Светильник с регулировкой своими руками
Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория
Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.
Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.
Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.
С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.
В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.
Содержание статьи
Теория
Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.
Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.
Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.
Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.
Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.
Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.
Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.
Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.
Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.
Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.
Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:
R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.
Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.
Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.
Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.
Расчёт выходного тока достаточно прост:
Получается достаточно компактное решение:
Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.
Способы регулирования яркости: ШИМ-регулировка
При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).
Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.
Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:
А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.
Подробнее про широтно-импульсную модуляцию:
Как регулировать яркость светодиодных ламп на 220В
Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.
Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.
Устройство диммируемых светодиодных ламп:
Почему нельзя диммировать светодиодные лампы 220В
Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.
Различают такие диммеры по фронту работы:
1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:
2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.
Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.
Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.
Регулировка яркости светодиодных ламп – рациональное решение 12В
Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.
Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.
Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.
Вот пример использования такого решения:
Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.
Заключение
Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.
Ночник из светодиодной ленты и блока питания
Вещица оказалась весьма полезной. Отдал на эксплуатацию супруге, и спустя некоторое время получил отзыв 🙂 Оказалось, что ночником трудно попасть в розетку в полной темноте, а если это все-таки удалось, то он непременно ослепит и нарушит весь сон! 🙂
Ночник из светодиодной ленты и блока питания включен в сеть
Исходя из этого опыта решил изготовить новую модель ночного светильника с регулятором яркости и встроенным выключателем, чтобы была возможность всегда оставлять ночник в розетке.
Видео о получившемся ночнике с регулятором яркости.
Далее в этой статье я покажу процесс изготовления ночника с регулятором яркости из блока питания на 12 вольт и светодиодной ленты SMD 5050, а также приведу принципиальную схему регулятора яркости на транзисторе КТ-819.
Материалы
Компоненты для изготовления ночника с регулятором яркости
Для изготовления ночника с регулятором яркости нам потребуются следующие материалы:
- Блок питания 12 вольт (выходной ток не менее 0,5 ампер)
- Светодиодная лента SMD 5050
- Транзистор КТ-819 с любым индексом или его аналог
- Переменный резистор 100 кОм с выключателем
- Резисторы: 1 кОм — 1шт, 10 кОм — 2 шт
- Соединительные провода
- Секундный супер клей
- Термоклей
Как обычно перед началом сборки не забываем удостовериться в работоспособности всех комплектующих. Как проверить транзистор можно прочитать в этой заметке
Характеристики блока питания можно узнать на этикетке или штампе изготовителя. На фото блок питания с выходным напряжением 12 вольт и максимальной силой тока 1 ампер.
Характеристики импульсного блока питания 12В 1А
Светодиодную ленту нужно нарезать сегментами по 3 диода на каждом. Обычно на лентах есть разметка, по которой можно ориентироваться.
Начинаем сборку
А точнее разборку блока питания 🙂 В крышке корпуса (слева на фото) высверливаем отверстие для установки переменного резистора.
Разобранный блок питания
Устанавливаем переменный резистор в крышку блока питания. Резистор можно зафиксировать при помощи термоклея (родной гайки от этого резистора не было, почему то не продают их в магазине вместе с резистором)
Выносной конденсатор блока питания
В данной модели блока питания установке резистора мешал конденсатор. Пришлось разместить его в свободном пространстве корпуса и соединить с печатной платой при помощи провода ПВС с сечением 0,5 мм 2
Переменный резистор в крышке корпуса блока питания
Попробовав закрыть крышку блока питания выяснилось, что также мешают пара диодов.
Пришлось переместить их на обратную сторону печатной платы.
Перенос части диодного мостика БП на обратную сторону платы
Теперь подыскиваем свободное место для транзистора.
Транзистор КТ-819Г установлен в корпус блока питания
Крепим транзистор к крышке при помощи болта и гайки.
Крепление транзистора КТ-819Г на крышке корпуса БП
Собираем регулятор яркости светодиодной ленты по следующей схеме. Эту же схему я использовал в регуляторе яркости на подсветке компьютерного стола.
Схема регулятора яркости для светодиодной ленты
Все постоянные резисторы зафиксированы на крышке корпуса при помощи термоклея. На ножки транзистора добавлена изоляция из термоусадочных трубок.
Регулятор напряжения и тока на транзисторе КТ-819Г
На данном этапе можно собрать блок питания в корпус и проверить работу регулятора яркости на одном сегменте светодиодной ленты. Вот так лента светит на минимальной яркости.
Проверка регулятора напряжения — минимальный ток на выходе
А теперь выкручиваем резистор до упора и получаем максимальную яркость свечения.
Полная яркость светодиодной ленты
Регулятор работает как положено. Можно двигаться дальше.
Рукоятку для вращения потенциометра можно изготовить из обычных крышек от сока или минеральной воды.
Крышка от сока в качестве основы для рукоятки переменного резистора
Крышка прекрасно крепится к резистору при помощи термоклея.
Крышка приклеена к резистору при помощи термоклея
А сверху можно надеть крышку с большим диаметром. Я выбрал белый цвет для того, чтобы в темноте легче было найти регулятор.
Вторая крышка сверху на регуляторе уровня яркости
Теперь приступаем к установке сегментов светодиодной ленты на боковых поверхностях блока питания. Ленты лучше крепить при помощи секундного суперклея, чем на двусторонний скотч, с которым обычно они поставляются.
Припаиваем провода от блока питания к сегментам ленты в соответствии с полярностью.
Светодиодная лента припаяна к выходу с блока питания
Все то же самое на второй стороне корпуса.
Светодиоды на второй стороне ночника
Когда все провода припаяны к сегментам светодиодной ленты, можно проверить работоспособность устройства. Также провода и места пайки можно покрыть тонким слоем термоклея для безопасности и лучшей фиксации.
Светодиодный ночник на полной яркости
Вот так работает регулируемый ночник в режиме полной яркости.
Светодиодный ночник с регулятором яркости
Светодиодный ночник на минимальной яркости
Итак, мы получили компактный ночник из светодиодной ленты с регулятором яркости и питанием от сети 220 вольт.
В статье, давайте рассмотрим схему простого светодиодного ночника с возможностью регулировки яркости. Его можно сделать своими руками.
При включении ночника в сеть через вилку ХР1 напряжение питания ~220В, избыток которого гасится конденсатором С1, поступает через защитный резистор R1 на диодный мост VD1.
Выпрямленное напряжение стабилизируется стабилитроном VD2 и подается через резисторы R3 и R4 на цепочку из последовательно соединенных светодиодов HL1—HL4. При крайнем левом по схеме положении движка переменного резистора R3 они светятся наиболее ярко. В этом режиме через светодиоды протекает ток 25 мА, их яркость зависит от используемого типа светодиодов, а прямое напряжение на каждом светодиоде составляет 3,2 В.
Поскольку уровень освещённости, создаваемый четырьмя светодиодами, может оказаться избыточным, его уменьшают переменным резистором R3, снижая ток через светодиоды до 1—3 мА.
Принципиальная схема светодиодного ночника
Резистор R2 разряжает гасящий конденсатор С1 после выключения питания. Резистор R1 — предохранительный невозгораемый, типа Р1-25. Его можно заменить на разрывной импортный Р1-7 или, в крайнем случае, установить обычный металлопленочный МЛТ-0,5. Резисторы R2, R4 — МЛТ, Cl-4, С2-23, переменный R3 — малогабаритный проволочный ППБ-1А либо более распространенные СП-1, СПЗ-33, СП4-4. Допустимо использовать и резистор СПЗ-4, совмещенный с выключателем, обе группы контактов которого соединяют параллельно и включают в разрыв одного из сетевых проводов.
Конденсатор — К73-17, К73-24в, К73-16 на рабочее напряжение не менее 630 В. Подойдет и специальный импортный конденсатор, предназначенный для работы в цепи переменного тока при напряжении 220 В, который можно узнать по обилию надписей на его корпусе, например, CPF 250VX2.
Рекомендуемые замены: вместо диодного моста КЦ422Г подойдет КЦ407А, DB104—DB107, RB154—RB157. Мост можно собрать из четырех диодов, например, КД105Б, КД209А, КД221В, КД247Г, 1N4004, 1N4007. С указанными на схеме светодиодами стабилитрон КС515А допустимо заменить на Д815Ж, КС518А или двумя последовательно включенными Д814А, КС126Л, КС482А, 1N4738A.
При использовании светодиодов с большим рабочим прямым напряжением либо установке большего количества светодиодов, стабилитрон должен быть с большим напряжением стабилизации при токе 25 мА, например, Д816А—Д816В.
Поскольку пленочные конденсаторы имеют небольшой разброс ёмкости, подбором резистора R4 удастся установить ток через светодиоды 20—22 мА при нулевом сопротивлении резистора R3 и сетевом напряжении 220 В.
Детали ночника могут быть смонтированы в самодельном корпусе, можно использовать какую-нибудь игрушку. Если регулировать яркость не нужно, переменный резистор исключают.
Внимание! Конструкция не имеет гальванической развязки от осветительной сети, поэтому при её конструировании, налаживании и эксплуатации необходимо соблюдать правила безопасности.
Давиденко Ю. Н. 500 схем для радиолюбителей. Современная схемотехника в освещении.
Большинство настольных ламп изначально идут со встроенным в шнур переключателем.
Чтобы достать до этого выключателя, порой приходится тянуться чуть ли не через весь стол.
Если это прикроватный светильник, который стоит на тумбочке, то шнурок может вообще висеть на таком удалении, что понадобится каждый раз вставать с постели, дабы включить или выключить свет.
Ночью в темноте сначала приходится нащупывать провод, потом перебирая по нему ладошкой добираться до кнопки, и только затем включается лампочка.
Как вы понимаете, это очень неудобно. Хочется просто поднести руку к самой лампе, дотронуться до нее в любом месте и автоматически включить светильник.
Как это сделать, не покупая дорогие сенсорные модели настольных ламп? Элементарно – при помощи маленькой китайской коробочки стоимостью 100 рублей.
Установив такой мини-выключатель во внутрь корпуса светильника и подключив его к проводам питания, вы сможете превратить обычную настольную лампу в сенсорную.
Давайте рассмотрим, как это сделать на практике.
Для начала разбираете основание светильника, снимая защитную крышку.
Она может быть металлической, пластиковой, неважно. Добираетесь до эл.проводки и контактов внутри корпуса.
Вам нужно раскрутить эти провода (фазу и ноль). Если провод цельный, придется его разрезать.
Сам сенсорный выключатель имеет 4 провода:
- непосредственно датчик в виде металлического кольца
Плата, к которой подпаяны провода, на дешевых моделях просто завернута в термоусадку.
Лучше выбирать те, которые упакованы в пластиковую коробочку.
В основании светильника обязательно должна быть металлическая деталь, куда и подключается кольцо датчика.
При этом весь металлический корпус лампы автоматически превращается в большую сенсорную кнопку. Стоит к нему прикоснуться в любом месте и свет загорится или отключится.
А вот если у вас к светильнику подходит трехпроводная эл.проводка (фаза+ноль+земля), то к заземляющему проводнику его лучше не подсоединять.
Место соединения контакта датчика зачистите от краски или хромированного покрытия.
Перед подключением проводов проверьте параметры сенсорного выключателя и мощность лампы. Эта коробочка рассчитана на определенное количество ватт.
На корпусе даже написан предел - 40Вт или 100Вт. От чего это зависит?
Зависит это типа лампы, симистора и сопротивления установленного на плате. Вот эта самая плата.
У практически всех моделей изначально пустует место под симистор BT136.
Там может стоять 97А6 (на ток 0.6А, однорежимная модель).
Или 97А8 (трехрежимная моделька с диммированием).
Чтобы увеличить мощность сенсора удаляете этот симистор и ставите ВТ136.
Кроме симистора меняют и сопротивление.
Под него также место уже подготовлено.
Советуют ставить от 75кОм до 100кОм мощностью не менее 1Вт. При сопротивлении больше 100кОм датчик будет некорректно работать.
Плата просто перестанет отзываться на касания.
Только при такой модернизации ваш сенсорный выключатель сможет спокойно пропускать большую нагрузку.
В "заводском" варианте не подключайте к нему более 40Вт, иначе это приведет к быстрому выходу из строя девайса.
От перегрузки и нагрева в первую очередь начинает чернеть сопротивление (появляются ложные срабатывания), а от перепадов напряжения происходит пробой симистора (лампа перестает отключаться и реагировать на прикосновения).
А еще пробой может закончиться гораздо более серьезными последствиями, и лампа начнет “биться током”.
Если боитесь таких нежелательных побочных эффектов, то можете купить более безопасные 12 вольтовые сенсорные датчики.
Правда в этом случае и светильник у вас должен быть не на 220V, а на 12V.
Такие подключаются не напрямую от сети, а после понижающих блоков питания.
Поэтому, чтобы обезопасить себя и сохранить работоспособность прибора, подключайте к изначально рассматриваемым здесь сенсорам нагрузку не более 40Вт, и все у вас будет в порядке.
Так как же подключить провода к этой чудо коробочке? В первую очередь ориентируйтесь по надписям и обозначениям на корпусе.
Один из питающих проводов должен разрываться выключателем. За счет этого, собственно говоря, и происходит отключение светильника.
При этом неважно какой это провод – фазный или нулевой. Ведь стоит вам воткнуть вилку в розетку другой стороной и “фазировка” тут же поменяется.
В общем, соединяете условно фазный провод от шнура питания с проводом подачи напряжения на сенсор (Black – черный).
Ноль из сети подключаете на другой питающий проводник сенсора – Red (красный). То есть, красные и черные провода с коробочки идут на вилку питания 220В.
Белый (White) и опять же черный (Black) соединяете с двумя проводами, уходящими на светильник.
По схеме у вас в одной точке должно быть подключено три конца:
Фаза разрывается через сенсор и уходит на лампу отдельным проводником. Если вы окончательно запутались, то вот вам более понятный рисунок.
Общая схема подключения выглядит следующим образом.
После скрутки жил все контакты следует пропаять.
А далее обмотать изолентой, либо посадить на термоусадку.
Можно все соединить и на СИЗы (изолирующие колпачки).
Помимо обычной платы управления, которая способна только включать-выключать светильник, есть сенсоры со встроенным диммированием.
Правда речь здесь не идет о плавном изменение яркости – чем дольше держишь руку, тем ярче или тускнее становится свет. Нет, здесь освещение меняется ступенчато.
Всего может быть три уровня яркости:
Такие очень удобно ставить для ночников на прикроватных тумбочках. Несколько раз дотрагиваетесь до корпуса лампы и светильник меняет уровень освещения в зависимости ваших нужд.
Однако такая коробочка не подойдет для большинства светодиодных ламп. У них с этим делом бывают проблемы.
Придется пользоваться только простой лампой накаливания.
Хотя такой датчик со светодиодной лампой и способен работать в режиме вкл-выкл (без диммирования), однако производители не рекомендуют их использовать с данным типом оборудования.
Помимо неудобств (придется трижды нажимать на лампу, чтобы ее отключить), самая частая проблема – сильные мерцания и пульсации.
А еще светодиодная лампочка начинает сильно жужжать.
Схема подключения сенсорного датчика со встроенным диммером ничем не отличается от обычной, рассмотренной ранее.
Кстати, датчик в виде кольца вовсе не обязательно подключать к светильнику напрямую. Никто не мешает вывести его в любое другое место.
Например, приделать к кровати или к тумбочке аккуратную металлическую планку и подсоединить желтый проводник с сенсором на нее.
Провода можно спрятать за тумбочкой или под кроватью.
В этом случае лежа на постели вообще не придется тянуться к светильнику. Рукой коснулся планки и свет загорелся.
Еще один вариант использования – в прикроватных настенных светильниках или бра (вместо веревочной дергалки).
Если не хотите портить дизайн стены отдельно стоящим квадратным выключателем, или вообще забыли проложить под него проводку, сенсорный мини-выключатель - ваш выход.
Монтируете маленькую коробочку прямо внутрь светильника и запускаете его через касание. В этом случае достаточно только иметь питание на светильник.
Штробить стены под эл.проводку для выключателя вообще не придется!
Единственный минус таких выключателей – самопроизвольные включения. Когда и почему это происходит?
Чаще всего на это влияют скачки и перепады напряжения в сети.
Даже изменения в пределах нормы (от 220В – до 205В и наоборот) могут привести к ложному срабатыванию датчика. Такие скачки могут наблюдаться при включении-отключении мощного оборудования.
Необязательно у вас дома. Это могут быть и соседи, которые “сидят” на одной с вами фазе.
Еще к самопроизвольному срабатыванию может приводить нагрев встроенного резистора на плате при подключении мощных ламп.
Поэтому при покупке подробно изучайте отзывы от потребителей, которые уже давно пользуются данным девайсом и не превышайте разрешенную мощность.
Читайте также: