Темнопольная микроскопия своими руками
Все, когда-то сталкиваются с потребностью увеличить и подробнее рассмотреть какой-либо объект. Причиной этому может быть, как простое любопытство, так возрастное ухудшение зрения.
Первый оптический инструмент, с которым мы чаще всего встречаемся – обычная линза или увеличительная лупа. Однако у большинства луп кратность увеличения линзы не выше 5Х - 10Х. Поэтому в основном они пригодны лишь для решения простых бытовых задач таких как: чтение мелкого текста, вдевание нитки в иголку, изучение поверхности кожи.
Но если нужна большая кратность увеличения или требуется более удобный и комфортный инструмент для работы, то следует посмотреть на микроскопы.
Какой микроскоп купить? Ряд приборов и функционала может сбить с толку любого не подготовленного человека.
Какие типы микроскопов бывают, на что стоит обратить внимание при выборе, как подобрать прибор с тем функционалом, который нужен именно вам, обо всем об этом мы расскажем в этой статье.
Время чтения: 13 минут |
Выбираем тип микроскопа
Наибольшее распространение получили оптические или световые микроскопы. Небольшие размеры, простота конструкции, низкая цена делают их доступными для любой области применения.
Существует два основных типа оптических световых микроскопов: составные с большим увеличением и стереоскопические - с малым.
а) Учебный микроскоп SAGA XSP-000 80x–1600x с адаптером для смартфона и набором для опытов, б) Стереоскопический микроскоп Dagong ST8050-B1
Для просмотра очень большого увеличения внутренних структур клеток или микроорганизмов, лучше всего подходит составной микроскоп. Они имеют не только высокое увеличение, но также очень высокое оптическое разрешение. Это позволяет различать даже очень мелкие детали изображения изучаемого объекта.
Но если вам не нужно очень большое увеличение, а важно иметь большое поле зрения (это видимая площадь изучаемого вами объекта), то здесь лучше всего подойдёт стереомикроскоп.
У стереомикроскопов большое поле зрения, это позволяет рассмотреть большой объект. Составные микроскопы создают малое поле зрения с большим увеличением, это позволяет различать более мелкие детали объекта.
Вот пример того, как выглядят под разными приборами образцы:
а) Образец под составным микроскопом, б) Образец под стереомикроскопом
При исследовании светопрозрачных объектов, лучше всего подойдут составные. У них подсветка расположена снизу, а объектив собирает прошедший через исследуемый объект свет.Самый простой способ определить, какой тип прибора вам нужен, - это понять с какими объектами вы хотите работать.
А вот стереомикроскопы, чаще всего имеют только верхнюю подсветку, в них объектив принимает отраженный от объекта свет, поэтому такие приборы лучше подходят для исследования непрозрачных объектов.
Например, если вы хотите рассмотреть монету, то составной вам не подойдет. Во-первых, так как подсветка у него расположена снизу, а монета – не прозрачный объект, то вы ничего не увидите в микроскопе так как свет не проходит через монету. Во-вторых, даже если вы монету осветите сверху, то из-за сильной кратности, вы не сможете определить какую часть монеты вы осматриваете.
В противовес этому, если вы хотите узнать, как выглядит бактериальная клетка, то стереомикроскоп вам не подойдет. Его низкая кратность не позволит подробно разглядеть изучаемый вами объект. А из-за малого отражения, сильного рассеивания света в верхних слоях микропрепарата вы можете вообще ничего не увидеть.
Микропрепараты с образцами для составного микроскопа
Однако к любому типу оборудования можно применить более высокие требования. В этом случае прибор будет иметь расширенный функционал и сможет, например, использовать несколько методов микроскопии.
а) Микроскопия темного поля, б) Фазово-контрастная микроскопия, в) Флуоресцентная микроскопия
Существуют некоторые составные микроскопы, которые используют отраженный свет для просмотра твердых объектов, а также ряд стереомикроскопов, использующих проходящий свет, предназначенных, для просмотра прозрачных, полупрозрачных образцов.
Поэтому при очень специфическом, уникальном применении, вам может потребоваться узкоспециализированное устройство или специальные аксессуары для него.
Оптические микроскопы
Это то, что большинство людей представляют, когда думают о микроскопах. Они доступны в монокулярном, бинокулярном, тринокулярном исполнении, что соответствует количеству окулярных тубусов.
Монокулярные составные, как правило, лучше всего подходят для молодой аудитории или для тех, кто планирует использовать только камеру.
Бинокулярные составные лучше всего подходят для подростков, взрослых, так как при просмотре оба глаза открыты, что гораздо удобнее, чем постоянно закрывать один.
Тринокулярные составные работают так же, как бинокулярные, однако у них есть специальный окуляр для установки камеры. Это удобно, так как позволяет пользоваться микроскопом и камерой во время просмотра микропрепарата.
а) Учебный монокулярный микроскоп Phenix XSP-35 (2000x), б) Биологический микроскоп SAGA XSP-003 с камерой, адаптером для телефона и набором для опытов, в) Цифровой биологический микроскоп Saike Digital SK2009H2, тринокулярный
Составные микроскопы имеют несколько объективов различного увеличения, установленных на вращающейся насадке (револьверная головка). Поскольку в составных одновременно может использоваться только один объектив и свет проходит по одному пути, то пользователь видит плоское изображение микропрепарата.
Диапазон объективов в таких микроскопах – от 2X до 100X, однако общая кратность - это произведение всех увеличивающих элементов на пути проходящего света. Например, с 100-кратным объективом и с 10-кратным окуляром общая кратность составит 1000-крат.
Обычно диапазон общей кратности на составном микроскопе составляет от 40X до 1600X, хотя некоторые из них могут иметь большую или меньшую кратность.
100-кратные объективы используют только в иммерсионных методах исследования, для этого между предметным стеклом и объективом размещают специальную жидкость – иммерсионное масло. Это уменьшает рассеивание проходящего света.
Револьверная головка с объективами: 4X, 10X, 40X и 100X
Некоторые составные микроскопы также имеют под предметным столиком линзу – конденсор, которая фокусирует свет от источника, через образец в объектив. Недорогие приборы также снабжаются дисковой диафрагмой, которая имеет отверстия различного размера. Она позволяет ступенчато изменять количество падающего на микропрепарат света. Более дорогие имеют ирисовую диафрагму, она позволяет плавно регулировать силу света.
Также если в составном приборе заменить конденсор, то это позволит использовать более продвинутые методы микроскопии, например, такие как темное поле, фазовый контраст.
Стереомикроскопы
В отличие от составного, который дает плоское двумерное изображение, стереомикроскопы позволяют наблюдателю видеть прямое (не перевернутое) объёмное изображение.
Это связано с тем, что на каждый окуляр передается разное изображение, которое получают под небольшим углом к осматриваемому объекту.
Вид микрочипа под стереоскопическим микроскопом
а) Панкратический микроскоп Crystallite ST-7045 тринокулярный, б) Стереоскопический микроскоп Dagong ST8050-B1, в) Промышленный цифровой микроскоп H3800 FHD V6 HDMI
- Биолог, выполняющий вскрытие;
- Техник, ремонтирующий печатные платы;
- Палеонтолог, чистящий, исследующий окаменелости;
- Ювелир, выполняющий ремонт, изготовление украшений;
- Минералог, изучающий состав, структуру горных пород.
А также всем тем, кому нужно выполнять работы вручную или с применением инструментов над небольшими объектами, но эти объекты достаточно крупные, чтобы использовать мощный составной микроскоп.
Таким образом, стереомикроскопы применяются во многих отраслях.
Также существует деление стереомикроскопов в зависимости от типа штатива или основания: с фиксированным рабочим расстоянием и с переменным рабочим расстоянием.
Стереомикроскопы с фиксированным рабочим расстоянием имеют кратность в установленном диапазоне, меняют рабочее расстояние также в определенном диапазоне.
Они лучше всего подходят для использования так как просты в фокусировке, это делает более молодую аудиторию и любителей отличными кандидатами для этих типов стереомикроскопов. Однако таким стереомикроскопам не хватает гибкости по сравнению с другим типом.
Стереомикроскопы с переменным рабочим расстоянием обладают большой подвижностью, а расстояние до объекта может быть различным.
Они имеют гораздо большую гибкость, поскольку линзы объектива можно перемещать на любое расстояние от образца. Это показывает целый ряд вариантов увеличения в пределах максимального, минимального значений.
Однако такие стереомикроскопы требуют более тонкой перефокусировки при изменении кратности, что делает их сложнее в использовании, но это предоставляет гораздо большую гибкость в получении рабочего расстояния, увеличения, ширины поля зрения.
а) Бинокулярный стереомикроскоп Dagong SZ6745-B1, б) Тринокулярный оптический микроскоп Crystallite ST-7045 с дисплеем
Большинство стереомикроскопов используются с кратностью от 2X до 45X, но с помощью подходящих принадлежностей можно достичь до 90X и более. Это достигается с помощью насадки, называемой линзой Барлоу, окулярами с разным увеличением (окуляры с 15Х, 20Х, 25Х, 30Х).
Линза Барлоу является вспомогательной линзой, которая устанавливается на стереомикроскоп, изменяет диапазон его увеличения согласно кратности самой линзы. Она может работать как на увеличение, так на уменьшение, это позволяет уменьшить поле зрения и рабочее расстояние за счет увеличения изображения, либо увеличить поле обзора и рабочее расстояние за счет уменьшения изображения, соответственно.
Однако, чем больше используется кратность, тем меньше будет поле зрения, тем ближе должен быть объектив микроскопа к объекту для фокусировки. А это означает, что будет меньше места для использования инструментов самого объекта. Поэтому оборудование выбирают не только с подходящим увеличением, но с учетом необходимого для вас рабочего расстояния.
Все же основным плюсом стереомикроскопов выделяют их модульность. Это означает, что независимо от того, используете ли вы готовый комплект, или подбираете собственную комплектацию любой стереомикроскоп может быть изменен путем добавления любого количества линз Барлоу и заменой окуляров, для расширения диапазона увеличения.
А если нужно исследовать большой объект, то различные варианты стоек и штативов помогут модифицировать ваш прибор под любые нужды.
Микросъемка
Часто наличие возможности захвата, сохранения, вывода на экран изображений, более важна чем фактический просмотр исследуемого образца через окуляры.
Уже много лет фотосъемка применяется в микроскопии, но разработка недорогих видео-, цифровых камер на ПЗС-матрице значительно повысила доступность и популярность микросъемки.
Теперь не нужно демонстрировать слайды во время лекции, а учителя и преподаватели университетов теперь могут выводить изображение в реальном времени на телевизор или проектор; геологи, нефтяники могут отправлять через интернет изображения образцов пород и керна в свои лаборатории из удаленных мест; врачи-онкологи, чтобы быстрее поставить диагноз, могут обращаться к электронным базам, сравнивать изображения клеток.
Существует много цифровых камер для захвата, отображения, записи изображений, получаемых с устройства, каждое из них имеет свои достоинства и недостатки. Некоторые из них представляют собой USB-камеры, для взаимодействия с которыми требуется компьютер, но они также включают в себя расширенное программное обеспечение, способное выполнять измерения, анализ получаемого изображения.
Другие представляют собой камеры с VGA или HDMI-выходом это позволяет проецировать данные непосредственно на монитор или телевизор, без использования громоздкого компьютера, что удобно использовать во время обучения.
Третьи снабжены слотом под SD-карту или встроенным хранилищем. Это позволяет без использования ПК вести микросъемку, а затем выполнять массовую обработку или просмотр сохраненных данных.
Также существуют камеры, которые, например, имеют высокую чувствительность к свету, обеспечивая лучшие результаты микросъемки при слабом освещении, для таких методов как например темнопольная или флуоресцентной микроскопия или снабжены системами охлаждения для высокой производительности сенсора камеры.
Хотя камеру можно установить через адаптер, как на монокулярный, так на бинокулярный, но гораздо лучше использовать тринокулярный, предназначенный именно для работы с камерой. Эта модель обеспечит вам не только комфортную работу с двумя окулярами, но при этом работа камеры не будет вам мешать.
Тринокулярные микроскопы подходят для фото-, цифровых или видео приложений.
Если у вас остались вопросы с выбором микроскопа или дополнительных комплектующих к нему, свяжитесь с нами, отправьте нам электронное письмо или позвоните. Мы будем рады помочь вам.
Схема темнопольной микроскопии в падающем свете.
Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца.
Темнопо́льная микроскопи́я — вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. При использовании метода темного поля регистрируются даже незначительные различия в преломляющей способности участков препарата [1] . Основы метода разработаны Р. Зигмонди в 1906 году.
Содержание
Принцип действия
В оптической микроскопии тёмного поля неоднородности образца рассеивают свет, и этот рассеянный свет формирует изображение исследуемого образца.
Для прозрачных объектов возможно и контровое освещение, но при этом необходимы дополнительные действия, чтобы убрать "прямое поле": необходимо провести фурье-преобразование полученного изображения и удалить из полученной суммы компоненту, соответствующую "опорной" волне. Это можно сделать, например, с помощью линзы и шаблона, закрывающего небольшой участок в плоскости, где линзой фокусируется "опорная" световая волна. Затем, с помощью второй линзы проводят обратное преобразование Фурье и наблюдают полученную картину визуально. При этом контраст исходного изображения существенно возрастает.
В микроскопах использование метода тёмного поля может быть предусмотрено конструкцией [2] или реализуется установкой дополнительных узлов, таких, как конденсор темного поля ОИ-13.
Преимущества и недостатки
Темнопольная микроскопия хорошо подходит для получения изображений живых и неокрашенных биологических образцов, таких, как отдельные водные одноклеточные организмы.
Основным ограничивающим фактором метода является то, что только малая часть падающего света в итоге формирует изображение, поэтому необходимо применять достаточно мощные источники света, что иногда приводит к повреждениям образца (сейчас иногда используют лазеры).
Темнопольная микроскопия практически лишена артефактов [источник не указан 988 дней] . Однако, интерпретация получаемых изображений требует большой осторожности, поскольку некоторые детали, не видные методом светлопольной микроскопии, видны методом темнопольной микроскопии, и наоборот. На первый взгляд можно было бы сделать предположение, что изображение, получаемое темнопольным методом является просто негативом по отношению к получаемым светопольным методом [источник не указан 988 дней] , однако, на самом деле, каждый из этих методов делает видимым разные особенности образца. В светлопольной микроскопии особенности видимы, если они или производят тени, или имеют отличный от окружения коэффициент преломления и при этом достаточно резкие, в то время как, например, плавные неоднородности не могут быть наблюдаемы этим методом, однако, хорошо заметны на картинках, получаемых методом темнопольной микроскопии.
Применение
Темнопольная микроскопия может применяться для прижизненного изучения неокрашенных биологических объектов — простейших, изолированных клеток, тканевых культур, для исследования субклеточных структур живых неокрашенных клеток [1] .
Темнопольная микроскопия в последнее время используется в производстве компьютерных мышей [3] с тем чтобы обеспечить работу оптических мышей в том числе и на прозрачных стёклах, имеющих микроскопические дефекты или пыль на поверхности.
Одна и та же полированная алмазная пластинка: слева — при наблюдении методом светлого поля, справа — методом тёмного поля.
См. также
Примечания
- Проставив сноски, внести более точные указания на источники.
- Методы исследования
- Оптические системы
- Микроскопия
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое "Темнопольная микроскопия" в других словарях:
темнопольная микроскопия — dark field microscopy микроскопия в темном поле, темнопольная микроскопия. Mетод световой микроскопии не поглощающих света объектов (прозрачных и т.п.), основанный на освещении их косыми лучами при этом объект становится виден светящимся (но в… … Молекулярная биология и генетика. Толковый словарь.
ТЕМНОПОЛЬНАЯ МИКРОСКОПИЯ — темнопольная микроскопия, см. Микроскоп, Микроскопия … Ветеринарный энциклопедический словарь
микроскопия в темном поле — темнопольная микроскопия Метод световой микроскопии не поглощающих света объектов (прозрачных и т.п.), основанный на освещении их косыми лучами при этом объект становится виден светящимся (но в ореоле, что затрудняет анализ формы его мелких… … Справочник технического переводчика
Темнопольная оптическая микроскопия — Схема темнопольной микроскопии в падающем свете. Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца. Темнопольная оптическая микроскопия вид оптической микроскопии … Википедия
микроскопия — совокупность методов изучения малых объектов с помощью микроскопов. К традиционным видам М. относятся–люминесцентная М. – основана на явлении фотолюминесценции, возникающей при окраске препаратов специальными люминесцентными красителями;… … Словарь микробиологии
микроскопия темнопольная — М. неокрашенных объектов на темном фоне при боковом освещении … Большой медицинский словарь
Ближнепольная оптическая микроскопия — (БОМ) оптическая микроскопия, обеспечивающая разрешение лучшее, чем у обычного оптического микроскопа. Повышение разрешения БОМа достигается детектированием рассеяния света от изучаемого объекта на расстояниях меньших, чем длина волны света.… … Википедия
Клетка — У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия
Схема темнопольной микроскопии в падающем свете.
Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца.
Ход лучей освещения и рассеянных образцом лучей в микроскопе тёмного поля
Темнопо́льная микроскопи́я — вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. При использовании метода темного поля регистрируются даже незначительные различия в преломляющей способности участков препарата [1] . Основы метода разработаны Р. Зигмонди в 1906 году.
- Главная /
- Центр клиентской поддержки /
- Часто задаваемые вопросы о микроскопах
На сайте Meiji Techno вы также можете скачать руководства по эксплуатации, каталоги и брошюры изделий, нажмите здесь.
Сложный микроскоп имеет один оптический путь, разделяемый в окуляре на идентичные изображения слева и справа. Стерео микроскоп можно представить, как два сложных микроскопа, стоящих на расстоянии, имитирующем расстояние между глазами. Это расстояние обеспечивает пространственное зрение в обычной жизни и объемное и неперевернутое изображение в стереомикроскопах.
Разрешающая сила характеризует способность объектива четко разграничивать две близких друг к другу точки или линии. Чем короче расстояние между точками или линиями, тем больше разрешающая сила. Также чем выше значение Ч.А. (числовой апертуры) объектива, тем больше его разрешающая сила. Разрешение — это способностью различать две точки как две точки. Для получения необходимого качества изображения следует соблюдать баланс между разрешающей силой и разрешением.
Чем выше значение числовой апертуры для конкретного увеличения, тем ярче изображение. Чем больше увеличение, тем меньше яркость изображения.
Расстояние между ближней и дальней границами объекта, которые выглядят достаточно четко при рассмотрении с помощью оптического инструмента. Глубина резкости зависит от объективов, окуляров и увеличения трубки. Чем выше увеличение, тем меньше глубина резкости.
Диоптрическая коррекция — это компенсация дальнозоркости или близорукости зрения пользователя.
Лучи света от всех точек поля зрения собираются в одной точке, где должен располагаться глаз пользователя.
Это диаметр линзы окуляра, выраженный в миллиметрах.
Поле зрения — это часть наблюдаемого объекта, которую можно видеть с помощью определенной комбинации оптики. Представляет собой круглую область, наблюдаемую в микроскопе. Поле зрения оптического прибора зависит от его увеличения — чем выше увеличение, тем меньше поле зрения. В большинстве случаев показатель величины поля окуляров можно использовать для расчета размера поля зрения, используя следующую формулу:
Размер поля = Величина поля ÷ Увеличение объектива
Это расстояние между центрами зрачков ваших глаз.
Если стереомикроскоп "парфокален", препарат можно рассматривать с минимальным и максимальным увеличением без дополнительной фокусировки.
Рабочее расстояние — это расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы объектива.
Рабочее расстояние уменьшается при использовании объектива с большим увеличением.
Для расчета общего увеличения конкретной конфигурации микроскопа увеличение объектива умножается на увеличение окуляра и на увеличение дополнительных линз при их наличии.
Полезное увеличение находится в области 500-1000-кратной величины апертуры объектива. Поскольку разрешающая способность человеческого глаза ограничена, следует выбирать такое увеличение, при котором глаз сможет различать детали изображения. При меньшем увеличении человеческий глаз не сможет различать детали изображения. Если увеличение превышает данный диапазон, то его называют "пустым увеличением", так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза. При этом изображение выглядит расфокусированным.
Разрешающая способность линзы объектива зависит от ее числовой апертуры, которая в свою очередь зависит от показателя преломления среды между препаратом и линзой объектива. Чем выше показатель преломления, тем больше света может собрать линза и тем выше будет яркость получаемого изображения. Воздушная среда имеет относительно низкий показатель преломления, в ней лучше всего работают объективы с малой Ч.А. Объективам с более большей Ч.А. требуется больший показатель преломления, который обеспечивается иммерсионным маслом. Для получения оптимальных результатов необходимо также нанести масло на верхнюю линзу конденсора. Иммерсионные объективы имеют маркировку "oil" или "oel". Объективам с маркировкой "wi" в качестве иммерсионной среды требуется вода.
Для сохранения темноты фона в темнопольной микроскопии объектив не должен иметь Ч.А. больше минимальной Ч.А., указанной на темнопольном конденсоре. Ирисовая диафрагма позволяет уменьшить Ч.А. объектива и, соответственно, использовать объективы в большей Ч.А. для темнопольной микроскопии. Объективам с Ч.А. выше 1,2 требуется ирисовая диафрагма для темнопольной микроскопии. Для светлопольной микроскопии диафрагма может просто оставаться полностью открытой.
В большинстве случаев при исследовании проходящим светом вам понадобится только темнопольная вставка для конденсора. При работе c большими увеличениями вам понадобится объектив с ирисовой диафрагмой и темнопольный конденсор.
Пометка "0.17" означает толщину (мм) покровного стекла, которое учитывалось производителем при вычислении коррекций для данного объектива. При использовании объективов с числовой апертурой выше 0,45 несоблюдение данного показателя (или вообще отсутствие покровного стекла) может привести к неудовлетворительному качеству изображения.
"160" означает длину тубуса микроскопа, 160 мм соответствует расстоянию от края револьверного устройства (куда вкручивается объектив) до верхнего среза окулярной трубки (куда вставляется окуляр). Удлинение этого расстояния посредством добавления принадлежностей в световой путь над револьвером приведет к появлению сферических аберраций при отсутствии соответствующей оптической коррекции у данных принадлежностей.
Объектив, скорректированный на бесконечность, формирует параллельные лучи света, спроецированные в бесконечность. Такому объективу требуется тубусная линза, фокусирующая параллельные лучи в диафрагму окуляра.
Планобъектив проецирует плоское изображение всего поля зрения.
Это стандартное обозначение для большинства изготовителей, позволяющее легко определить увеличение объектива:
- A red ring means 4X or 5X.
- A yellow ring means 10X.
- A green ring means 20X.
- A blue ring means 40X, 50X or 60X.
- A white ring means 100X.
Эти буквы обозначают большое и ультра-большое рабочее расстояние объектива, значительно превышающее показатели стандартных объективов со схожим увеличением.
Этими буквами обозначаются объективы, разработанные специально для микроскопии Номарского или дифференциальная интерференционно-контрастной микроскопия. На текущий момент компания Meiji не предлагает подобных объективов.
Такие объективы имеют очень короткое рабочее расстояние. При легком контакте линзы с препаратом или столиком механизм спружинит и предотвратит повреждение оптики или препарата.
Возможно, покровное стекло препарата толще стандартных 0,17 мм, или сам слайд толще обычного. Для улучшения качества изображения попробуйте использовать сухой объектив с коррекционным кольцом или иммерсионные объективы с увеличением 40х или 50х, поскольку иммерсионные объективы менее чувствительны к толщине покровного стекла.
Да. Просто переведите фазовый конденсор в светлопольный режим и используйте стандартную процедуру освещения по Келлеру.
Могу ли я использовать объектив, скорректированный на бесконечность, на микроскопе с конечной длиной тубуса?
Нет, поскольку в конечной системе нет тубусной линзы для фокусировки параллельных лучей.
Объективы для микроскопов не оснащены средствами коррекции латеральной хроматической аберрации и требуют компенсационный окуляр (с пометкой "С" или "К"). "WF" обозначает широкопольный окуляр и позволяет рассматривать большую часть препарата. "H" означает высокий вынос зрачка, т.е. для изучения препарата вам не нужно подносить глаза близко к окулярам. В основном, такие окуляры предназначены для тех, кто носит очки, но их может использовать любой.
Фотоокуляры используются для фотомикроскопии. Они захватывают изображение в объективе и переносят его на пленку в камере. Фотоокуляры обычно имеют малое увеличение, чтобы снизить вероятность получения пустого увеличение при переносе изображения на пленку.
Почему я не могу использовать окуляры с все большим увеличением для получения более высокого общего увеличения?
Для поддержания полезного увеличения с удовлетворительной четкостью и разрешением следует избегать пустого увеличения или увеличения размера препарата, но не его четкости. Как правило, общее увеличение не должно превышать 750-1000-кратной величины апертуры объектива. К примеру, при увеличении 40Х и Ч.А. 0,65, общее увеличение должно быть между 480X и 650X.
Фильтр нейтральной плотности равномерно поглощает свет по всей области видимого спектра, снижая интенсивность света без изменения его цветовой температуры.
"Фильтр" дневного света поглощает часть желтого и красного света от лампы микроскопа, что позволяет получить добиться эффекта дневного света, более комфортного для глаз.
Фильтр дневного света предназначен исключительно для наблюдения. Не используйте этот фильтр для микрофотографии или с кинопленкой для дневного света.
Человеческий глаз видит зеленый цвет лучше всего. А поскольку монохромный свет устраняет хроматические аберрации, зеленый фильтр заметно улучшает эффективность ахроматических объективов. Кроме того, в зеленом свете фазово-контрастные объективы выдают наилучшее изображение.
Объективы скорректированы для исправления кривизны поля изображения и цветовой аберрации. Разница между ахроматами и планахроматами заключается в степени плоскости поля. Когда изображение сфокусировано от центра к краям, поле изображение считается "плоским". Чем выше степень исправления кривизны поля, тем больше линз установлено в объективе и тем он дороже.
"DIN" — аббревиатура от "Deutsche Industrial Normen". Это немецкий стандарт, принятый в качестве международного оптического стандарта и применяемый в большинстве микроскопов. Длина тубуса у объектива стандарта DIN составляет 160 мм. Ранее использовался стандарт RMS, согласно которому длина тубуса была 170 мм. Большая часть оптических устройств DIN взаимозаменяемы. Однако объективы DIN и RMS не являются взаимозаменяемыми.
Обычно эта цифра выгравирована на окуляре и обозначает физический диаметр полевой диафрагмы. Значение "FN" определяет величину поля зрения для конкретного окуляра.
Правильное освещение играет ключевую роль для получения качественного изображения в любом микроскопе. Компания Meiji Techno предлагает несколько вариантов освещения на выбор. Мы можем подобрать нужное освещение для любого вашего препарата, чтобы обеспечить наилучшее изображение.
- Лампа накаливания — Стандартная нить накала, обычно 6 - 120V, 20 - 60W. Цветовая температура "теплая", оттенок ближе к желтому.
- Галогенное — Низкое напряжение, более интенсивное освещение. Температура идеальна для цветной фотографии.
- Флуоресцентное — "Холодная" система, производящая больше света и имеющая больший срок службы по сравнению с лампами накаливания. Флуоресцентные источники света предлагают более подходящую цветовую температуру (4100º Кельвина) и белое поле зрения более комфортное для глаз.
Коаксиальным называется движение совпадающих осей или шестерней с общей осью. При коаксиальном управлении градуированным предметным столиком одна из рукояток управляет движением по оси "Х", а другая — по оси "Y". В коаксиальной системе фокусировки винт тонкой настройки находится внутри винта грубой фокусировки.
Темнопольная микроскопия — это метод исследований, при котором препарат (прозрачный или полупрозрачный) представляется как яркий объект на темным (обычно черном) фоне.
Светлопольная микроскопия — это наиболее распространенный тип микроскопии, используемый в сферах обучения, промышленности и медицины. При работе с этим методом прозрачный или полупрозрачный препарат (окрашенный или неокрашенный) представляется как темный объект на светлом фоне или поле.
Методика для выявления структурных особенностей микроскопических прозрачных объектов, невидимых при наблюдении по методу светлого поля. Этот метод позволяет добиться того же эффекта, что и при окраске препарата (из-за чего живые клетки могут погибнуть).
Масляная иммерсия используется для объективов с большим увеличением (обычно 100Х) в качестве среды между линзой и покровным стеклом. Масло обладает тем же показателем преломления, что и стекло. Также требуется конденсор Аббе с Ч.А. 1,25.
Механический столик можно подсоединить к большинству моделей микроскопов Meiji.
Да. Видеокамеры с типом крепления C-Mount можно использовать с большинством моделей микроскопов Meiji.
Да, с помощью универсального адаптера и крепления T-Mount, соответствующего вашей модели и марке камеры.
На данный момент мы продаем цифровые камеры. Однако мы выпускаем адаптеры, которые подходят для многих моделей камер, доступных на рынке. Вы можете ознакомиться с ними здесь.
Грязь, царапины и повреждения объектива негативно влияют на качество изображение. "Черный точки" указывают на наличие частиц грязи в окуляре, на призме или зеркалах. Ниже представлены советы по устранению этих загрязнений:
Переднюю линзу объектива (в особенности 40Х) сперва следует очистить от частиц пыли с помощью щетки из верблюжьей шерсти, затем бережно протереть мягкой протирочной тканью, смоченной ксилоном или чистой дистиллированной водой, и сразу высушить с помощью чистой бумаги для протирки оптических стекол. Разбирать объектив должен квалифицированный специалист по ремонту. Для удаления пыли с задней линзы микроскопа используйте резиновую спринцовку.
Окуляры можно очищать тем же способом, что и объективы, но в большинстве случае ксилон не потребуется. Достаточным просто подышать на линзу, а затем протереть ее чистой протирочной тканью.
Внешнее покрытие микроскопов Meiji выполнено из твердого эпоксидного состава, устойчивого к кислотам и реагентам. Для очистки этих поверхностей используйте ткань и мягкодействующее моющее средство.
Примечание: Если загрязнение сильное, то можно воспользоваться этиловым спиртом. Ксилон или ацетон следует применять лишь в крайних случаях. Использование этих средств приведет к повреждению покрытия линз.
Компания Meiji Techno не несет ответственности и освобождается от возможных претензий за любые ошибки, допущенные во всех опубликованных и неопубликованных документах, за любые повреждения изделий, возникших в результате действий конечных потребителей, сотрудников Meiji Techno, их дистрибьюторов и поставщиков при применении оборудования и документов, имеющих отношение к их использованию, ремонту и обслуживанию.
Читайте также: