Tda2030a подключение к телефону
Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее "скрытых достоинствах": оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС - усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.
Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3.
При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3. 0,4 А падение напряжения на резисторах R3 и R4 составит 0,45. 0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.
Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС - идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.
Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300. 5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R - в килоомах, С - в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.
Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована "в живую", на макетной плате, часть - смоделирована в программе Electronic Workbench.
Мощный повторитель сигнала.
Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5. 1 МГц, что более чем достаточно для генератора НЧ.
Умощнение источников питания.
Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8. Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает UИП= 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения UИМС= UИП - UВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины РРАС= UИМС*IН = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле:
UИМС= РРАС.МАХ / IН. В нашем примере UИМС= 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять UИП = UВЫХ+UИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле:
R1 = ( UИП - UСТ)/IСТ, где UСТ и IСТ - соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7. 15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.
Простой лабораторный блок питания.
Электрическая схема блока питания показана на рис.9. Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:
IМАХ = РРАС.МАХ / UИМС
Например, если на выходе выставлено напряжение UВЫХ = 6 В, на микросхеме происходит падение напряжения UИМС = UИП - UВЫХ = 36 В - 6 В = 30 В, следовательно, максимальный ток составит IМАХ = 20 Вт / 30 В = 0,66 А. При UВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).
Стабилизированный лабораторный блок питания.
Электрическая схема блока питания показана на рис.10. Источник стабилизированного опорного напряжения - микросхема DA1 - питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при UИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.
Регулируемый источник тока.
Электрическая схема стабилизатора показана на рис.11. На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение UBX. Под действием этого напряжения через нагрузку протекает ток IН = UBX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя UBX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0. 0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока - измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А - это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.
Мощный генератор прямоугольных импульсов.
Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (UВЫХ = +UИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+UИП/2), ИМС DA1 переключится в состояние отрицательного насыщения (UВЫХ = -UИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-UИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:
f=l/2,2*R3Cl. Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.
Мощный низкочастотный генератор синусоидальных колебаний.
Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем - резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + REL1,2. Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:
f=1/2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.
В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см 2 . При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы "земляные" шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде "звезды"). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.
Микросхема TDA2030A — характеристики
Эта микросхема представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт с мощными внешними транзисторами.
TDA2030A не только обеспечивает большой выходной ток, но и имеет:
-
малые гармонические и интермодуляционные искажения;
TDA2030A — схема включения
Типовая схема включения TDA2030A
-
Аудио усилитель (DA1) — TDA2030A.
Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1/2хfС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс2=1/6,28х40х47х10 в 6 степени = 85 Ом.
Ниже показана схема включения TDA2030A в случае использования однополярного источника питания:
-
Аудио усилитель (DA1) — TDA2030A.
-
Аудио усилитель (DA1) — TDA2030A.
При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы.
По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3. 0,4 А падение напряжения на резисторах R3 и R4 составит 0,45. 0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку и, соответственно, увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например, КТ818, КТ819.
Мостовая схема включения TDA2030A показана ниже:
-
2 аудио усилителя (DA1, DA2) — TDA2030A.
-
3 аудио усилителя (DA1– DA3) — TDA2030A.
Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на TDA2030A DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300. 5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР = 160/RC, где частота f выражена в герцах, R — в килоомах, С — в микрофарадах.
Рассмотрим другие возможные варианты использования этой микросхемы. TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована «в живую», на макетной плате, часть — смоделирована в программе Electronic Workbench.
Мощный повторитель сигнала на микросхеме TDA2030A
Сигнал на выходе устройства по вышеприведенной схеме повторяет по форме и амплитуде входной, но имеет большую мощность, то есть схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для увеличения мощности источников питания и выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5. 1 МГц, что более чем достаточно для генератора НЧ.
TDA2030A — схема усилителя мощности источников питания
Детали для схемы слева:
- Аудио усилитель (DA1) — TDA2030A.
- Стабилитрон (VD1) — BZX55C5V1.
- Электролитический конденсатор (С1) — 10 мкФ.
- Конденсатор (С2) — 100 нФ.
- Резистор (R1) — 470 Ом.
- Линейный регулятор (DA1) — LM78L05.
- Аудио усилитель (DA2) — TDA2030A.
- Электролитический конденсатор (С1) — 1 мкФ.
- Конденсатор (С1) — 100 нФ.
Естественно, по схемам, показанным на выше, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт.
Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает Uип = 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения Uимс= Uип - Uвых = 22 В -12 В = 10В. При токе нагрузки 3 А рассеиваемая мощность достигнет величины Ррас = Uимс х Iн = 10В х 3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A.
Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле: Uимс = Ррас.макс / Iн. В нашем примере Uимс = 20 Вт / 3А = 6,6В. Следовательно, максимальное напряжение выпрямителя должно составлять Uип = Uвых + Uимс = 12В + 6,6В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить.
Простой лабораторный блок питания на микросхеме TDA2030A
Электрическая схема блока питания
- Аудио усилитель (DA1) — TDA2030A.
- 2 электролитических конденсатора (С1, С2) — 10 мкФ и 100 мкФ.
- Переменный резистор (R1) — 33 кОм.
- Резистор (R2) — 4.3 кОм.
Например, если на выходе выставлено напряжение Uвых = 6 В, на микросхеме происходит падение напряжения Uимс = Uип - Uвых = 36 В - 6 В = 30 В, следовательно, максимальный ток составит Iмакс = 20 Вт / 30 В = 0,66 А. При Uвых = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).
Стабилизированный лабораторный блок питания на TDA2030A
Электрическая схема блока питания
- Линейный регулятор (DA1) — LM78L05.
- Аудио усилитель (DA2) — TDA2030A.
- Стабилитрон (VD1) — КС515А.
- 3 электролитических конденсатора (С1, С2 и С3) — 10, 1 и 100 мкФ соответственно.
- 3 резистор (R1, R2, R4) — 2х2 кОм и 1х10 кОм соответственно.
- Переменный резистор (R2) — 10 кОм.
ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В х 6 = 30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания, о котором мы говорили выше.
Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при Uип = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.
Регулируемый источник тока на TDA2030A своими руками
Электрическая схема стабилизатора
- Линейный регулятор (DA1) — LM78L05.
- Аудио усилитель (DA2) — TDA2030A.
- Конденсатор (С2) — 100 нФ.
- Переменный резистор (R1) — 10 кОм.
- 2 резистора (R4 и Rх) — 10 Ом, 5 Вт.
- Амперметр.
- Батарея — 1.2–12В.
Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя Uвх от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4 = 10 Ом, можно регулировать ток через нагрузку в пределах 0. 0,5 А.
Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4 = 20 Ом он имеет значение 250 мА, а при R4 = 2 Ом достигает 2,5 А (см. формулу выше).
Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока — измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U = l х R = l А х 3 Ом = 3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В.
Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А — это 3 Вт, 7,5 В х 1 А = 7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.
Мощный генератор прямоугольных импульсов на TDA2030A
Схемы мощного генератора прямоугольных импульсов показаны выше — с двухполярным питанием левее и с однополярным питанием правее. Схемы могут быть использованы, например, в устройствах охранной сигнализации.
Детали для схемы слева:
- Аудио усилитель (DA1) — TDA2030A.
- Конденсатор С1 — 47 нФ.
- 3 резистора R1–R3 — 10 кОм).
- Динамическая головка (ВА1).
- Аудио усилитель (DA1) — TDA2030A.
- Резистор — 100 кОм.
- Электролитический конденсатор (С1) — 100 мкФ.
- 5 резисторов (R1– R5) — 10 кОм.
- Динамическая головка (ВА1).
Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+Uип/2), ИМС DA1 переключится в состояние отрицательного насыщения (Uвых = -Uип). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-Uип / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле: f = l / 2,2 х R3Cl.
Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.
Мощный низкочастотный генератор синусоидальных колебаний на TDA2030A
Электрическая схема мощного низкочастотного генератора синусоидальных колебаний
- Аудио усилитель (DA1) — TDA2030A.
- 2 конденсатора (С1, С2) — 15 нФ.
- Электролитический конденсатор (С3) — 1000 мкФ.
- 4 резистора (R2, R4, R3 и R5) — 2х10 кОм, 1х3 кОм, 1х8,2 Ом (10 Вт).
- 5 резисторов (R1– R5) — 10 кОм.
- 2 лампы (EL1, EL2) — СМН 6.3х50.
Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1.
Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле: f = 1 / 2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.
В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см2. При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы «земляные» шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде «звезды»). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.
Видео о монтаже усилителя на микросхеме TDA2030A:
Приветствую! Представляю вам обзор DIY набора для самостоятельной сборки усилителя звука. Купил у известного продавца ChipWorld, выиграл лот за $3.25. В общем самодостаточный усилитель с регулировкой громкости за копейки. Подробности, фото и видео далее.
Для начала рассмотрим что же нам пришло
Вот и все содержимое
Плата качественная, из текстолита.
Все подписано — бери да паяй))
Радиаторы для них
Один походу ветром погнуло))
Ручка для переменного резистора
Теперь можно собрать
Сначала впаял переменник и аудио разъем
Потом все резисторы
Микросхемы и радиаторы
Осталось отмыть остатки канифоли
Теперь осталось попробовать в работе
Подключить решил к комповскому блоку питания (12 вольт)
Кушает в пиках 0,8 ампер, в среднем 0.5, сфоткать удалось 0.39. (на максимальной громкости)
В покое 0.05 А
За полчаса радиаторы разогрелись до 45 градусов
Тестил на вегах
За половину громкости начинаются неприятные искажения
TK2050 звучит конечно же намного лучше.
обзор
В общем нормально, можно впилить в какие-нибудь недорогие мультимедийные колонки, ибо в них ставят зачастую совсем непотребство.
Ну и стоимость деталей выше всего этого набора, так что можно брать.
Спасибо за внимание! Надеюсь обзор понравился и оказался полезным.
-
, , ,
- 30 мая 2014, 17:56
- автор: dimmm84
- просмотры: 87196
Плохой набор: микросхемы — жалкая китайская пародия на оригинальные TDA2030, разводка платы хреновая (мягко говоря), радиаторы слишком мелкие, пассивные компоненты из серии «сделано в подвале дядюшки ляо».
Да, цена низкая, но и качество соответствующее. Для справки, оригинальные ТДА от ST стоят около 30-50р за штуку.
А с точки зрения хорошего звука и оригинальные 2030 рассматривать бесполезно, как и в принципе говорить о качестве усилителя за 5 баксов, пусть и не собранного. Не путайте теплое с мягким. Пофиг или не пофиг — это субъективная оценка, а я приводил вполне объективные доводы. Кому не пофиг, тот прислушается, а кому все равно, ему.и так все равно.
Справедливости ради, мультимедийные колонки тоже бывают очень неплохого качества. Круть! Даже и не думал что так дешево) Есть один заводской на 2030А, в принципе играет не плохо.
Один минуc этих ТДА, что нет защиты от короткого замыкания, на выходе. Если случайно коротнул провода что идут на колоноку, то все)) Отличный обзор да и фотографии процесса сборки — времени не пожалел! Спасибо! Лучи добра во все места! ;)
во кстати нашел еще подобный DoItYourself амп — на бакс подороже, но с эквалайзером ;)
а за $30 можно еще и «теплый ламповый» собрать ;)
обрати внимание на то, что ламповый без ламп и выходного трансформатора >а за $30 можно еще и «теплый ламповый» собрать ;)Фиг там:( Лампы и трансформаторы не включены. А так цена была вкусной. Сам купил недавно два ТВЗ-1-9 за 16 баксов. там доставка еще 3 бакса стоит, выходит 5 баксов переплаты за эквалайзер((
Ламповый однотакт в классе А получше играет чем на мосфетах.
На хорошей акустике слышно.
Трансформаторы выходные надо нормальные.
Остальное баловство и рукоблудие.
Ватт 20 — 30? Или еще больше?
Вы делаете связку инвалидной коляски с Белазом. Вега 15АС-109, советские 15 Ватт. Связку с ними делать не собираюсь, набор купил из любопытства (ну еще потому что дешево выиграл). С 2030 можно получить и по 18 вт на канал только не на таких сопливых радиатора и напряжение надо поднять до 30в
Не забывайте, что подобные схемы можноу умощнить с отдельным выходным каскадом на 819ГМ и 818ГМ (можно Г в пластике). Подай отдельное питание. Есть в инете готовые, проверенные схемы на этих микрухах, в т.ч. с биполярным питанием. Но имхо, если с нуля, то можно что-нибудь поинтереснее и помощнее собрать. Было интересно посмотреть TDA2030, хотя народ здесь пишет что я купил поддельную какаху. Будет возможность — заменю микрухи, послушаю разницу. Народ а на 6.1 канальный звук не посоветуете?
Присмотрел на M62429?
Совсем говно? можно ли как то из такого стерео усилка сложить мощность обоих каналов в один моно? Можно включить мостом — по-моему даже в пдф нарисовано как у нас в любом магазине микросхема TDA1558 стоит около 3,5 — 4$ и ждать не нада и усилок мощнее и собрать навесным мантажом на коленке можно за 15 минут. Мощность усилителя равна 22 х 2 или 11 х 4. У вашего мощность максимум 18 на канал!
либо у тебя машина времени, либо у тебя перемаркированное китайское фуфло с закосом под оригинал. philips уже куечу тучу лет неклепает микросхемы. лого должно быть от NXP. у нас в любом магазине микросхема TDA1558 стоит около 3,5 — 4$ и ждать не нада и усилок мощнее.Мощность усилителя равна 22 х 2 или 11 х 4. У вашего мощность максимум 18 на канал!
ну а если ещё мощнее нужно то 2х40Вт (TDA8560)
Вот только вся эта автомобильная линейка (TDA155x/TDA856x) уступает по качеству TDA2030/2050, поскольку предназначена для использования в автомобиле. А это значит мостовое включение (ведь иначе от 12 вольт больше 11 ватт не получить) и класс B со своей «ступенькой». Если вам нужно просто чтобы играло — это хороший вариант. Если хотите заморочиться и получить качественный звук — смотрите на TDA7293/LM3886/LM4780. Я думаю, что настоящие TDA155x/TDA856x все-таки не уступят тому фейку, что в обзоре. Только динамики должны иметь 2 ома полного сопротивления, из чего следует толстая, жесткая с малым ходом катушка.Предназначена для охреневания публики на средних частотах. И качество звука не важно. Тоже ищу усилитель… Простой и мощный, на TDA8560 получается самый оптимальный? или есть еще варианты мощнее и простые? Не нравится мне ТДА8560, то ли буховат, то ли бухловат. Не сложился звук лежит в помойке, После ТА2024, что то тало лениво паять, ловить гармоники, а в итоге звучит хуже. На Таобао покупал готовый 3 канальник на тдА2030А за 4.38 доллара. Хорошо разведено, темброблок, с мостом и фильтром питания, но в итоге лежит в свалке А никто не подскажет добротную схему 4-х канального усилка на tda7850? Что-то я загорелся сделать на таком апгрейд штатной магнитолы Philips в машине.
коменты нечитал, если кто-то уже ткнул носом, то звиняйте.
к счастью, или к сожалению, то микросхемы TDA2030A в твоём комплекте фуфлыжный кетайский леватос. Короче, говно тебе прислали, с очень очень сомнительными ТТХ. Неудивительно, что оно перджит и скрипит.
гляни как оригинал должен выглядеть.
отличия — лого производителя (ST), дата, место производства, всё в лазерной гравировке + микроштамп на литье корпуса (видишь кружочек? в нем может быть написано место производства, по кругу как в печати, или просто какие-то букво-цифры).
ТДА 2030 с дополнительными транзисторами мощность 35 Вт
Кроме доступности и легкости в сборке УНЧ, микросхема TDA2030A обладает рядом скрытых преимуществ, используя которые, можно изготовить множество нужных и хороших приборов. ИМС ТДА 2030 является усилителем мощности звука АВ-класса, либо может служить драйвером для усилителя рассчитанного на мощность 35 Вт, в комплекте с мощными транзисторами в выходном каскаде.
Она в состоянии обеспечить высокий ток в выходном тракте схемы, не имеет серьезных гармонических искажений, работает в широкой полосе частот звукового сигнала. Кроме этого, данная микросхема отличается от других аналогичных приборов незначительными собственными шумами, снабжена защитой от короткого замыкания в нагрузке.
Также ТДА 2030 снабжена системой лимитирования выходной мощности в автоматическом режиме, создавая при этом комфортные условия для работы выходных транзисторов. Чип имеет встроенную защиту от перегрева, которая срабатывает на отключение при достижении температурной составляющей на кристалле +150°С.
TDA2030 абсолютно надежная микросхема для усилителя мощности звука, развивающего мощность на выходе на 18Вт.
Технические характеристики TDA 2030(A)
Напряжения питания……………………………от ±4.5 до ±18 В
Потребляемый ток покоя…………………. 90 мА макс.
Выходная мощность…………………………….18 Вт тип. при ±18 В, 4 Ом и d = 10 %
…………………………………………………………….. 14 Вт тип. при ±18 В, 4 Ом и d = 0.5 %
Номинальный частотный диапазон……….20 — 80.000 Гц
Для большинства радиолюбителей эта микросхема является просто находкой, да еще и за такие смешные деньги. Кроме этого, если использовать ее по мостовой схеме включения, то она способна обеспечит выходную мощность 28 Вт. А при задействовании в выходном каскаде пары дополнительных мощных транзисторов, то на выходе вы получите 35 Вт.
[adsens]
Ниже приведена схема очень простенького двуполярного питания ТДА 2030 с мощностью в нагрузке 14 Вт
На снимках ниже представлены печатные платы для усилителей на TDA2030(A)
Печатка для TDA2030 (Изображение со стороны дорожек)
Усилитель на TDA2030A
Представленные файлы имеют формат: .lay
Поэтому для их открытия потребуется программа: Sprint-Layout 5.0
Читайте также: