Трансформатор симметрирующий трехфазный своими руками
На приведенной схеме питания линии электропередачи показано, что для равномерной нагрузки фаз источника питания наиболее загруженные или, наоборот, разгруженные фазы подстанции поочередно подключаются то к одним , то к другим фазам линии передачи. Круг, или цикл, этих переключений захватывает три подстанции. Каждые три подстанции, если они одинаково нагружены, дают равномерную нагрузку в начале трехфазной линии передачи. Следующие три подстанции при тех же условиях также дают равномерную нагрузку и т.д.
Рис.5.3. Схема питания участка однофазного тока через трехфазные трансформаторы
Схема рассматривалась для несколько идеализированных условий. Практически подстанции стремятся располагать на крупных железнодорожных станциях. При этом по условиям профиля, неравенства расстояний между подстанциями, а иногда и изменения грузопотока даже средние нагрузки подстанций получаются различными. В этом случае подстанции даже при числе их, кратном трем (или шести при двухстороннем питании), не обеспечивают равномерной нагрузки фаз питающих центров энергосистемы.
При рассмотрении влияния несимметричной нагрузки трехфазной системы на работу энергосистемы и потребителей будет отмечено, что несимметрия напряжения определяется в большей степени падением напряжения в проводах линии передачи. Последнее же зависит от нагрузки и расположения тяговых подстанций. Нетрудно прийти к выводу, что как бы не присоединяли подстанции к трехфазной линии, получить одинаковые потери напряжения во всех фазах не удается, так как симметричные нагрузки располагаются на различном расстоянии от источников питания [4].
5.4. Трансформатор модифицированный по схеме Вудбриджа.
На тяговых подстанциях, железных дорог Японии, применяют трансформаторы системы Вудбриджа большой мощности 100 – 200 МВА (рис.5.4) обеспечивающие снижение несимметрии нагрузки в сети внешнего электроснабжения.
Рис.5.4. Схема трансформатора системы Вудбриджа
Эти трансформаторы имеют первичную обмотку, соединенную в звезду (номинальное напряжение 155 – 275 кВ), и две вторичные обмотки, соединенные в два встречных треугольника. Одно плечо тяговой нагрузки подключают к вершинам а2 – а3 треугольников, другое к обмоткам в2 – с2 и в3 – с3, соединенным параллельно. Напряжение между точками а2 – а3 равно 55 кВ, а между в2 и с2 ( в3 – с3) - 55/3, поэтому для повышения напряжения второго плеча до минимального напряжения 55 кВ устанавливают повышающий автотрансформатор.
Напряжения плеч тяговой нагрузки от трансформатора системы Вудбриджа сдвинуты относительно друг друга на угол 90 0 , поэтому зависимость коэффициента несимметрии этой схемы от соотношения нагрузок плеч такая же, как и схемы Скотта или у подстанций с коибинированным применением однофазных и трехфазных трансформаторов. Кроме того, при системе Вудбриджа нет тока нулевой последовательности в первичной обмотке.
На каждой подстанции установлено по два силовых трансформатора: один в работе и один в резерве [19].
5.5. Схема симметрирующего трансформатора.
Для тяговых подстанций отечественных железных дорог переменного тока разработана специальная схема симметрирующего трансформатора, предложенная Р.Р. Мамошиным и А.В. Василянским ( рис.5.5). Преимуществом этой схемы является возможность осуществлять питание трехфазных потребителей от шин 27,5 кВ по линия ДПР.
При существенной разнице токов плеч питания тяговой нагрузки, характерной для однопутных участков, симметрирующий трансформатор позволяет снижать коэффициент несимметрии токов по обратной последовательности (К21) незначительно. Следовательно, в таких случаях эффект от применения симметрирующих трансформаторов оказывается недостаточным для решения проблем, связанных с симметричной загрузкой питающих линий.
Рис.5.5. Схема установки симметрирующего трансформатора
Наибольший эффект симметрирования будет при установке ДТС (двухфазный симметрирующий трансформатор) на всех тяговых подстанциях, но такое решение требует больших капитальных затрат[32].
Формула изобретения
Описание изобретения к патенту
Изобретение относится к электротехнике и может быть использовано в цепях питания различной аппаратуры.
Известно симметрирующее устройство, питающее однофазную нагрузку, содержащее трехфазный трансформатор, систему выпрямитель-инвертор [1]. Недостаток: большая сложность.
Известно устройство симметрирования трехфазной сети при питании однофазной нагрузки, содержащее трехфазный трансформатор [2]. Недостаток - сложность, обусловленная наличием трех обмоток на выходе, и значительная несимметрия первичных токов.
Наиболее близким к предлагаемому является трехфазный трансформатор переменного напряжения, содержащий входные и выходные зажимы, к которым подключен трансформатор, первичные обмотки во всех трех фазах и две вторичные в фазах А и С. Недостаток: большая установленная мощность трасформаторного оборудования и значительная несимметрия первичных токов и фазных напряжений [3].
Цель изобретения - уменьшение установленной мощности трансформаторного оборудования и уменьшение коэффициента несимметрии первичных токов и фазных напряжений.
Поставленная цель достигается тем, что первичные обмотки трехфазных трансформаторов соединены по схеме зигзаг, причем соединены обмотки фаз А и B, В и С, С и А, а вторичные обмотки фаз А и С включены встречно и соединены с выходными зажимами.
На фиг.1 приведена схема устройства.
На фиг.2 приведена схема симметрирующего трехфазно-однофазного трансформатора при работе в автотрансформаторном режиме.
Технико-экономическая эффективность предлагаемого технического решения заключается в том, что от трехфазной питающей сети или от автономного источника трехфазного напряжения, например, дизель-генератора при несимметрии входных толков до 20% можно получить на выходе однофазную мощность до 80% от мощности питающей сети (автономного дизель-генератора).
1. А. с. СССР № 1372473, М, Кл, H02J 3/26 Н02М 5/32 1985.
2. Г.Н.Петров. Электрические машины. Ч.1, "Энергия", г.Москва, 1974, стр.143, рис.2-152.
3. Г.Н.Петров Электрические машины. Ч.1, "Энергия", г.Москва, 1974, стр.145, рис.2-157.
По сравнению с коаксиальным кабелем симметричная линия имеет очень низкие потери при больших значениях КСВ (когда коаксиальный кабель практически неработоспособен) и возможность настройки практически любого вибратора в резонанс при электрическом удлинении или укорочении линии (это открывает широкое поле деятельности при создании качественных многодиапазонных антенн).
Непосредственное подключение симметричной линии к несимметричному выходу оконечного каскада передатчика, как правило, приводит к негативным результатам. Даже если после элементов согласования П-контура установить симметрирующий широкополосный трансформатор или применить Т-образной тюнер с симметрирующим трансформатором на выходе, удовлетворительной работы можно добиться только при минимальной реактивности на входе симметричной линии. Один из таких примеров — питание вибратора в пучности напряжения с помощью симметричной линии, длина которой составляет А,/4 рабочего диапазона частот (или кратна нечетному количеству длин L/4). У такой антенны симметричная линия является трансформатором, согласующим низкое входное сопротивление трансивера с высоким сопротивлением антенны. Как правило, под такую антенную систему рассчитаны симметричные выходы в различных импортных Т-образных тюнерах.
Если же реактивность на входе симметричной линии (в точке под ключения трансивера или тюнера) велика, то в силу того, что широкополосные трансформаторы плохо работают на реактивную нагрузку, потери в антенно-фидерной системе будут велики, и при большой мощности передатчика широкополосный трансформатор может выйти из строя. Разумеется, в такой антенно-фидерной системе теряются все выгоды применения симметричной линии.
Некоторые зарубежные фирмы выпускают симметричные тюнеры. К сожалению, эти устройства довольно дороги (например, хорошо зарекомендовавший себя в работе на симметричную линию антенный тюнер MFJ- 976 стоит почти 500 USD). Это приводит нас, радиолюбителей, к мысли о самостоятельном изготовлении такой конструкции.
Схема симметричного тюнера, который имеет элементы трансформации сопротивлений и компенсации реактивных составляющих, приведена ниже.
Эта схема с так называемым V-образным или (3 (бета)-согласованием. Принцип ее работы прост: при согласовании выходного сопротивления широкополосного трансформатора Т1 с комплексным сопротивлением, имеющимся на входе симметричной линии, к меньшему сопротивлению подключается последовательный реактивный элемент (емкость), а к большему — параллельный (индуктивность). Т1 — симметрирующий широкополосный трансформатор (ШПТ) с коэффициентом трансформации сопротивлений 1:4. В качестве сердечника трансформатора можно применить кольцевой ферритовый сердечник К20ВЧ — К400НН. Типоразмер сердечника определяет габаритную мощность трансформатора и максимальную ВЧ мощность, которую можно подать на вход тюнера. С достаточной для практических целей точностью можно принять, что 1 см2 поперечного сечения кольцевого ферритового сердечника способен трансформировать 300 Вт подводимой к нему мощности.
При этом необходимо учесть следующее. Ферритовые кольца К100НН — К400НН с повышением рабочей частоты теряют способность передавать магнитный поток. Это приводит к тому, что габаритная мощность широкополосного трансформатора на таких кольцах с повышением частоты уменьшается. Наоборот, передача магнитного потока у колец К20ВЧ — К50ВЧ на любительских НЧ диапазонах минимальна, а с повышением частоты увеличивается, а значит, увеличивается габаритная мощность такого трансформатора. В любом случае, применяя кольца той или иной магнитной проницаемости, ШПТ следует изготовить с запасом габаритной мощности — лишним это не будет.
При изготовлении ШПТ 1:4 для обмоток удобно использовать двухжильный монтажный медный провод с сечением жил не менее 1,5 мм2, применяемый для прокладки скрытой электропроводки в квартирах. Диэлектрические свойства виниловой изоляции этого провода вполне достаточны для надежной работы трансформатора при подводимых к нему мощностях до 1 кВт. Если приобретение ферритовых колец затруднено, то не стоит отчаиваться.
Симметрирующий трансформатор 1:4 можно изготовить из коаксиального кабеля ниже.
Симметрирующий трансформатор 1:4 из коаксиального кабеля
Кабель свивают в плоскую катушку с последующим креплением витков ПХВ-изолентой.
Согласующим элементам схемы абсолютно безразлично, до какого значения трансформировать/согласовывать подведенный к ним импеданс симметричной линии. Поэтому в качестве Т1 может работать трансформатор с коэффициентом трансформации сопротивлений 1:1.
Вариант схемы тюнера, в котором применяется такой трансформатор, приведен ниже.
Трансформатор с коэффициентом трансформации сопротивлений 1:1
На максимальную подводимую к тюнеру мощность влияет не только габаритная мощность трансформатора Т1, но и зазор между пластинами конденсаторов переменной емкости С1.1 и С1.2. При мощности передатчика 300 — 350 Вт зазор между пластинами должен быть не менее 0,5 мм. Кроме того, роторы и статоры КПЕ должны размещаться на фарфоровых осях и изоляторах, т.е. быть изолированы как от корпуса, так и друг от друга, но иметь общую ось настройки. Не путайте эти два КПЕ с 2-секционными КПЕ, роторы которых связаны контактом не только между собой, но и с корпусом конденсатора!
Конструкция катушки с переменной индуктивностью — любая. Лучшей является катушка с перемещаемым роликовым или ползунковым контактом. Вполне приличные результаты можно получить, применив шаровый вариометр. Если используется катушка с переключаемыми отводами, то следует обратить внимание на электрическую прочность переключателя отводов. Для точного согласования изменение индуктивности у катушки отводами должно происходить с небольшим шагом.
Еще раз подчеркну, что данная схема тюнера очень критична к емкости и индуктивности реактивных элементов схемы согласования. Их величина зависит не только от частоты, но и от импеданса и реактивности на входе симметричной линии.
Широкополосный трансформатор Т1 — самая ответственная деталь в симметричном тюнере. От качества работы трансформатора зависит качество работы всей конструкции в целом. Качество самостоятельно изготовленного трансформатора можно легко определить экспериментально. Для этого включаем КСВ-метр между трансивером и трансформатором. В зависимости от выходного сопротивления трансивера (50 или 75 Ом) КСВ-метр должен быть сконструирован и отградуирован для работы с выбранным волновым сопротивлением тракта. Выход трансформатора нагружаем на два включенных последовательно безындукционных резистора сопротивлением 100 (150) Ом для ШПТ 1:4 и 25 (37,5) Ом для ШПТ 1:1. Резисторы следует подобрать с максимально близким сопротивлением.
Подаем с трансивера ВЧ сигнал и измеряем КСВ на всех KB диапазонах. В идеале КСВ на всех частотах должен быть близок к 1. Однако добиться этого крайне сложно из-за завала АЧХ, определяемой свойствами примененного ферритового сердечника и качеством намотки трансформатора. Например, в авторском варианте широкополосного трансформатора при использовании ферритового кольца К300НН завал АЧХ происходит на частотах от 21 МГц и выше (в диапазоне 10 м КСВ увеличивается до 1,5).
Для проведения измерений не обязательно применять промышленный ВЧ вольтметр. В точках измерения мы имеем дело с низким сопротивлением, поэтому исследование рабочих характеристик трансформатора можно провести самодельным низкоомным ВЧ вольтметром.
Самодельный низкоомный ВЧ вольтметр
Как и при работе с КСВ-метром, точность самодельного ВЧ вольтметра повышается при подведении к трансформатору достаточно большой ВЧ мощности от передатчика.
Радиолюбители, которые не имеют возможности изготовить самодельный ШПТ, могут в качестве Т1 применить фирменные симметрирующие трансформаторы с коэффициентом трансформации 1:4 или 1:1 (например, LDG RBA 1:1 (1:4) или MFJ-918).
Напряжение между каждой фазой трехфазной сети переменного тока и нулевым проводом, в идеальном случае, составляет 220 Вольт. Однако, при подключении к каждой из фаз питающей сети различных нагрузок, отличающихся по характеру и по величине, возникает иногда довольно значительный перекос фазных напряжений.
Если бы соблюдалось равенство сопротивлений нагрузок, то и протекающие через них токи также были бы равны между собой. Их геометрическая сумма была бы обращена в нуль. Но в результате неравенства этих токов возникает уравнительный ток в нулевом проводе (происходит смещение нулевой точки) и появляется напряжение смещения.
Фазные напряжения меняются друг относительно друга, и получается перекос фаз. Следствием такого перекоса фаз становится увеличение потребления электроэнергии из сети и неправильная работа электроприемников, ведущая к сбоям, отказам, и преждевременному износу изоляции. Безопасность потребителя, в такой ситуации, ставится под угрозу.
Для автономных трехфазных источников электроэнергии неравномерность загрузки фаз чревата разного рода механическими повреждениями. В результате – нарушение работы электроприемников, износ источников электроэнергии, повышенный расход масла, топлива и охлаждающей жидкости для генератора. В конечном итоге увеличиваются расходы как на электроэнергию в целом, так и на расходные материалы для генератора.
Для устранения перекоса фаз, выравнивания фазных напряжений, следует изначально рассчитать токи нагрузок для каждой из трех фаз. Однако не всегда удается это сделать заранее. В промышленных же масштабах потери вследствие перекоса фазных напряжений могут быть просто колоссальными, а экономический эффект, в определенной степени, разрушительным.
Для устранения негативных тенденций следует применить симметрирование фаз. Для этой цели разработаны так называемые симметрирующие трансформаторы.
Актуальность использования симметрирующих трансформаторов присутствует всегда. От сюда и выбор рассматриваемой темы данной работы.
В настоящее время широкое распространение получило применение трехфазных стабилизаторов переменного напряжения, в которых для обеспечения заданного номинального фазного напряжения 220В, применяются три независимых однофазных стабилизатора напряжения.
1 Устройство симметрирующих трансформаторов и принцип работы
В идеале напряжение в трехфазной сети между каждой из фаз и нулевым проводником равно 220 В. Но, при подключении к фазам сети разных потребителей, которые различаются по величине и характеру, появляется перекос фаз. Если бы при подключении нагрузок обеспечивалось равенство сопротивлений потребителей, то и проходящие через них токи были бы одинаковыми. В результате того, что токи на фазах не равны, в нулевом проводнике появляется уравнительный ток и напряжение смещения.
Напряжения на фазах изменяются между собой, и возникает перекос фаз, следствием которого становится повышение расхода электрической энергии и неправильное функционирование потребителей, которое приводит к отказам, сбоям и быстрому износу изоляции.
Для трехфазных автономных источников энергии перекос фаз может привести к разным неисправностям механизмов. В результате может возрасти расход топлива и масла на приводном двигателе, а также жидкости для охлаждения генератора. Эти неисправности приводят к повышению расходов на электричество, расходные материалы.
Не всегда, получается, рассчитать токи потребителей на фазах, чтобы выровнять их напряжения. Поэтому для предотвращения отрицательных последствий используют симметрирующий трансформатор, который выравнивает напряжения на фазах.
Симметрирующий трансформатор монтируется в стационарном исполнении. Выводы к нагрузке и сети обычно размещены на нижней панели. Для намотки катушек трансформатора используют только медные провода. Обмотки имеют гальваническую развязку, то есть, не имеют между собой электрического соединения. На входе в устройство устанавливается электрический автомат, позволяющий обеспечить защиту трансформатора от короткого замыкания и чрезмерных нагрузок. Трансформатор имеет индикаторы присутствия напряжения на выходе.
Первичная и вторичная обмотки трехфазного трансформатора соединены по схеме звезды. В них включена вспомогательная симметрирующая обмотка, охватывающая первичную высоковольтную обмотку трансформатора. Эта обмотка спроектирована таким образом, чтобы она могла выдержать продолжительный ток нагрузки трансформатора при работе в номинальном режиме на одной фазе. Вспомогательная симметрирующая обмотка включена в разрыв нулевого проводника трансформатора.
При появлении уравнительного тока в нулевом проводнике вследствие несимметричной нагрузки, магнитные потоки обмоток в магнитопроводе компенсируются противоположными потоками вспомогательной обмотки. В итоге перекос напряжений на фазах полностью исчезает.
Схема подключения обмоток для выравнивания фаз изображена на рисунке 1.
Рисунок 1 - Схема подключения обмоток для выравнивания фаз
Энергетические параметры симметрирующих трансформаторов ввиду добавления вспомогательной обмотки практически не изменяются, однако заметно уменьшаются потери электрической энергии в сети. При возникновении перекоса напряжений на фазах происходит их выравнивание.
Эксперименты и исследования ученых показали, что при соответствующем расчете числа витков рабочих и вспомогательной обмоток, напряжение на вспомогательной обмотке трансформатора при номинальном токе в нулевом проводнике становится равным фазному напряжению. При этом симметрирующая обмотка выравнивает электродвижущую силу до нулевой величины.
Симметрирующий трансформатор значительно уменьшает сопротивление нулевой последовательности трансформатора. Это позволяет значительно повысить ток короткого замыкания на фазе, что стало основным достоинством симметрирующих устройств, из-за легкой и надежной регулировки релейной защиты и ее работы при коротком замыкании.
Разрушающее действие повышенного тока короткого замыкания, возникшего на одной фазе, такого выравнивающего трансформатора намного ниже, в отличие от тока короткого замыкания при отсутствии компенсирующей обмотки, так как этот разрушительный несимметричный поток полностью компенсируется.
Если рассмотреть, как работает симметрирующий трансформатор при подключении несимметричной нагрузки на одну фазу, то видно, что максимальная нагрузка на фазу равна третьей части от трехфазной мощности источника энергии.
После включения мощной нагрузки на одну фазу возникает перекос фаз, поэтому возрастает вероятность выхода из строя подключенных к источнику потребителей нагрузки. Если мощность потребителей возрастет на треть от мощности источника, то трансформатор может выйти из строя.
На рисунке видно, что максимальная нагрузка на фазу может быть равной половине трехфазной мощности источника. Однако, источник будет воспринимать нагрузку, распределенную равномерно по всем фазам.
Применение симметрирующего трансформатора позволяет снизить мощность генератора, при этом к нему будут подключены такие же по мощности приемники, как и без дополнительной обмотки. Для источника электричества нагрузка будет распределенной по фазам равномерным образом.
2 Назначение и схемы включения
Радикальным средством снижения несимметрии токов в трехфазных ЛЭП при питании однофазных тяговых нагрузок является применение на подстанциях переменного тока специальных симметрирующих трансформаторов.
В работе жилищно-коммунального хозяйства;
На садовых и дачных участках;
В промышленном производстве на станках с программным управлением;
В военной технике;
Железная дорога.
Симметрирующий прибор с 3-фазным трансформатором включает три обмотки. Вторая обмотка соединена с четвертой по последовательной схеме, а со второй на других магнитопроводах зигзагообразно. Общее количество витков 1-й и 3-й обмотки такое же, как во 2-й обмотке. Эффективное функционирование симметрирующего устройства создается с помощью уменьшения сопротивления протекающим токам нулевой последовательности. Это намного повышает надежность функционирования при возникновении аварии. Между нулевым выводом N2 и N1 в схему подключены тиристорные ключи (6,7), сопротивление (10) и стабилитроны (8,9) для подсоединения фазных нагрузок.
Эта схема состоит из: — магнитопровод 1, состоящий из трех стержней; — первичная трехфазная симметричная обмотка 2 с сетевым питанием; — вторичная обмотка 3, подключенная тремя лучами зигзага.
Особенностью такой схемы является отсутствие тока нулевой последовательности во время любых режимов. Симметрирующий трансформатор наиболее надежен и прост в устройстве.
Симметрирующие устройства могут снижать потери электроэнергии путем падения амплитуд колебаний, падения сопротивления, что увеличивает ресурс работы источников энергии в сетях, в которых возникли перекосы фаз. Такие устройства служат для увеличения надежности работы автономных бензиновых генераторов и различных потребителей энергии при перекосах фаз. Подобные устройства позволяют рационально использовать электростанции с небольшой мощностью.
Заключение
Трансформаторы симметрирующие трехфазные позволяют сократить потери энергии за счет снижения амплитуд гармоник, уменьшения сопротивления. Это увеличивает рабочий ресурс энергетических источников в сетях с перекосами фаз. Аппараты предназначены для повышения надежности автономных генераторов и потребителей, когда нагрузки несимметричны.
Трансформаторы дают возможность рационально применять электростанции с меньшей мощностью. Электрическим генераторам, производимым по синхронному типу, требуется равномерность нагрузки, при этом допускается лишь тридцати процентный перекос по фазам. В таком случае весьма полезным становится применение симметрирующего трансформатора.
Читайте также: