Сухая батарейка своими руками
Каждому из нас знакомы химические источники тока различных типов и форм. Но как это часто случается, мы редко задумываемся о том, как устроен этот совершенно привычный и обыденный предмет. А между тем, появление первых химических источников тока, положило начало превращению электричества из лабораторной диковинки в нашего повседневного помощника.
В 1790 г. итальянский физиолог Луиджи Гальвани заметил, что лапка препарированной лягушки дергается, если к ней одновременно прикоснуться двумя инструментами из разных металлов. В то время уже было известно, что мышцы могут сокращаться под действием электрического тока, так, что Гальвани правильно приписал это явление действию электрического тока. Правда, он считал, что электрический ток появляется благодаря каким-то физиологическим процессам в лапке лягушки.
Правильное объяснение этому явлению смог дать другой итальянский ученый Алессандро Вольта. Он установил, что это явление связано с наличием двух разнородных металлов, соприкасающихся с электролитом, в роли которого выступала кровь лягушки, а сама лапка играла лишь роль чувствительного индикатора электрического тока [1]. Опираясь на свои исследования Вольта в 1799г. создал первый химический источник тока. В этом устройстве Вольта использовал медный и цинковый электроды, погруженные в раствор серной кислоты.
Цинк бурно реагирует с кислотами. В раствор переходят не атомы цинка, а положительные ионы, так что в электроде остается избыток электронов, следовательно, цинковая пластина заряжается отрицательно. Вообще, большинство металлов при погружении в электролит заряжается отрицательно, на поверхности медной пластинки протекает подобный процесс. Но избыток отрицательных зарядов на медном электроде гораздо меньше, а значит, относительно цинкового электрода его потенциал получается более высоким. Если соединить внешним проводником медную и цинковую пластины, то электроны начнут перемещаться с цинковой пластины на медную, т.е. в цепи потечет электрический ток [2].
Электрическое напряжение, возникающее между электродами, зависит от того, из каких металлов изготовлены электроды и от их взаимодействия с электролитом. Напряжение, даваемое элементом, никак не зависит от площади пластин.
Часто напряжения, даваемого одним гальваническим элементом, недостаточно. Тогда их можно соединять последовательно в батареи.
Вообще изготовить химический источник тока совсем нетрудно: надо поместить в электролит две пластинки из разных металлов [3]. Такие гальванические элементы возникают самопроизвольно. Например, намочил дождь крышу, покрытую оцинкованным железом, на железе наверняка имеются царапины, так, что и железо, и цинк вступили в контакт с водой, которая играет роль электролита. Цинк в такой паре начнёт активно разрушаться, а вот железо не пострадает, пока не разрушится весь цинк. Именно для этого и покрывают железо слоем цинка.
По той же самой причине скручивать вместе медные и алюминиевые провода, это, мягко говоря, не самая лучшая идея. В месте контакта начнется гальваническая коррозия, которая приведет к росту электрического сопротивления контакта, что в свою очередь приведет к большему выделению тепла и еще более быстрой коррозии. Все вместе это может стать причиной разрушения соединения и даже пожара.
Нагляднее всего можно пронаблюдать гальваническую коррозию на примере контактов железа с цинком и медью в растворе соли. Железные скрепки были надеты на цинковую и медную пластины и погружены в раствор соли.
Через сутки скрепка, соединенная с медной пластиной, покрылась ржавчиной. В то время, как скрепка, бывшая в контакте с цинком, совершенно не пострадала.
Ученые составили электрохимический ряд напряжений металлов. Чем дальше друг от друга отстоят металлы в этом ряду, тем более высокое напряжение дает гальванический элемент, составленный из этих металлов. Так пара золото – литий теоретически может дать электродвижущую силу (ЭДС) 4,72 В. Но такая пара в водной среде работать не сможет – литий это щелочной металл, легко реагирующий с водой, а золото стоит слишком дорого для подобного применения.
На практике элемент Вольта обладает рядом серьёзных недостатков.
- Во-первых, электролитом ему служит весьма едкая жидкость – раствор серной кислоты. Жидкий электролит всегда представляет собой неудобство или даже опасность. Он может расплескаться, разлиться при повреждении корпуса.
- Во-вторых, на медном электроде такого элемента будет выделяться водород. Это явление называется поляризацией. По многим свойствам водород весьма близок к металлам, так что его пузырьки создадут дополнительную ЭДС поляризации, стремящейся вызвать ток противоположного направления [2]. Кроме того, пузырьки газа не пропускают электрический ток, что тоже ведет к ослаблению тока. Поэтому приходится периодически встряхивать сосуд, удаляя пузырьки механически, или вводя в состав электролита специальные деполяризаторы.
- В третьих, в процессе работы гальванического элемента Вольта, цинковый электрод постепенно растворяется. Теоретически, когда гальванический элемент не используют, разрушение цинкового электрода должно прекратиться, но поскольку почти всегда в составе цинка есть примеси других металлов, они при соприкосновении с электролитом играют роль второго электрода, образуя короткозамкнутый элемент, что ведет к гальванической коррозии цинкового электрода [2]. Для того, чтобы устранить этот недостаток, приходится использовать сверхчистый цинк или конструктивно предусматривать возможность извлечения цинкового электрода из электролита. Так что когда батарея не используется, электролит из нее следует сливать.
Но для демонстрационных целей всеми этими недостатками можно пренебречь, если заменить серную кислоту более безопасным электролитом.
Изготовление батарейки
При изготовлении демонстрационной батареи гальванических элементов будем использовать стандартную пару – медь и цинк. Медную фольгу можно найти в некоторых трансформаторах. В крайнем случае, можно сделать медный электрод из свернутой в спираль голой медной проволоки [4]. Цинк можно добыть из разрядившихся солевых элементов питания, как правило, в них остается достаточно много металлического цинка даже, когда элемент непригоден к дальнейшему использованию. Вместо раствора кислоты, возьмем 10% раствор поваренной соли. В качестве емкости для электролита взяты пластиковые емкости от витаминов объемом примерно 50-100 мл.
В качестве контактов использованы винты, которые одновременно закрепляю электроды на крышке. При этом крайне желательно крепить медные электроды латунным винтом. Цинковую пластину можно без проблем крепить стальным винтом. Для герметизации под гайку подложена подходящая по размеру резиновая сантехническая прокладка.
Батарея из трех гальванических элементов позволяет питать светодиод.
Напряжение на одном элементе батареи составляет около 1 В.
Ток, отдаваемый в нагрузку, составляет около 0,23 мА
Такого тока достаточно для свечения светодиода. Однако на фотографии это свечение можно заметить, только если снимать при большой светочувствительности.
Такую батарею можно использовать в школе, например для выполнения лабораторной работы, по определению внутреннего сопротивления источника тока [5].
Литература
Автор материала Denev.
Форум по обсуждению материала ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ
Про использование технологии беспроводного питания различных устройств.
Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.
Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.
Что такое OLED, MiniLED и MicroLED телевизоры - краткий обзор и сравнение технологий.
В мае 2015 года Илон Маск представил красивые домашние блоки Powerwall, чтобы хранить энергию от солнечных батарей с крыши — и снабжать бесплатным электричеством весь дом днём и ночью. Даже при отсутствии солнечных батарей такое резервное питание для дома особенно ценно, если в квартале отключили электричество. Компьютер и вся техника продолжат спокойно работать.
Вторая версия Powerwall хранит до 13,5 кВтч, чего должно хватить на несколько часов (стандартная мощность 5 кВт, а в пике 7 кВт). Проблема лишь в том, что оригинальная версия от Tesla стоит аж $5500 (плюс $700 за сопутствующее оборудование, итого $6200, плюс работы по установке стоят от $800 до $2000) — очень дорого. DIY-мейкеры решили эту проблему с помощью бэушных батареек, которые лежат бесплатно в выброшенных ноутбуках.
Своими руками можно собрать блок с лучшими характеристиками, чем у Tesla (например, на 30-100 кВтч) — и намного дешевле.
Энтузиасты DIY-сборки делятся опытом на специализированных форумах DIY Powerwalls, в группе на Facebook и на YouTube. Специальный раздел на форумах посвящён безопасности — это важный аспект, когда собираешь такую мощную штуку, которая может ещё и загореться на улице (их обычно устанавливают за пределами дома, чтобы не нарушать закон и из безопасности).
Для мейкеров сборка и подключение такого блока питания — не только интересное занятие и экономия денег, но ещё и возможность разобраться, как работает электрика в доме.
Практически все энтузиасты в комментарии Motherboard отметили, что их собственные системы получаются гораздо большей ёмкости, чем у Tesla. Вероятно, компания пожертвовала ёмкостью ради красивого тонкого дизайна блока питания и ради большей эффективности охлаждения и безопасности. Один из французских мейкеров с форума под ником Glubux собрал блок на 28 кВтч. Он говорит, что этого хватает для всего дома, и пришлось даже купить электрическую духовку и индукционную плиту, чтобы куда-то расходовать излишки энергии.
Австралийский мейкер Питер Мэтьюс собрал блок на 40 кВтч, который питается от 40 солнечных панелей на крыше, благо в Австралии нет недостатка солнечных дней.
Самый большой самодельный блок, который удалось найти Motherboard, собран из 22 500 ячеек от ноутбуков и имеет ёмкость более 100 кВтч. От такого блока маленький дом может работать несколько месяцев — например, всю зиму — даже если солнечные панели полностью вышли из строя или неактивны.
А калифорнийский блогер Джеху Гарсия намерен собрать из батареек ноутбука систему на 1 мегаватт, крупнейшую подобную систему частного хранения энергии в США.
Большинство энтузиастов использует при сборке литий-ионные аккумуляторы модели 18650. Они обычно упакованы в цветные пластиковые корпуса и устанавливаются в ноутбуки и другую электронику. Новые аккумуляторы 18650 стоят около $5 за штуку, так что система выйдет немногим дешевле модели от Tesla. Поэтому сборщики обычно скупают бэушные аккумуляторы и вынимают аккумуляторы из выкинутых сломанных ноутбуков. К сожалению, многие люди просто выкидывают аккумуляторы вместе со сломанным ноутбуком, хотя они ещё вполне рабочие. По словам директора крупнейшей в США компании по переработке батарей Call2Recycle, около 95% аккумуляторов не используются повторно, а заканчивают свой путь на свалке, хотя почти все типы батарей могут быть использованы повторно в том или ином виде.
Найти достаточное количество выброшенной техники не так просто, а в последнее время стало ещё труднее, потому что многие люди начали собирать из них собственные энергетические системы вроде Powerwall, а производители ноутбуков вообще не поощряют повторное использование их аккумуляторов в самодельной технике не их фирмы.
Вся структура прикрепляются к инвертору и монтируется в стойке, которая устанавливается обычно на улице. Можно установить там систему мониторинга для контроля температуры с автоматическим отключением банков энергии, которые слишком сильно разогрелись.
Снова приветствую всех мозгочинов! Сегодня расскажу вам, как самостоятельно и из подручных материалов сделать батарейку!
Элементы питания типа АА это широко распространенные батарейки цилиндрической формы с номиналом около 1.5В, примерно 49-50мм в длину и 13.5-14.5мм в диаметре. Их просто изготовить самостоятельно, причем само изготовление этой мозгосамоделки может служить отличным наглядным пособием для объяснения детям физико-химических процессов.
Шаг 1: Материалы и инструменты
- гофрокартон
- медные плоские шайбы диаметром 10мм – 12шт.
- цинковые плоские шайбы диаметром 10мм – 14-16шт.
- термоусадочная трубка
- дистиллированная вода – 120мл
- уксус – 30мл
- поваренная соль – 4 ст.ложки.
- паяльник и припой
- чашка для смешивания раствора
- цифровой мультиметр
- ножницы
- наждачная бумага
- иглогубцы
- зажигалка или термофен
- старая АА батарейка для сверки
Шаг 2: Зачистка шайб
Шаг 3: Подготовка электролита
Медь и цинк создают разность потенциалов, но нужна еще и среда, через которую будут проходить заряды между этими потенциалами. Для электролита в 120мл дистиллированной воды растворяем 4 столовых ложки соли, тщательно все перемешиваем до полного растворения, затем добавляем 30мл уксуса и даем настояться.
Шаг 4: Картон
Чтобы шайбы оставались на расстоянии друг от друга нужно их проложить мозгокартоном, а именно гофрокартоном, пропитанным электролитом. Нарезаем гофрокартон на квадраты со стороной 1см и замачиваем их в электролите, который настаивался не менее 5 минут после добавления уксуса.
Шаг 5: Растягивание трубки
Теперь необходимо немного доработать термоусадочную трубку. Чтобы легче устанавливать в трубку медно-цинковые элементы батарейки, иглогубцами растягиваем саму трубку примерно на 10% от начального диаметра.
Шаг 6: Тестирование
Шаг 7: Сборка батарейки
Собираем батарею из подготовленных элементов: медь – цинк – картон. Именно в этой последовательности. См фото.
Сначала вставляем в трубку медную шайбу, выравниваем ее перпендикулярно длине трубки, на нее укладываем цинковую шайбу, затем картон и так далее все 11 элементов. Для удобства слегка утрамбовываем элементы пластиковым стержнем.
После установки последней цинковой шайбы сверяем полученную заготовку самоделки со старой стандартной батарейкой типа АА, если нужно добавляем еще одну цинковую шайбу. После подгонки по длине нагреваем трубку, формируя тем самым батарейку, лишние концы обрезаем.
Шаг 8: Монтаж контактов
Осталось добавить контакты. Нагреваем мозгопаяльник и припаиваем к концам батарейки шарики из припоя. То есть на медный конец напаиваем шарик из припоя, так чтобы при установке в батареедержатель наша самоделка касалась контакта батареедержателя. Затем переворачиваем батарейку и проделываем тоже с цинковым концом.
Шаг 9: Все готово, применяем!
!! Если напряжение ниже 1.5 В, то попробуйте немного растянуть батарейку, если это не помогает, то возможно вы ошиблись в порядке установки шайб.
Если все в порядке, то устанавливаем батарейку в любимые мозгогаджеты и наслаждаемся их работой!
Химический источник питания, который будет изготовлен в этом мастер-классе обладает довольно существенной мощностью, чтобы получить с помощью него напряжение способное питать сетевые приборы на 220 В.
Наверняка вы видели статьи в интернете, где из лимона получают электричество, воткнув в него два электрода из разных металлов. Эта батарея будет построена по тем же принципам, только более масштабно.
Пойдем только не по пути увеличения секций элементов, а по пути увеличения площади электродов, что должно дать больший ток батареи, а следовательно и мощность всей установки.
В роли электролита будет использована вода и пищевая сода разведенная в ней.
Понадобится
- Канализационная ПВХ труба, длиной приемно 1-1,2 м.
- Две заглушки ПВХ.
- Медный провод.
- Оцинкованная полоска.
- Кусок гофрированной трубы.
- Тонкая трубка ПВХ.
- Пара кусков пластика для подставок.
- Клеммы две штуки.
Изготавливаем батарею работающую на воде
Нам необходимо собрать герметичный сосуд из трубы ПВХ - это будет корпус нашей батареи. Я решил по концам вставить закручивающиеся заглушки, чтобы их в любой момент можно было открутить. Газовой горелкой разогреваем край трубы.
В крышках заглушек вклеиваем куски тонкой трубы. Отверстие в них делать не нужно. Эти отрезки будет центрировать внутренний элемент и нужны лишь как крепления. Используем клей на основе эпоксидной смолы.
Вся батарея будет располагаться горизонтально, для этого приклеиваем своеобразные ножки по обеим сторонам.
Пришло время изготовить сам электродный элемент. Берем трубку с змеевидной фактурой и наматываем в ее желоб сначала медный провод.
Если у вас нет такой трубки - возьмите обычную гладкую, но в этом случае провод придется периодически фиксировать через определенный промежуток.
Затем в промежуток медному наматываем оцинкованную ленту.
Две этих ленты не должны соприкасаться между собой.
С одной стороны подключаемся и делаем вывод от медного провода. А с другой стороны делаем отвод от цинкового электрода.
Как видите, корпус покрашен черной эмалью. С боку сделан кран для спуска газов и слива жидкости. Закрываем второй крышкой.
На этом наш химический источник тока готов.
Результат работы солевой батареи
Результат работы таков, что напряжение холостого хода - 1,6 В. Ток короткого замыкания - 120 мА.
Теперь подключаем нагрузку. Это однотранзисторный повышающий преобразователь для питания светодиодов.
Светит нормально. Изначальная просадка по напряжению была до 0,8 В. Поработав пару часов составила - 0,6 В.
Такой батареи хватит на несколько часов работы. Вы можете собрать ее и поэкспериментировать с заменой электролита, сделав его не из соды, а из обычной поваренной соли. Заменить электроды из других металлов. Кто знает, может вы сможете получить большее напряжение и время работы. Удачи!
Смотрите видео
Читайте также: