Тестер микросхем своими руками
Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.
Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).
С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.
Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR - MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.
Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 - прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и "рассыпуха" - планарные конденсаторы и резисторы.
Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.
На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.
Итак, каковы же возможности данного тестера?
Замер ёмкости и параметров электролитического конденсатора.
Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.
Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.
На экране результат: ёмкость - 1004 мкФ (1004 μF); ЭПС - 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.
Проверка танталового электролитического конденсатора 22 мкФ * 35в.
Результат: ёмкость - 24,4 мкФ; ЭПС - 0,2 Ом., Vloss = 0,4%
Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.
Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.
Таинственный параметр Vloss.
При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.
Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.
Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.
Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.
Проверка полевых J-FET и MOSFET транзисторов.
Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1,2,3.
Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.
На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 - 4 вольт.
Более подробно об основных параметрах MOSFET-транзисторов я уже писал здесь.
Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме. Это поможет понять, что же вам показывает прибор.
Проверка биполярных транзисторов.
В качестве подопытного "кролика" возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).
Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.
Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.
Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.
Проверка диодов универсальным тестером.
Образец для испытаний - диод 1N4007.
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF - Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.
Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.
Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).
Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!
Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.
Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.
Проверка сдвоенного диода MBR20100CT.
Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.
Проверка резисторов.
Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.
Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).
Замер индуктивности катушек и дросселей.
На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.
На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).
Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току - 1 Ом (1,0Ω).
Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8.
А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part", что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".
Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.
Покажу на примере. Вот внутреннее устройство оптопары TLP627.
Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.
Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.
На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.
Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.
Теперь расскажу о том, какие детали этим тестером НЕ проверить.
Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;
Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;
Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;
Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;
Варисторы определяет как конденсаторы;
Однонаправленные супрессоры определяет как диоды.
Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.
Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.
Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.
Приветствую Вас, дорогие друзья! В этой статье я покажу и расскажу вам как сделать очень простой тестер для проверки радиодеталей, таких как диоды, транзисторы, конденсаторы, светодиоды, лампы накаливания, катушки индуктивности и многое другое. Особенно такой тестер придется по душе начинающим радиолюбителям. Хотя, он настолько удобен, что и опытные радиолюбители пользуются им и по сей день.
Схема тестера
В тестере содержится минимальное количество элементов, которые обязательно найдутся в хозяйстве даже у начинающих радиолюбителей. Вся схема это по сути один мультивибратор, собранный на транзисторах. Он генерирует прямоугольные импульсы. Контролируемая цепь подключается к плечам мультивибратора последовательно с двумя светодиодами, встречно параллельно. В результате проверяемая цепь тестируется переменным током.
Принцип работы тестера для проверки радиокомпонентов
С рабочего мультивибратора снимается переменный ток, примерно равный по амплитуде источнику питания. Изначально светодиоды не горят, так как цепь разомкнута. Но если замкнуть щупы, то переменный ток побежит через светодиоды. В это время через светодиоды будет бежать переменный ток частотой примерно 300 Гц. В результате встречно-параллельного включения светодиоды будут вспыхивать попеременно, но из-за высокой частоты генерации этого не будет видно человеческому глазу, а будет видно, что просто одновременно светятся оба светодиода.
Что это дает? – Спросите вы. К примеру, если подключить к щупам диод, то будет светиться только один светодиод, так как переменный ток побежит только через один период. В результате сразу будет понятно, что подключенный диод исправен. Тоже самое наблюдается при проверке переходов транзистора.
Главное удобство этого тестера в том, что видно сразу работает переход диода или нет. Не нужно переворачивать элементы, под полярность тестера, как в обычном мультиметре. Это дает огромное преимущество при проверке большого количества радиоэлементов, да и вообще очень удобно.
Также можно проверять на пробой или обрыв другие элементы или цепи.
Собрать тестер можно на плате или навесным монтажом. Светодиоды лучше брать разного цвета, чтобы было видно четко визуально видно работу.
Смотрите видео по работе с тестером для проверки радиоэлементов
Программирование Arduino, оживление микроэвм Электроника МК-90, аппаратный хакинг.
07.09.2009
Тестер микросхем
Недавно мне презентовали весьма рандомный комплект советских логических микросхем, в основном серии К561.
- Только я понятия не имею, работающие они или нет, - добавил мой знакомый, отсыпая в мои ладошки кучку сцепившихся металлическими ножками пластиковых корпусов.
Какой же бедный студент откажется от халявных микросхем! Но как отделить зерна от плевел – то бишь, брак от рабочих? Конечно же, первым делом я вооружился справочником В.Л. Шило "Популярные микросхемы КМОП. Справочник. Серии К176, К561, 564, КР1561, 1564" (Москва, "Ягуар", 1993 г.). Узнав оттуда назначение и расположение контактов одной из выбранных наугад микросхем – К561ТМ2, я соединил с Arduino входы первого из двух независимых D-триггеров, входящих в состав этой микросхемы, а прямой и инверсный выходы - на светодиоды с токоограничительными резисторами:
Как только я правильно написал скетч, светодиоды весело замигали:
Помигать также можно и через R/S входы, если заменить в предыдущем примере тело loop:
Если светодиоды загораются по-очереди раз в полсекунды, то триггер вроде бы рабочий. Но в корпусе их два, а значит надо повторить проверку и для второго.
Любая микросхема имеет определенное быстродействие (зависит от серии, например, в случае с КМОП – от напряжения питания) и неплохо было бы проверить, что оно достижимо. Поскольку оценивать это "на глазок" по миганию светодиодов нельзя, логично доверить это Arduino, подключив к нему и выходы тестируемой микросхемы тоже.
И обязательно надо проверить и взаимное влияние одного триггера на другой – например, при управлении одним, второй своего состояния менять не должен.
Немного подумав надо тем, как должна выглядеть Универсальная Программа Проверки Логических Микросхем, я ужаснулся и потянулся к Интернету, пытаясь найти готовое устройство для повторения. Но все оказалось не так просто, как я ожидал.
Надо заметить, что в существовании подобного устройства я не сомневался – несколько раз, покупая на рынке комплектуху для своего первого Спектрума, я прибегал с услугам дядьки-проверяльщика. Это такой специальный мужик (чем-то смахивающий на коробейника) с портативным проверочным устройством. За небольшую плату покупаемые микросхемы устанавливались в панельку на устройстве, нажималась кнопка и – чудо! Если загорался один светодиод, то проверка считалась успешной, если другой. микросхема возвращалась продавцу с вердиктом "битая". Стоило эта услуга весьма недорого и пользовалась заслуженной популярностью: выпаивать микросхему, рискуя повредить печать, не хотелось.
Первый найденный вариант обнаружился в книге "Популярные микросхемы ТТЛ. Серии: КР1533, КР1531, К531, К555, К155" (Москва, "Аргус", 1993). Назывался он "Прибор для испытания микросхем". Необходимость преподносилась его авторами так: "однотипные микросхемы, изготавливаемые разными фирмами как "функциональные аналоги", могут работать по-разному":
Механическую основу девайса составляет универсальная панелька на 24 контакта, к кажому из которых припаяно по проводку длиной 150мм, со штырьком на конце. С двух сторон расположены тумблеры и светодиоды с гнездами: для начала надо раздобыть описание микросхемы и подключить проводками тумблеры - ко входам, а светодиоды – к выходам. Наверное, вы уже догадываетесь, что дальше надо руководствуясь документацией / интуицией / исключительно субъективным пониманием того, как должна работать микросхема, набирать на тумблерах комбинации и анализировать результат. В схеме предусмотрен генератор импульсов 1 Гц, который предназначен для формирования сигнала проверки последовательных регистров и сдвиговых счетчиков (и тоже имеет отдельное гнездо):
Как гласит последний абзац описания, "некоторые микросхемы КМОП не работают от 5В. Разомкните тумблер S15, подайте от внешнего питания 9В". Это единственное упоминание КМОП в книге, полностью посвященной ТТЛ- и ТТЛШ-логике, отдает мистикой ;)
Подводя краткий итог, надо признать, что это была чуть более удобная обвязка к лобовому способу проверки, с которого я начал. Да и подходило оно, скорее, для исследователя, который хочет посмотреть, как работает незнакомая микросхема при разных комбинациях входных сигналов. Подозреваю, что авторы книги пользовались чем-то похожим ;)
Принцип работы: берутся две одинаковых микросхемы, у них соединяются входы и в реальном времени сравниваются состояния на выходах: при расхождении загорается светодиод. Главная особенность этого способа заключается в том, что можно (и даже нужно!) проверять микросхему не выпаивая - прямо в работающем устройстве. Правда, для этого придется собрать специальный игольчатый переходник, но в итоге появляется уникальный шанс "застукать" неисправную микросхему, если "один из входов или выходов . могут иметь обрыв или "сидеть" на одном из уровней, а в статике логика работы будет совпадать".
Простота устройства компенсируется необходимостью иметь под рукой эталонные микросхемы. Обратный вариант - если вы занимаетесь проверкой микросхем из кассы, надо иметь исправное устройство, в котором будет стоять такая же микросхема. Идея оригинальная и крайне практичная, но.
Кстати, нельзя не заглянуть в статью, на которую ссылается Заец: журнал Радио №7 за 1993, "Тестер для проверки микросхем". Там мы найдем похожую схему для проверки регистров и мультиплексоров ТТЛ-серий, которая предполагает проверку путем формирования тестовой последовательности на испытуемой и эталонной микросхеме. Таким образом, работающей платы не требуется, зато сужается диапазон типов проверяемых микросхем. Необходимость иметь "про запас" исправную эталонную микросхему тоже не отпадает, увы:
За универсальным тестером будущее. Всего лишь при подсоединении щупов, универсальный пробник определяет сопротивление, ёмкость, ЭПС, диодную проводимость, распиновку и коэффициенты усиления транзисторов, прозванивает лампочки и светодиоды, сообщает на дисплее о повреждении электронного элемента. Работает подобный тестер автоматически, без переключения селектора или кнопок.
Для работы мультитестера нужен микроконтроллер минимум с 8 кБ флеш-памяти, такой как ATmega8, ATmega168, ATmega328.
Электрическая схема мультитестера на Arduino
Характеристики тестера электроэлементов на Arduino:
- Сопротивление: 0…50 МОм, точность до 0.01 Ом (на ATmega8 точность 0.1 Ом).
- Ёмкость: 25 пФ…100 мФ, точность 0,1 пФ.
- ЭПС (эквивалентное последовательное сопротивление) определяется для емкостей 90нФ…100 мФ.
- Биполярные транзисторы: нахождение базы, коллектора, эммитера (BCE) при проводимости NPN, PNP.
- Полевые транзисторы: N-канальные, P-канальные.
- Диоды, диодные сборки: кремниевые, германиевые, Шотки, определение анода катода.
- Стабилитроны: обратное напряжение пробоя менее 4,5 В.
- Тиристоры, семисторы: только маломощные.
Подобный пробник полупроводниковых деталей можно купить под заказ из Китая или собрать самому. Все необходимые для самоделки детали можно купить через интернет у производителей из Китая, Малайзии, Сингапура, Италии.
Список комплектующих
Подключение питания
Для точности измерений тестера рекомендуется, но не обязательно, запитать его от прецизионного стабилизатора напряжения 5.00 В, например от MCP1702-5002.
При невыполнении этого условия, в случае использования менее точного стабилизатора типа 7805, настоятельно советуем подключить источник опорного напряжения (ИОН).
Стабилизированный ИОН на 2.5 В надо подсоединять к выводу А4 микроконтроллера. На приведенной электрической схеме это подключение не показано. Благодаря подключенному ИОН, мультиметр будет более точно измерять напряжение на батарейках VBAT, наибольший положительный потенциал на полупроводниках VСС.
В программе самодиагностики микроконтроллера ATmega заложено определение отсутствия ИОН. Эта функция самодиагностики активна только при подключении ножки А4 к напряжению 5 В через резистор 47 кОм.
Можно таки случайно закоротить ножки микросхемы А4 и А5. После этого начнутся проблемы с точностью измерения VBAT и VСС. Поэтому удаляйте несанкционированные мостики между выводами, смывайте сгоревший флюс с платы.
Что касается портативности, то в качестве первичного источника для мультиметра рекомендуется использовать батарейку типа Крона или два последовательно соединенных литийионных аккумулятора. Правильно собранный прибор будет работать от любого источника питания, напряжением от 7 до 15 В.
При организации питания прибора от сетевого адаптера 220/9–12 В, следует позаботиться об экранировании микроконтроллера, устранить пульсации на входе с помощью конденсатора. Нельзя близко располагать, как в одной плоскости, так и сверху снизу, входные цепи питания к плате Arduino.
Сборка измерительной схемы
Правильнее будет собрать пробную схему мультитестера на беспаечной макетной плате для проверки совместимости найденного дисплея с микропроцессором Arduino, а также других комплектующих.
Встроенный светодиод на выходе D13 обязательно выпаять! Этот выход будет использоваться как источник образцового напряжения при прозвонке диодов, транзисторов, тиристоров, и нагрузка, садящая на нем напряжение, не нужна.
Подключение к аналоговым выходам Arduino:
Подключение к цифровым выходам Arduino:
- D0 — получение RX на Arduino nano или mini.
- D1 — передача TX на Arduino nano или mini.
Прошивка микроконтроллера
Загрузить прошивку в Arduino можно как с помощью программатора USB, так и применив другой Arduino nano для перепрограммирования. Мы же воспользуемся программатором USBasp и приложением SinaProg, о чем расскажем подробно.
- Скачиваем и устанавливаем на ПК приложение SinaProg 2.1.
- В поле Programmer находим свой программатор USBasp и нажимаем кнопку Search для поиска подключенного контроллера.
- После определения контроллера, скачиваем Aрхив с прошивкой для мультитестера на Arduino и распаковываем.
- В архиве две прошивки: TransistorTester.eep для работы памяти EEPROM микроконтроллера, TransistorTester.hex непосредственно для микроконтроллера. Сначала загружаем TransistorTester.eep в память EEPROM микроконтроллера.
Иконка выбора пути к прошивке
- Загружаем TransistorTester.hex в микроконтроллер,аналогично как делали ранее.
- После удачно осуществленной прошивки, отключаем программатор.
Дабы не было проблем с полным отсутствием отображения на дисплее, заливать в память EEPROM следует файл с расширением HEX, а не BIN.
Начинать работу с тестером надо после сброса на кнопке SW2 Reset.
Есть куча приборов, куда можно поместить собираемый универсальный пробник: старые мультиметры, токовые клещи, большие калькуляторы, даже ночные часы.
Как пример свой мультитестер на Arduino можно засунуть в корпус испорченного модема.
Закончил проект тестера полупроводниковых радиоэлементов на МК Atmega8.
Схема простая:
Фото готового изделия:
Его возможности:
Типы тестируемых элементов
(имя элемента — индикация на дисплее):
— NPN транзисторы — на дисплее "NPN"
— PNP транзисторы — на дисплее "PNP"
— N-канальные-обогащенные MOSFET — на дисплее "N-E-MOS"
— P-канальные-обогащенные MOSFET — на дисплее "P-E-MOS"
— N-канальные-обедненные MOSFET — на дисплее "N-D-MOS"
— P-канальные-обедненные MOSFET — на дисплее "P-D-MOS"
— N-канальные JFET — на дисплее "N-JFET"
— P-канальные JFET — на дисплее "P-JFET"
— Тиристоры — на дисплее "Tyrystor"
— Симисторы — на дисплее "Triak"
— Диоды — на дисплее "Diode"
— Двухкатодные сборки диодов — на дисплее "Double diode CK"
— Двуханодные сборки диодов — на дисплее "Double diode CA"
— Два последовательно соединенных диода — на дисплее "2 diode series"
— Диоды симметричные — на дисплее "Diode symmetric"
— Резисторы — диапазон от 1 Ом до 10 МОм [Ом, KОм]
— Конденсаторы — диапазон от 0,2nF до 5000uF [nF, uF]
При измерении сопротивления или емкости устройство не дает высокой точности
Описание дополнительных параметров измерения:
— H21e (коэффициент усиления по току) — диапазон до 10000
— (1-2-3) — порядок подключенных выводов элемента
— Наличие элементов защиты — диода — "Символ диода"
— Прямое напряжение – Uf [mV]
— Напряжение открытия (для MOSFET) — Vt [mV]
— Емкость затвора (для MOSFET) — C= [nF]
16 февраля 2015 в 12:26 Метки: atmega8 , avr , тестер , мк , микроконтроллер , тестер полупроводниковых элементов
Читайте также: