зафиксировать положение тепловентилятора по отношению к консоли. Когда аппарат находится в нужном положении, далее следует установить заглушки на держателе.
Вывод
Как видим электрические ТЭН котлы просты в подключении и само подключение ТЭНа не вызывает проблем. Более сложный вопрос подключения автоматики и датчика температур. Об этом в следующих статьях.
Преимущества нагрева помещения тепловентиляторами:
- легкость
- быстрота нагрева воздуха
- чистота и экологичность
- легкий монтаж
- доступность дополнительных материалов
При качественном и правильном монтаже тепловентиляторов можно рассчитывать на длительную и эффективную работу оборудования на протяжении многих лет.
Мощность нагревателей и их температурная подача зависимо от схемы подключения ТЭНа
Выбирая нагреватель, покупатель в первую очередь обращают внимание на его мощность. Техническая практика же показывает, что при постоянном подключении к определенной сети, когда не используются трансформаторы, показатели мощности зависят только от электросопротивления резистивного элемента, который находится в самом нагревательном устройстве. Зависимость определена формулой:
P = U * I
где P — мощность,
U — напряжение между концами греющего элемента,
I – ток, протекающий по резистивному элементу.
По той причине, что ток, проходящий по спирали зависим только от напряжения, приложенного к концам и собственного электросопротивления (R) конкретного участка спирали, формулу можно упростить:
P = U2 / R
Из этого можно сделать вывод, что в условиях постоянного напряжения мощность будет повышаться только тогда, когда сопротивление будет падать.
Электросопротивление у большей части нагревательных устройств напрямую зависит от температурной выработки самого элемента нагрева. Но, сопротивление в пределах нескольких сотен градусов будет меняться незначительно. Стоит понимать, что с карбидокремниевыми нагревателями ситуация будет абсолютно другой. Так как у них функцию элемента нагрева выполняет неметаллический стержень, сопротивление здесь будет изменяться не в линейном порядке. Сопротивление таких устройств может находиться в диапазоне 0,5…5 Ом, что не позволит напрямую подключить устройство нагрева в сеть напряжением 220 Вольт и уж тем более 380 Вольт. По техническим меркам карбидокремниевые нагреватели можно подсоединять к стандартной сети, если соблюдать их сборку в последовательной цепочке. Но. Стоит отметить, что такая методика малоэффективна, если необходимо проводить точный контроль мощности и регулировку определенной температуры печи. Самым лучшим способом считается подключение электронагревателей к сети с помощью лабораторных регулируемых автотрансформаторов или стандартных устройств статистических электромагнитных устройств.
Схемы подключения ТЭН котла
Вариант 1. Схема подключения к однофазной сети
Обычно, три одиночных Тэна в такой конструкции, размещены так, что контакты от разных тэнов располагаются друг напротив друга.
Чтобы подключить ТЭН на 220 Вольт, нужно соединить три контакта от разных одиночных спиралей перемычкой и подключить их к рабочему нулю.
Три оставшиеся контакта нужно, также соединить и подключить к рабочей фазе. Это обеспечит одновременное включение всех тэнов в нагрев при подаче питания.
Однако так напрямую подключение не делают, и на каждый второй контакт тэна подключают на фазу после своего автомата или, что делается чаще, подключают от своей линии управления (автоматики).
Вариант 2. Трехфазное подключение
Если мы посмотрим на продающиеся тэны для котлов, то увидим, что почти все маркируются, как Тэны 220/380 Вольт.
Монтаж тепловентилятора
Лучше всего использовать крепления тепловентилятора, которые предлагают производители. Конечно, это тоже зависит от месторасположения прибора. Например, для крепления вентилятора на потолке, можно использовать шпильки, купив их на рынке (не для всех моделей тепловентиляторов может быть такая возможность).
Итак, приступим. В примере буду использовать крепления на монтажную консоль от производителей, способ крепления – на стене.
Её удобство состоит ещё и в том, что можно использовать разные углы наклона для монтажа тепловентилятора. Довольно удобно, для крепления на стене.
Размечаем необходимые крепления (уголки с отверстиями) на стене, бурим отверстия и завинчиваем, но не полностью, шурупы. Шурупы с пластиковыми дюбелями, подходят для крепления в кирпичные, бетонно-цементные стены. Длина шурупов (или шпилек), должна быть достаточной (я использовал 150 мм.), чтобы надёжно закрепить тепловентилятор на стене.
Не полностью закручивая шурупы (оставляя небольшой люфт), делаем удобным крепление консоли, так как вероятность абсолютно точно закрепить уголки, невысока.
Подводим трубы отопления к месту крепления тепловентилятора, если не сделали это заранее.
Крепим монтажную консоль, помня о выбранном нами направлении наклона тепловентилятора.
Варианты крепления консоли тепловентилятора, можно увидеть на фото ниже.
Далее, можно навесить тепловентилятор на монтажную консоль, закрепив двумя болтами. Мы, предварительно навентили, на патрубки тепловентилятора, металлорукава и автомат Маевского. Металлорукава обеспечивают возможность изменять направление потока нагретого воздуха, при повороте тепловентилятора на консоли. Автомат Маевского – обеспечивает удаление воздуха из системы отопления.
В результате, получится примерно так.
Убедившись в надёжности креплений, что все болты, шурупы зажаты, можем подсоединить гибкие подводки (металлорукав), с трубами отопления.
Обратите внимание на правильность подсоединения. Подача и обратка, должны быть подключены так, как обозначено в инструкции к тепловентилятору. Это важно.
Вот, на фото ниже, закреплённый и подключенный к системе отопления водяной тепловентилятор.
Теперь можно запитать тепловентилятор теплоносителем, сбросить воздух (проверить защитный колпачок на автомате Маевкого, он должен быть откручен немного или полностью, в зависимости от модели).
В следующем материале – подключение командоконтроллера и внешних датчиков к цепи управления тепловентилятроами.
Подключение тепловентилятора с программируемой системой
Подключение тепловентилятора своими руками можно выполнить с помощью программируемой системы от отопления. Для этого вам потребуется добавить термостат, контролер и двухходовой клапан с сервоприводом. Если вы планируете поступить этим образом, тогда ваш проект будет выглядеть так:
- Двухходовой клапан с сервоприводом. Основной задачей этого элемента является перекрытие подачи теплоносителя по команде.
- Термостат. Это устройство будет использоваться для регулировки температуры в помещении.
- Пятиступенчатый регулятор вращения.
- Двигатель на вентиляторе.
Если вы решите подключить тепловентилятор с помощью этой схемы, тогда получите экономическую и безопасную систему. Схема подключения тепловентилятора с водяным источником тепла к системе отопления является последним способом подсоединения. Отопление дачи можно выполнить с помощью тепловентилятора.
Как видите, схема является простой. Для того чтобы вы смогли в ней разобраться мы предоставили вашему вниманию пояснения к этому проекту:
- Здесь представлен водяной обогреватель.
- Двухходовой клапан.
- Клапан для спуска воздуха с системы в любой момент.
- Запорная арматура.
- Фильтр, который выполняет грубую очистку.
- Циркуляционный насос.
- Электрический котел.
Это были основные моменты установки тепловентилятора. Теперь вы можете просмотреть варианты монтажа тепловентилятора в интерьере.
Состав монтажной консоли:
- консоль (1 шт. тип А или В)
- крепежный держатель (тип А или В)
- винты M10 вместе с шайбой и гайкой для установки держателей (2 комплекта)
- винт М10 для крепления консоли к самому тепловентилятору (2 шт.)
- заглушки (2 шт.)
- монтажные втулки (1 шт.)
4. Патрубок теплоносителя
4.1 Во время установки трубопровода с теплоносителем нужно защищать присоединительный патрубок теплообменника от воздействия крутящего момента смотрите рисунок (2). Вес трубопроводов не должен создавать дополнительную нагрузку на патрубки тепловентилятора. Также есть возможность присоединение трубопроводов с помощью комплекта гибких шлангов, которые дают возможность изменять положения аппарата на монтажной консоли.
Размеры водопроводных труб для подключения тепловентиляторов
Диаметр труб для подключения нескольких тепловентиляторов должен быть подобран таким образом, чтобы скорость потока теплоносителя не превышала 2,5 м/с. Рекомендуется подбирать минимальные диаметры труб в зависимости от количества и типа тепловентиляторов, которые подключаются к трубам системы в соответствии с указанной таблицей.
Монтаж тепловентиляторов Volcano
Видео схемы подключения тепловентилятора Volcano AC до трех-скоростного регулятора Wing/Volcano
Электрические схемы подключения тепловентиляторов Volcano представлены в этом PDF — файле.
Рекомендуем посмотреть водяные тепловентиляторы
Кол-во блоков: 25 | Общее кол-во символов: 21831
Количество использованных доноров: 8
Информация по каждому донору:
Читайте также: