Терморегулятор на шим контроллере своими руками схема
Некоторое время назад в одном из комментариев к статье мне предложили в качестве системы отопления использовать греющий кабель . А в качестве управляющего нагревом устройства использовать ШИМ .
Сама по себе мысль неплохая и имеет право на существование. Но комментатор утверждал, что саморегулируемый кабель - это современные технологии (в отличие от конвекторов или масляных радиаторов ), а в паре с ШИМ - это вообще бомба, и что такая система будет “в разы” экономичнее, чем обычный электрический конвектор в паре с терморегулятором.
Я попытался поспорить и попросил объяснить - за счёт чего будет экономия “в разы”. В ответ, как всегда, получил порцию обвинений в дремучести, тупости, и в том, что такие олухи как я не достойны называться инженерами. Ну и конечно мне было сказано, что об этом и так все знают, кроме таких балбесов, как я.
Как вы поняли, ответа на свой вопрос я так и не услышал. Продолжать спор было бессмысленно. Потому что, как я люблю говорить
Вера сильнее разума!
Если человек во что-то фанатично верит, то никакие доводы его веру не сломают. Поэтому я не буду ломать веру этого читателя, а просто постараюсь сравнить две системы отопления:
- Греющий кабель, управляемый с помощью ШИМ
- Электрический конвектор, управляемый терморегулятором
А теперь давайте посмотрим временные диаграммы работы ШИМ и терморегулятора (данные приблизительные, потому что в данном случае точность не имеет значения):
Ну что, почувствовали разницу? Вот и я не очень. И терморегулятор, и ШИМ, по сути делают одно и тоже - подают напряжение на нагрузку на какое-то время и через определённые промежутки времени. Различие лишь в том, что в случае с ШИМ это обычно секунды или миллисекунды, а в случае с терморегулятором это минуты, десятки минут или даже часы.
Но сути то это не меняет. Почему? Да потому что чтобы получить нужную мощность, надо подать определённое напряжение на нагревательный элемент. И если для обогрева требуется 1 кВт/ч, то этот кВт будет подан на нагрузку, и, соответственно, будет потреблён из электросети. И совершенно неважно, будет это сделано через ШИМ или через терморегулятор.
А на закуску развенчаем миф о греющем кабеле.
Итак, чему равна мощность, от которой зависит температура нагревателя, а, следовательно, и температура в помещении? А вот чему:
То есть мощность зависит исключительно от напряжения и тока. Можно считать, что напряжение в нашем случае всегда одинаковое, а вот ток может изменяться, потому что
То есть если напряжение не изменяется, то ток будет изменяться в зависимости от сопротивления.
И здесь не имеет никакого значения, какой материал является проводником - медь, нихром или полупроводниковая матрица. Закон Ома для участка цепи справедлив для ЛЮБЫХ проводников.
ПРИМЕЧАНИЕ : При питании переменным током может быть индуктивная составляющая, и тогда формулы для расчётов будут другими. Но, поскольку мы говорим исключительно об активной нагрузке, то использовать приведённые выше формулы вполне допустимо.
На первый взгляд может показаться, что саморегулируемый кабель действительно будет более экономичным, потому что его сопротивление меняется в зависимости от температуры окружающей среды. То есть по мере прогрева помещения сопротивление будет увеличиваться, а, значит, будет уменьшаться ток, а это, в свою очередь, означает, что и потребляемая мощность будет уменьшаться. За счёт этого и будет экономия.
Да, будет. Но по сравнению с чем?
Если сравнивать обычный электронагреватель БЕЗ терморегулятора, то да. А если это нагреватель с терморегулятором, то никакой существенной экономии не будет, потому что терморегулятор делает то же самое - отключает нагреватель при достижении заданной температуры.
Да, какая-то небольшая экономия возможна (за счёт более плавного и точного регулирования с помощью ШИМ). Но это будут проценты или даже доли процента, но никак не “в разы”.
И да - экономия при использовании саморегулируемого кабеля достигается за счёт РЕГУЛИРОВАНИЯ, а не за счёт каких-то новых материалов. А регулировать можно по разному. Можно использовать ШИМ, а можно терморегулятор или другие способы.
Так что если Вассерман рекламирует какой-то чудо-обогреватель, который “потребляет как лампочка, а греет как печь”, то это ещё не повод сломя голову бежать в магазин. Какими-бы современными ни были технологии, но если в качестве греющего элемента используется электрический нагреватель, его КПД не может быть более 100%, а если чудеса и случаются, то мы о них пока ничего не знаем, кроме как из сказок…
Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.
Пример простого терморегулятора
Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
- измерительный;
- логический;
- исполнительный.
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
Рис. 1. Датчик из полуплеча резисторов
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Рис. 2. Принципиальная схема терморегулятора
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Обзор схем
В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.
Рис. 3. Схема терморегулятора №1
На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.
Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.
Рис. 4. Схема терморегулятора №2
Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.
Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.
Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.
Создаем простой терморегулятор
При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.
Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.
Рис. 5. Схема простейшего терморегулятора
Для его изготовления вам понадобится:
- понижающий трансформатор с 220 на 12 В;
- шесть диодов (в рассматриваемом примере используются IN4007);
- конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
- микросхема для стабилизатора на 5В;
- транзистор (в рассматриваемом примере это КТ814А);
- стабилитрон с регулируемым параметром (TL431);
- резистивные элементы на 4,7; 160, 150 и 910 кОм;
- резистор с изменяемым сопротивлением на 150 кОм;
- термозависимый резистор 50 кОм;
- светодиод;
- электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
- кнопка и корпус.
Процесс изготовления состоит из таких этапов:
В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.
- Подключите все отдельно размещенные элементы к плате и закройте корпусом.
После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.
Программу пришлось писать с самого нуля, поменял почти весь алгоритм обработки данных с датчика DS18B20, что облегчило написание подпрограммы сравнения температур и установки гистерезиса. Схему вы видите на рисунке 1. В отличие от первой в ней третья кнопка SB3 поменяла свои функции. Установка температуры термостатирования производится с помощью кнопок SB1 и SB2. SB1 – уменьшает показания, SB2 – увеличивает. Численное значение гистерезиса устанавливается теми же кнопками, но при нажатой кнопке SB3. Индикатор любой с общим анодом. Трансформатор – любой маломощный с соответствующим напряжением на выходе. Диодный мост тоже любой маломощный. Стабилизатор напряжения КР142ЕН5А.
Забыл, гистерезис можно установить в диапазоне от 0,1 до 0,9 градуса.
Еще одно дополнение — при включении устройства без датчика даже при прошитом контроллере индикатор светиться не будет.
По данной схеме, Игорь Курбатов изготовил описанный в данной статье термостат и сделал на эту тему видеоотчет, который я разместил здесь.
Автоматический регулятор скорости вращения 4х-проводного вентилятора для компьютера
Однако, эту схему можно с успехом использовать в любом устройстве, где требуется охлаждение элементов схемы, например в блоке питания или в звуковом усилителе мощности. Принцип работы заключается в постоянном отслеживании температуры радиатора транзисторов или микросхемы и увеличении скорости вращения лопастей вентилятора пропорционально росту температуры.
Самый простой — это 2 провода. Плюс и минус напряжения питания 12 вольт. Часто такие вентиляторы применяются в недорогих компьютерных блоках питания. Управлять скоростью вращения такого вентилятора можно изменяя напряжения его питания. Никакого контроля скорости вращения нет.
Третий тип — вентилятор с четырьмя проводами. Это наиболее продвинутый тип управления. Обычно используется в более дорогих и качественных вентиляторах. Именно такой вентилятор использовался в моем неттопе. Его работу мы разберем подробнее дальше.
четвертый тип подключения — это разновидность первого двухпроводного, с использованием стандартного разъема MOLEX. Обычно вентиляторы с такими разъёмами используются для установки в компьютерные корпуса для улучшения охлаждения внутри компьютера. Провод +5V MOLEX-а в простых вентиляторах не используется, но иногда он может быть задействован для питания дополнительного контроллера если вентилятор продается в комплекте с регулятором оборотов. Но чаще всего задействованы только +12 и GND.
Работа 4-х проводного вентилятора
Для того, чтобы заставить работать 4-х пиновый вентилятор, нужно сделать следующее:
- подключить черный провод к минусу источника питания (земле)
- подключить желтый провод 3 +12 источника питания. При этом, в зависимости от типа вентилятора, он крутиться не буде вообще, либо будет вращаться на самой минимальной скорости
- На синий провод подать управляющие импульсы от генератора или ШИМ контроллера. Это должны быть прямоугольные импульсы амплитудой от 4 до 12 вольт и с частотой от нескольких сот герц до нескольких килогерц.
Вентилятор может работать при частоте управляющих импульсов в довольно широком диапазоне. Определяющим фактором является не частота импульсов, а их скважность. Чем больше процент заполнения импульсов тем выше скорость вращения. Собственно, как и у любого вентилятора, подключенного к шим контроллеру через транзисторный ключ. Вся разница в том, что этот ключ на полевом транзисторе встроен в вентилятор и внешний уже не требуется. Подавая импульсы на синий провод мы как раз и управляем этим встроенным в вентилятор ключом.
Скорость вращения также несколько зависит от частоты импульсов. При большей частоте и при одинаковой скважности скорость вентилятора будет несколько выше. При питании от материнской платы компьютера частот следования импульсов обычно в районе 10 кГц, но вентилятор будет прекрасно работать и при частоте импульсов например в 400..500 Гц. В моем контроллере на NE555 частота импульсов в районе 1..4 кГц в зависимости от настроек схемы.
Схема регулятора скорости вращения четырех-проводного вентилятора
Четырехпроводной вентилятор подключается так:
- черный провод — минус питания 12 вольт (земля)
- желтый провод — к источнику плюс 12 вольт
- если нужно измерять частоту вращения вентилятора то третий, зеленый провод подключается к соответствующей цепи. Либо оставляем неподключенным
- Синий провод подключаем к выходу нашего устройства (к правому выводу резистора R2 сопротивлением 27 Ом
С случае с моим компьютером я просто перерезал синий провод, который шел от вентилятора к материнской плате и подал на на него сигнал от этого регулятора. Остальные 3 провода остались подключенными к разъему на материнской плате неттопа.
Основа регулятора — мультивибратор на микросхеме NE555. В качестве термо-датчика используется китайский терморезистор номинального сопротивления 100 к. Такие терморезисторы используются для контроля температуры в столиках 3D принтеров. Они очень дешевы, на алиэкспресс можно заказать партию из 10 или 20 штук. Терморезистор имеет очень малые размеры и соответственно, небольшой инерционностью. Он очень удобен для наших целей. Проволочные выводы терморезистора не имеют изоляции поэтому необходимо надеть на них кусочки термоусадочной трубки
Терморезистор приклеиваем к радиатору эпоксидным клеем.
При комнатной температуре сопротивление терморезистора — в районе 100 килоом. При этом, при указанном на схеме сопротивлении резистора R1 скважность выходного сигнала близка к 2. То есть коэффициент заполнения = 0,5. Это является исходным состоянием, при котором обороты вентилятора минимально — необходимые.
Форма сигнала на выходе таймера 555 при комнатной температуре
По мере увеличения температуры в контролируемой точке, сопротивление терморезистора уменьшается и увеличивается коэффициент заполнения прямоугольного сигнала на выходе:
Форма сигнала на выходе при увеличении температуры
Соответственно увеличивается число оборотов вентилятора. В каждом случае необходимый диапазон регулировки скважности зависит от ваших потребностей и от параметров конкретного вентилятора. Поэтому настраивать схему нужно отдельно для каждого вентилятора и диапазона рабочих температур.
Настройку можно осуществить в следующей последовательности:
- Вместо резистора R1 временно впаиваем подстроечный (или переменный) резистор сопротивлением 300 — 500 кОм
- Крутим до получения необходимого минимального числа оборотов вентилятора
- теперь нужно добиться максимальной температуры в контролируемой точке. Если это радиатор процессора компьютера, то запускаем на компьютере какой-нибудь бенчмарк чтобы на 100 % загрузить процессор. Если это, например, радиатор охлаждения какого либо блока питания, то нагружаем блок питания по максимуму. И т.д.
- В течение примерно 10…15 минут наблюдаем за работой этого всего, подстраивая резистором необходимую максимальную скорость вращения вентилятора так, чтобы температура не превышала максимально допустимую.
- Измеряем сопротивление переменного резистора и впаиваем вместо него в схему постоянный резистор близкого номинала.
- Может также потребоваться подобрать (или даже совсем исключить из схемы) резистор R3. Его сопротивление зависит от характеристики терморезистора. Чем меньше сопротивление R3 тем больше зависимость скорости вращения от изменения температуры.
Теперь о том как подключить к данной схеме двух — или трех — проводной вентилятор. В таком случае вентилятор нужно подключать по цепи его питания
Схема использования обычного двух или трех проводного вентилятора
Кроме указанного на схеме, в качестве ключа можно использовать практически любой подходящий по мощности MOSFET транзистор.
Что делать, если у вас есть только терморезистор на 10 кОм? Не проблема. Можно адаптировать схему для работы с таким терморезистором (термисторы на 10 кОм очень распространены). Для того, чтобы использовать такой термистор нужно изменить некоторые элементы схемы. Вот новые номиналы:
R1 должен быть сопротивлением от 20 до 22 кОм
С1 должен быть емкостью 10 нф (0.01 мкФ)
R3 можно поставить на 1 — 3 килоом или просто заменить перемычкой (зависит от нужной характеристики регулировки и от вашего конкретного вентилятора).
Читайте также: