Трансформатор с средней точкой своими руками
Трансформатор для двухтактных ламповых систем качественного звуковоспроизведения с двухполупериодными выпрямителями (ДППВ). В статье показано, как избежать встречного включения обмоток не нарушая оптимальную пространственную и векторную ориентацию остальных компонентов трансформатора.
Двухтактные усилители и выпрямители в сравнении с их однотактными вариантами имеют два существенных недостатка — сложную конструкцию, вызывающую потери ясности звучания и невозможность соблюдения четырех правил ориентации деталей трансформаторов:
Рис 1. Классический вариант со средней точкой у обмотки трансфорсматора. Здесь провод в нижнем плече оказывается включен встречно с анодным контуром.
Рис 3. Вариант с отдельными катушками и вектором, повторяющим направление магнитных линий трансформатора. Здесь в правой обмотке так-же оказывается нарушено правило правой руки.
На пояснительных рисунках жирные черные линии и стрелки показывают фрагменты контуров, красные стрелки указывают направления обмоток трансформатора, а серые — векторы магнитопровода.
На рис 3. показан вариант, где вектор магнитопровода, по аналогии с Контурами, замкнут по кругу. Такая круговая направленность была выведена гипотетически в то время, когда провести более-менее точный эксперимент с магнитопроводами было невозможно и еще не было уверенности, что направленность никак не коррелирует с направлением тока или другими физическими величинами.
Первые реальные шаги по исследованию направленности магнитопроводов были сделаны с помощью Тестового Аудиотракта (ТА) на катушке индуктивности с плоскими, железными лентами в качестве магнитопровода. Сначала с помощью ТА определялась продольная направленность каждой пластины магнитопровода, затем катушка подключалась в разрыв сигнальной цепи ТА и во время прослушивания музыки пластины по одной вставлялись внутрь катушки. Изменения в звучании ТА контролировались на слух и для каждой пластины определялось ее наилучшее положение из четырех возможных. В конце эксперимента оказалось, что более 80% пластин были продольно направлены относительно катушки по правилу правой руки .
Рис 4. Центральный керн идеально сонаправлен с катушкой, однако все части магнитопровода обернутые вокруг катушки имеют направленность снаружи-внутрь (наихудший вариант).
Рис 5. Более удачный вариант, где внутри почти везде присутствуют векторные потери, но на внешних частях магнитопровода вектор направлен наружу.
Экспериментальная индуктивность в сборе. Пластины магнитопровода и каркас взяты от трансформатора 1920х.
Вопрос о предпочтительном направлении магнитопровода по отношению к его обмоткам так и остался не решенным, оптимальное по звуку решение пришло позже и с обратной стороны — со стороны шасси и корпуса.
Чтобы звук акустической системы (АС) при установке в нее усилителя не зажимался, необходимо чтобы все компоненты усилителя были максимально сонаправлены с днищем АС. Днище и устанавливаемое на него шасси делаются с направлением изнутри наружу и на зрителя. Если взглянуть на трансформатор рис.4, то станет понятно, что его вообще невозможно установить на шасси правильно так как векторы обеих его половин направлены внутрь. Вариант рис. 5 потеряет в звуке меньше, но, как ни крути, его все равно нельзя установить без серьезных векторных потерь в одной из половин сердечника. Еще хуже ситуация будет, если вы захотите жестко закрепить трансформатор на шасси с помощью верхней планки и двух длинных болтов (наилучший, простейший способ крепления), в этом случае у нас получатся три неправильных касания из четырех, что уже совершенно неприемлемо.
Вектор магнитопровода должен максимально точно совпадать с Вектором шасси в точках их соприкосновения, то есть эзотерически, шасси и трансформатор должны представлять собой единое целое.
Сборка и ориентация деталей магнитопровода сонаправленно шасси позволила решить две казалось бы неразрешимые проблемы:
- Жесткое крепление трансформатора к шасси с помощью сонаправленных крепежных скоб без потерь Ясности звучания
- Одновременное соблюдение всех четырех вышеупомянутых условий при намотке, сборке и креплении двухполупериодного трансформатора с О-образным магнитопроводом
Крепление трансформатора к корпусу Энергофона с соблюдением Векторной Направленности деталей крепления
Большая часть низковольтных потребителей (радиоэлектронная аппаратура и т.д.) для питания требует напряжения одной полярности. Наряду с этим существуют схемы, для которых необходимо как положительное (относительно общего провода), так и отрицательное напряжение. Источники питания для таких узлов называются двухполярными, они необходимы для запитки схем на операционных усилителях, двухтактных каскадов аудиоусилителей и т.п.
Описание популярных схем двухполярного питания
Проще всего организовать двухполярное питание с помощью резистивного делителя. На вход подается напряжение, равное удвоенному уровню каждого плеча. Общая точка соединения двух резисторов служит общим проводом.
Напряжение плеч распределяется пропорционально сопротивлениям каждого резистора. При R1=R2 выход будет симметричным – U1=U2. Недостатком такого делителя является зависимость распределения напряжений от нагрузки – потребитель шунтирует резисторы, и если шунтирование будет различным, то и выходное напряжение также станет несимметричным. Чтобы уменьшить этот эффект, надо, чтобы Rнагрузки было намного больше резистора соответствующего плеча. Соответственно, при росте мощности потребителя придется уменьшать значение каждого сопротивления делителя, что приведет к росту потребляемой мощности по цепи R1R2, и уже скоро она достигнет неприемлемых величин.
Этот недостаток значительно сглаживается, если вместо резисторов применить конденсаторы. Напряжение распределяется пропорционально емкостям, при С 1=С2 на выходе U1=U2.
Емкость зависит от нагрузки, поэтому в этой схеме применяют оксидные (раньше их называли электролитическими) конденсаторы. В теории через цепь С1С2 ток не течет, мощность не потребляется. На практике оксидные конденсаторы имеют заметный ток утечки. Он не настолько велик, чтобы создать проблемы с потребляемой мощностью, но он для каждого конденсатора индивидуален, и создает изначальную несимметрию плеч. Этот эффект усиливает большой допустимый разброс емкостей электролитов. Поэтому параллельно конденсаторам полезно поставить по резистору одинакового номинала (в несколько сотен ом или несколько килоом). На потребление мощности они почти не повлияют, а распределение уровней выровняют.
Делитель из оксидных конденсаторов, обладающих большой емкостью, можно применять только в цепях постоянного тока.
На практике можно использовать подобную схему совместно с понижающим трансформатором и мостовым двухполупериодным выпрямителем. Конденсаторы служат одновременно сглаживающим фильтром и делителем. Выравнивающие делители не обязательны, если у трансформатора есть отвод от середины вторичной обмотки.
На новый уровень независимость выходного напряжения от нагрузки выводит выполнение источника питания по схеме со стабилизацией. В простом варианте ее можно выполнить на двух транзисторах, на базы которых подана половина питания от резистивного делителя (оба сопротивления должны быть равны).
Для верхнего (положительного) плеча можно применить транзистор КТ815 (КТ817). Для нижнего (отрицательного) КТ814 (КТ816) или другие соответствующей структуры.
Еще лучшие параметры имеет схема с применением операционного усилителя. Цепь отрицательной обратной связи на резисторе R3 обеспечивает хороший коэффициент стабилизации. Делитель на R1R2 задает уровень средней точки.
Несложная и устойчивая схема получается на линейных стабилизаторах серии 78ХХ (79XX для отрицательного плеча). Применен трансформатор со средней точкой, делителем служит цепь С1С3. Микросхемы-стабилизаторы включаются по стандартной схеме, диоды VD1 и VD3 защищают соответствующий канал от напряжения обратной полярности.
Для построения линейного стабилизатора на входе надо иметь запас по напряжению.
По подобной схеме можно построить и лабораторный блок питания, но для него удобнее использовать схему, регулируемую по выходному уровню. Такой источник можно построить на трансформаторе со средним отводом. Если его нет, можно использовать две идентичные вторичные обмотки (домотать или намотать заново) с отдельным выпрямителем для каждого канала или вообще использовать два раздельных трансформатора. Такой источник можно использовать как два отдельных однополярных канала, а соединив перемычкой плюс одного с минусом другого, получить регулируемый двухполярный БП.
Схема такого двухполярного блока питания содержит два раздельных канала, каждый из которых выполнен на микросхеме LM317. Диоды моста и транзистор должны быть рассчитаны на полный ток канала, трансформатор – на суммарную мощность двух трактов. Лабораторник позволяет в каждом из каналов получить напряжение от 1,25 до 35 вольт (зависит от входного напряжения). При необходимости получить двухполярное напряжение, минусовой вывод одного тракта соединяется с плюсовой клеммой другого, образуя среднюю точку.
Если нужен легкий, но мощный БП, придется прибегнуть к довольно сложной импульсной схемотехнике. Такой блок можно собрать на полевых транзисторах и микросхеме IR2153. Источник обеспечивает мощность около 100 ватт, выходное напряжение задается параметрами трансформатора. При указанном на схеме соотношении витков на выходе будет около 35 вольт в каждом плече.
Трансформатор наматывается на каркасе от трансформатора импульсного БП компьютера.
Первичная обмотка содержит 32 витка медного провода в лаковой изоляции диаметром не менее 0,6 мм. Вторичная - 8+8 витков такого же провода. Если увеличить количество витков во вторичке, выходное напряжение увеличится, если уменьшить – наоборот.
Советы по самостоятельному изготовлению двухполярного блока питания
Большую часть элементов блока питания можно установить на печатной плате, даже трансформатор, если это удобнее. Во многих случаях силовые элементы (транзисторы, диоды, линейные интегральные регуляторы напряжения) снабжаются радиаторами для обеспечения нормального температурного режима. Поэтому надо их монтировать либо на теплоотводе, либо при проектировании платы предусмотрительно устанавливать на краю так, чтобы можно было привинтить внешний радиатор.
Плату можно разработать самостоятельно в специальных программах, вроде бесплатной Sprint Layout, либо просто нарисовать на бумаге. Готовое изделие можно заказать через интернет или сделать самостоятельно по одной из домашних технологий:
- ЛУТ;
- фоторезист;
- нарисовать на плате вручную (например, лаком для ногтей).
Травится плата либо в классическом растворе хлорного железа, либо в смеси, состоящей из:
- 100 мл перекиси водорода;
- 30 г лимонной кислоты;
- 2-3 чайных ложки поваренной соли.
Не всегда удается подобрать нужный сетевой трансформатор, поэтому чаще подбирается подходящий по мощности, вторичная обмотка (или несколько) удаляются. Необходимо намотать вторичку заново – для этого существуют методики расчета. Их можно найти в литературе. В интернете для этого имеются онлайн-калькуляторы.
Если блок питания предполагается использовать для питания конкретного устройства (например, усилителя звуковой частоты), его можно встроить в общий корпус с основным изделием. А можно сделать в отдельном корпусе (лабораторные источники в большинстве случаев делают в виде отдельного блока). Корпус можно подобрать готовый или сделать самостоятельно. Здесь возможности ограничены фантазией и уровнем квалификации мастера.
Практически все электронные приборы работают от постоянного тока. Такой подход значительно снижает количество применяемых электронных компонентов, размер схемы и затраты на производство прибора.
Для преобразования переменного электрического напряжения в постоянное используются выпрямители. Статья даст подробное объяснение, что такое двухполупериодные выпрямители. Опишет их принцип работы, разновидности, основные преимущества и недостатки.
Назначение
Основное назначение однофазного двухполупериодного выпрямителя – это преобразование переменного тока в постоянный. Для того чтобы понять принцип действия такого выпрямителя, необходимо разобраться, что такое однополупериодное выпрямление.
Однополупериодный выпрямитель представляет собой устройство, которое состоит из трансформатора и одного диода (вентиля), подключенного ко вторичной обмотке трансформатора. Работает устройство следующим образом:
- Синусоидальный ток представляет собой цикл из 2 периодов: положительного и отрицательного.
- При протекании по цепи положительного полупериода, диод открывается и пропускает его дальше по цепи.
- При протекании отрицательного полупериода, диод не открывается и обрезает этот цикл.
Таким образом по цепи пропускается только ток с высокой пульсацией. Для того чтобы сгладить этот эффект, схема дополняется конденсатором с высокой емкостью. Основной недостаток такой схемы – большая потеря тока и необходимость использования мощных сглаживающих конденсаторов. Подобное устройство применяется, например, для зарядных блоков мобильных телефонов.
Двухполупериодный однофазный выпрямитель построен примерно по схожей схеме. Главное отличие заключается в добавлении 2-х и более полупроводниковых диодов для сглаживания обоих полупериодов. Существуют следующие разновидности подобных элементов:
Каждое устройство использует различное количество преобразователей, а значит имеет различный принцип работы.
Схема со средней точкой
Двухполупериодный выпрямитель со средней точкой предполагает наличие трансформатора с двумя вторичными обмотками, имеющими центральный вывод. Так же может использоваться трансформатор с одной вторичной обмоткой, но он будет обязательно иметь вывод из центра обмотки. Кроме того в составе схемы имеются 2 диода. Выпрямитель с нулевым выводом работает за счет образования разных по направленности ЭДС. Обе эти ЭДС равны по величине сформированного напряжения относительно центра или 0 точки. При работе такого трансформатора, ток на обоих полуобмотках сдвинут по фазе на 180 градусов.
Принцип работы данного выпрямителя следующий:
Двухполупериодная схема с нулевой точкой работает за счет отсутствия момента подмагничивания. Каждая половина вторичной обмотки работает в свой полупериод, а значит трансформатор находится в состоянии постоянной нагрузки.
Плюсы
У схемы с нулевым выходом есть преимущества только перед моделью однопериодного выпрямителя. Основные достоинства такой схемы:
- Во время работы осуществляется передача тока обоих потенциалов, тем самым сохраняется до 90% исходной энергии.
- 2 диода равномерно распределяют нагрузку, продлевая свой срок службы и заметно занижая нагрузку на всю схему.
- Схема двухполупериодного выпрямителя предполагает сглаженную пульсацию тока, без использования высоковольтных, емкостных конденсаторов.
Несмотря на ряд преимуществ, однофазные выпрямители с двумя диодами имеют свои недостатки, о которых будет рассказано ниже.
Минусы
Для работы такой сцепи обязательно необходим специальный трансформатор с 2 вторичными обмотками или одной разделенной, с нулевым выходом. Такие устройства сильно повышают затраты на производство высоковольтных, мощных приборов.
Также большим минусом является нагрузка обратным током. В схеме должны быть использованы диоды с номинальным напряжением до 1000 вольт и возможностью выдерживать температуру до +80 градусов. Если эти параметры не соблюдаются, то при закрытии диода будет формироваться повышенная температура и сопротивление. Превышения параметров приведет к пробою самого диода.
Следующим минусом является использование самого нулевого отвода. Подключение к нему предполагает только использования части доступной энергии, что сильно снижает потенциал таких устройств.
Диодный мост
Второй разновидностью является двухполупериодный мостовой выпрямитель. Данная модель наиболее распространена в цепях бытовых и промышленных электронных приборов. Состав электронного элемента:
- Трансформатор.
- 4 полупроводниковых диода.
- Конденсатор для сглаживания импульсов.
- Резистор как дополнительное сопротивление.
Работает устройство по мостовой схеме следующим образом:
При такой работе остается эффект пульсации тока. Его сглаживают с помощью емкостного конденсатора.
Преимущества
Двухполупериодное мостовое выпрямление имеет одно неоспоримое преимущество перед схемами с меньшим количеством диодов. Оно заключается в величинах обратного выпрямленного тока и напряжения. Эти величины превышают те же параметры в других схемах в 2 и более раз. Тем самым, мостовая схема имеет значительно большее КПД.
Минусы
Недостатки диодного моста также заключены в количестве диодов. Каждые из 4 диодов сохраняют в закрытом положении величину обратного напряжения, которое равняется напряжению в однополупериодном выпрямителе. Тем самым, 4 диода не способствуют уменьшению нагрузки обратного тока на вторичную обмотку.
Несмотря на недостатки, схема мостового выпрямителя более распространенная. Она может монтироваться в качестве 4 диодов или в сборке. Сборка выглядит более практичным вариантом. Она занимает меньше места на печатной плате.
Сглаживание
Однофазный электрический двухполупериодный выпрямитель, независимо от того, сколько диодов он совмещает, требует дополнительного сглаживания выходного напряжения. Пульсация сильно влияет на работу самого устройства, для которого собран такой выпрямитель. Для сглаживания пульсации тока схема выпрямления дополняется фильтрами. Они могут быть собраны из:
При проектировании диодных выпрямителей учитывается нагрузка последующих элементов цепи. Так, если сопротивление после выпрямителя значительно малое, то использование емкостного фильтра нецелесообразно. При малой нагрузке потребуется более емкостный конденсатор. Таким образом для подобных схем с малым сопротивлением, более рационально использовать индуктивный фильтр.
Расчет значения диодов
Диоды в двухполупериодных выпрямителях должны выдерживать нагрузку переменным током, нагревом, обратным напряжением. При подборе диода необходимо учесть:
- Выходное напряжение до диода должно быть выше на 15–25% необходимого значения. Например, если требуется снять 12 вольт постоянного напряжения, то вторичная обмотка трансформатора должна выдавать не менее 15–17 вольт.
- Рабочий порог тока должен быть в полтора-два раза выше тока выпрямителя. Максимальный ток каждого диода в цепи можно найти с использованием следующей формулы:
- Выведенную по формуле величину можно использовать для определения значения обратного напряжения в состоянии закрытия. Данное значение должно быть в два раза больше выходного напряжения трансформатора, иначе возможен обратный p-n пробой. Делается это по такой формуле:
Также стоит учитывать материал, который используется в качестве полупроводника. Кремневые элементы более устойчивы к нагрузке обратным током и способны работать при температуре до +150 градусов. Германиевые менее устойчивы, их устойчивость к обратному напряжению составляет около 400 вольт.
Заключение
Однофазная схема двухполупериодного выпрямителя используется практически во всех современных приборах. Такие элементы более дешевые, устойчивые к нагрузкам, позволяют применять диодные сборки, уменьшая при этом общий размер цепи. Так же такие схемы легко проектировать, ремонтировать и дополнять самостоятельно, зная только принцип работы этих устройств.
Искусственная средняя точка в БП
Доводилось. И не раз. Работает на ура, что совершенно не удивительно. Надо только учитывать то, что С1 и С2 имеют ёмкостное сопротивление, а как иначе? Надо это учитывать.
А в чём вопрос?
Спасибо за ответ.
А вопросов - два.
1. Из каких соображений рассчитываются разделительные ёмкости?
2. Каков дрейф средней точки при довольно значительной асимметрии нагрузки на плечи?
С уважением.
1 - из расчёта падения напряжения при протекании тока 50Гц
2 - во втором плече добавляется падение из 1го пункта.
1 - из расчёта падения напряжения при протекании тока 50Гц
2 - во втором плече добавляется падение из 1го пункта.
Спасибо.
Посчитал падение напряжения при токе 2 А и разделительных ёмкостях 470 мкФ. Получается много, слишком много, чтобы говорить о "средней точке".
С уважением.
Если надор 2-полярку а обмотка на трансе только одна, то можно такую схему:
У нее тоже полно недостатков, но она может дать бОльший ток без падения напряжения на последовательных конденсаторах.
Если надор 2-полярку а обмотка на трансе только одна, то можно такую схему:
У нее тоже полно недостатков, но она может дать бОльший ток без падения напряжения на последовательных конденсаторах.
Алекс, это ж пресловутый ОППВ, по нему на АМЛ+ кипятком ошпариваются.
Но у них одно плечо, со всеми вытекающими.
Ты привел лучше.
Читайте также: