Тахометр своими руками схема на pic
Главная Статьи Схемы Электронный тахометр на PIC16F84A
Тахометр для автомобиля с бесконтактной системой зажигания на PIC16F84A.
Принцип работы: Основан на измерении времени 50-ти импульсов с датчика распределителя (датчика Холла) . Далее делается перерасчет в об/мин и результат по 4-битной шине выводится на двухстрочный ЖКИ MT-16SD. Также на ЖКИ выводятся часы и минуты работы двигателя.
Точность тахометра: при 3000 об/мин + -0,75 об/мин, при 1000 +-0,1 об/мин , теоретически
Архив файлов - Схема, Исходный текст на ассемблере и прошивка микроконтроллера.
Тахометр предназначен для измерения оборотов практически любого двигателя. Начиная от мопедного 1-целиндрового двухтактного и заканчивая 16-ти целиндровым 4-х тактным двигателем. Индикация на 4-х разрядном цифровом индикаторе, точность имерения 50
оборотов в минуту.
После включения питания - тахометр сразу начинает измерять обороты. Первое нажатие кнопки - вызовет индикацию установленных количества импульсов на 1 оборот (по умолчанию 2 имп на 1 оборот, что соответствует 4-х тактному 4-х целиндровому двигателю). На дислее будет Р-2,0. Повторное нажатие кнопки, вызовет перебор всех допустимых значений - от 0,5 до 8 импульсов на 1 оборот. Пусть кажется немного странно - 0,5 импулсов, но это всего лишь означает что 1 имульс будет за 2 оборота. После установки нужного количества импульсов, через примерно 5 секунд - прибор запишит изменения в энергонезависимой памяти EEPROM (т.е. при повторном включении питания, не требуе вновь устанавливать количество импульсов), и перейдет в режим измерения оборотов с вновь установленными количеством импульсов.
печатная плата с двух частей
Второй программатор должен нормально работать. Попробуй еще прошить через ICProg, хотя это вряд ли поможет. Такое впечатление, будто RB0 периодически перестает работать как выход. Может, проблема в программе, через которую все это дело шьется, а может, в бракованном контроллере.
Не загораются всегда одни и те же разряды?
А вообще, вот еще один вариант схемы (оригиналом назвать не могу, т.к. автору частенько намекали на плагиат):
На схеме из первого поста нужно убрать R16, R15 заменить на конденсатор 0.15 uF (154), а между эмиттером T5 и землей добавить кондер в 0.01 uF (103). Плюс на ряд конденсаторов от 14 вывода МК стоит обратить внимание.
Не горят верхние вертикальные разряды на на всех цифрах кроме нолей.Бывает горят в пол накала, бывает полностью как пробьёт.
хм. можно было бы подумать, что синим тока не хватает, но красные - самые непрожорливые. Очень странно. Я в тупике.
Я сначала перепутал и впаял индикатор с общим катодом, попробовал запустить.Потом заметил и заменил.Может тут косяк?
Одним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту.
Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…
Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.
Один из таких несложных наборов я недорого приобрёл на сайте одного китайского магазина.
Набор содержит:
- 1 x PCB board (печатная плата);
- 1 x микроконтроллер PIC16F628A;
- 9 x 1 кОм резистор;
- 2 x 10 кОм резистор;
- 1 x 100 кОм резистор;
- 4 x диоды;
- 3 x транзисторы S9014, 7550, S9018;
- 4 x конденсаторы;
- 1 x переменный конденсатор;
- 1 x кнопка;
- 1 x DC разъём;
- 1 x 20МГц кварц;
- 5 x цифровые индикаторы.
Описание частотомера
- Диапазон измеряемых частот: от 1 Гц до 50 МГц;
- Позволяет измерять частоты кварцевых резонаторов;
- Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
- Автоматическое переключение диапазонов измерения частоты;
- Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
- Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
- Потребляемый ток в режиме ожидания — 11 мА
Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.
Принципиальная схема частотомера
Напряжение на выводах микроконтроллера
Генератор для проверки кварцев
Приступаем к сборке
Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.
Ну и вид на весь набор в полностью разложенном виде.
Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.
Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.
Конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.
Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.
Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.
Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.
Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.
Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
Далее впаиваем транзисторы, диоды и индикаторы. В отличии от резисторов и конденсаторов здесь нужно впаивать правильно, согласно рисунку и надписям на плате.
Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.
Ну вот собственно и всё!
Теперь осталось смыть остатки канифоли щёткой со спиртом.
Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)
Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.
При подключении питания и отсутствия сигнала на входе высвечивается 0.
Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.
Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.
Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.
Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.
Таблица алгоритма програмирования
Чтобы войти в режим программирования (Prog) нужно нажать и удерживать кнопку в течении 1-2 сек.
Затем нажимаем кнопку и поочередно пролистываем меню:
Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.
Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.
Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором — частотомером.
Доработка частотомера
Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.
Можно спаять один из предложенных ниже.
Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.
… или простой, на одном транзисторе:
Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.
Схема похожего частотомера с входным каскадом усилителя.
Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:
Надеюсь, что обзор данного конструктора-частотомера был интересен и полезен. Удачи!
А.В.Зотов, Волгоградская обл.
Кто заинтересовался набором можете пройти на сайт магазина МастерОк
Читайте также: