Судовой парогенератор принцип работы
2.1. Классификация и показатели работы котельных установок
Судовые паровые котлы принято классифицировать по следующим признакам:
по назначению – котлы бывают главные и вспомогательные;
по устройству – различают водотрубные (в трубах циркулирует пароводяная смесь) и газотрубные или огнетрубные, где продукты сгорания движутся внутри дымогарных труб, окруженных кипящей водой;
по циркуляции воды котлы могут иметь естественную и искусственную (принудительную) циркуляцию, которая обеспечивается специальным дополнительным насосом.
Поверхность, обогреваемая с одной стороны продуктами сгорания, а с другой стороны охлаждаемая рабочим телом (водой, пароводяной смесью или паром) называется поверхностью нагрева. В современном водотрубном котле вся поверхность нагрева образована трубками или змеевиками (испарительными или кипятильными, экономайзера, воздухоподогревателя, пароперегревателя).
Арматурой котла называется комплект приборов и устройств, обеспечивающий его бесперебойную работу. К арматуре котла относятся (рис. 14):
манометр, показывающий давление пара и на шкале которого красной чертой отмечено наибольшее допустимое давление в котле;
водомерные стекла (4), которых по правилам регистра должно быть два;
главный запорный клапан (2), через который отбирается пар из котла;
питательный клапан (3), через который при снижении уровня воды котел подпитывается дистиллятором;
предохранительный клапан (1), которых по требованию регистра должно быть два;
клапаны нижнего (9) и верхнего (на рис.не показан) продувания.
Горение топлива происходит в топке 6 (стрелками показан ход продуктов сгорания). Топливо в топку подается через форсунки 8, окруженные воздухонаправляющими устройствами 7.
Для улучшения использования теплоты продуктов сгорания паровой котел имеет дополнительные поверхности нагрева: воздухоподогреватель (для подогрева воздуха поступающего в топку), экономайзер (для подогрева питательной воды) и пароперегреватель (на рис. не показаны).
Паровой котел с дополнительными поверхностями нагрева называется парогенератором. Парогенератор (или парогенераторы, если их больше одного) в комплексе с обслуживающими его механизмами и устройствами (насосами, вентиляторами, подогревателями топлива) называется котельной установкой.
На морских судах котельные установки служат для обеспечения паром турбогенераторов (на судах с теплоутилизационным контуром), грузовых насосов (на танкерах), а также для других потребителей пара (отопление, хозяйственно-бытовые нужды, подогрев топлива, подогрев груза на танкерах). Такие котлы относятся к вспомогательным.
Если греющим агентом являются продукты сгорания ДВС или газотурбинной установки, котлы называются утилизационными.
Эксплуатационными показателями работы котлов являются площади поверхностей нагрева, паропроизводительность, водосодержание и КПД
Паропроизводительность котла D в значительной степени зависит от величины поверхностей нагрева и показывает, сколько т/час пара вырабатывает котел. Различают номинальную паропроизводительность и максимальную паропроизводительность, которая достигается в течение ограниченного времени.
Водосодержание показывает время, в течение которого испарится вся вода, содержащаяся в котле и представляет с собой отношение массового количества воды, содержащейся в котле, к его паропроизводительности. Современные котлы характеризуются малым водосодержанием (менее 0,3 ч.), поэтому их надежная работа обеспечивается только при условии автоматического регулирования подачи воды в котел.
Коэффициент полезного действия ( отношение того, что получено, к тому, что затрачено) котла представляет собой отношение количества теплоты полученного пара (или теплоты, использованной на парообразование) к теплоте сгоревшего топлива
, (3)
где D – паропроизводительность котла, кг/час;
– теплота каждого килограмма пара, Дж/кг;
В – расход топлива, кг/ч;
– низшая теплота сгорания каждого килограмма сгоревшего топлива, Дж/кг (см. раздел 2.7).
КПД вспомогательных котлов редко превышает 80 %, так как у них отсутствуют некоторые или все дополнительные поверхности нагрева. КПД главных котлов может превышать 96 %. Потери, сопутствующие работе котлов, распределяются следующим образом:
с уходящими продуктами сгорания – до 5÷25 %;
от химической неполноты сгорания топлива – до 5 %;
от механической неполноты сгорания топлива – до 4÷10 % (максимальную потерю имеют котлы, работающие на твердом топливе);
Парогенератор - это специализированное оборудование, предназначенное для преобразования жидкости, чаще всего, воды, в пар. Жидкость нагревается при сжигании какого-либо топлива: древесина, уголь, нефть или природный газ.
Переход жидкости к газообразному состоянию создает давление, а затем расширение, которое может быть направлено и использовано как источник энергии.
Поршни с паровым двигателем сыграли важную роль в развитии фабрик, железнодорожных локомотивов, пароходов и многих других образцов механического оборудования.
Одним из самых ранних применений промышленного парогенератора в технике был паровоз. Топливо, в виде дров или угля, подавалось в топку. Полученное тепло направлялось через систему трубок, которые нагревали воду, которая хранилась в специальном резервуаре.
После того, как температура достигала уровня кипения, энергия, созданная из пара, затем приводила в движение поршни, которые поворачивали колеса паровоза. Основной функцией паровой энергии было движение поезда, но она также активно применялась в тормозах и свистке.
Устройство парогенераторов для промышленности
В сравнении с паровыми бойлерами, паровые генераторы содержат меньше стали в конструкции и используют одиночный паровой змеевик вместо множества маленьких шлангов. Специализированный насос подачи воды используется для непрерывной качки воды по шлангу.
Парогенератор использует в своей конструкции единовременную принудительную подачу воды для того чтобы превращать поступающую воду в пар за один раз с помощью змеевика нагрева.
По мере того как вода проходит через змеевик, тепло передается от горящих газов и заставляет воду превращаться в пар. В конструкции генератора не используется паросборник, где между паром и водой свободное пространство внутри, поэтому для достижения 99,5% качества пара необходимо использовать влаго/паро - отделитель.
Из-за того что генераторы не используют большой напорный бак в своей конструкции, как в жаровых трубах, зачастую они очень малы и их легко запустить, что делает их идеальным выбором для ситуаций, когда нужно получить небольшое количество пара за короткое время.
Однако это связано с затратами на производство энергии, поскольку генераторы имеют маленький КПД и поэтому не всегда способны производить достаточное количество пара в различных ситуациях.
Преимущества
По своему устройству и принципу работы парогенераторы достаточно похожи на другие системы паровых котлов, одновременно оставаясь при этом принципиально отличными от них.
Эти, на первый взгляд, малозначительные отличия меняют всю работу системы, которая, как правило, является менее мощной, чем у бойлеров, но имеет ряд преимуществ.
Например, парогенераторы обладают более простой конструкцией, что позволяет им намного быстрее запускаться и легче работать, чем полномасштабный промышленный бойлер. Они также меньше в размерах, что делает их более универсальными, при работе в ограниченном пространстве их часто можно увидеть в качестве вспомогательных котлов.
Следующая причина, по которой они часто используются в качестве вспомогательных котлов, заключается в том, что они довольно легко и быстро запускаются.
Из-за их компактной конструкции, одиночного змеевика и относительно более низкой вместительности воды, эти машины могут быть запущены и работать на полной мощности в более короткие сроки, по сравнению с полномасштабными бойлерами, что делает их полезным в аварийных ситуациях.
Это похоже на сравнение гоночного мотоцикла с военным танком - первый быстрее разгоняется и работает быстро, но не очень силен, в то время как второй долго заводится, но в конечном итоге является более мощной машиной. И притом, что они вообще стоят намного меньше, чем полномасштабные бойлеры, они могут быть более востребованы для работ, которые не требуют таких высоких уровней пара.
Где применяются
Когда вы думаете о паровой энергии, вы можете представить себе паровые двигатели или пыхтящие локомотивы. Однако промышленные парогенераторы имеют множество применений:
- Дистилляция
- Стерилизация
- Подогрев теплового насоса
- Косвенный нагрев
- Отопление, вентиляция и кондиционирование воздуха
Электрический генератор может преобразовать приблизительно 97% электрической энергии из пара. Автоматическое управление безопасностью - регулятор уровня жидкости, например - поддерживает необходимый уровень воды и отключает генератор если уровень воды падает ниже нормы.
Генераторы пара из нержавеющей стали являются лучшим вариантов в случае необходимости достаточно чистого пара. Нержавейка уменьшает вероятность загрязнения пара.
Цена: 149 910 руб./шт
Цена: 104 690 руб./шт
Цена: 146 560 руб./шт
Цена: 399 руб./пог.м
Виды паровых генераторов
Дизельный парогенератор
Они следуют подобной концепции теплообмена как бойлеры со змеевиками, но могут производить даже более высокое давление в зависимости от мощности. Они используются в основном на электростанциях.
Их паровое давление может ровняться, а в некоторых паровых машинах и превышать максимальное водяное давление в 221 Бар. Температура пара на этих машинах высокого давления может достигать 500 градусов по Цельсию.
Теплоутилизационный парогенератор
Теплоутилизационный парогенератор, или теплообменный аппарат, собирает облака пара под высоким давлением и использует этот пар после отработки через цепь теплообменников для питания других менее мощных паровых машин.
Этот восстановленный пар можно даже использовать на этих генераторах с более низким давлением для отопления промышленных предприятий или домов.
Парогенераторы для атомной электростанции
Существует два основных типа ядерных парогенераторов: (BWR), реактор с горячей водой и (PWR), реактор с водой под давлением. Вода в BWR превращается в пар внутри самого ядерного реактора и идет к турбине вне резервуара.
PWR вода находится под давлением свыше 100 Бар и никаких процессов кипения воды внутри реактора не происходит.
Паровые генераторы на солнечной энергии
Солнечные парогенераторы являются самым чистым способом получения пара. Вода бежит по трубам внутри панели солнечных батарей.
Солнце нагревает воду, а затем вода проходит через паровую турбину, создавая электроэнергию. Такой вид парогенераторов не производит отходов и не загрязняет окружающую среду.
Принцип работы
Теплообмен
Парогенераторы используются для получения и использования энергии, выделяющейся в виде тепла, в самых различных процессах и преобразования ее в более полезную форму, такую как механическая и электрическая энергия.
Получаемое тепло используется для производства электроэнергии или обрабатывается в качестве побочного продукта какого-либо другого промышленного процесса.
Непосредственный источник тепла обычно загрязнен, например, радиоактивное топливо на атомной электростанции, поэтому первым шагом выработки паровой энергии является передача этого тепла в чистую воду с помощью теплообменника.
Это делается путем поднятия тепловым источником температуры топлива, типа бензина и т.п., которое циркулирует в замкнутой цепи. Топливо, в свою очередь, нагревает резервуар с водой, не загрязняя его.
Горячее топливо циркулирует по водяной бане для получения пара. Существует несколько различных геометрических схем, но принцип остается тот же.
Нагреваемая жидкость отводится по нескольким трубкам малых размеров для увеличения своего поверхностного контакта с водой и для того чтобы обеспечить ускорение теплообмена и получение пара.
Пар, производимый на современных атомных и угольных электростанциях, часто находится в сверхкритических условиях или выше критической точки на фазовой диаграмме воды (374 градуса Цельсия и 22 МПа).
Пар сверхкритического давления перегружен энергией. Энергия пара преобразуется в механическую путем прогона ее через паровую турбину. Высокое давление пара давит на множество наклоненных лопастей турбины, и заставляет их вращаться.
Эта механическая энергия преобразуется в электрическую энергию путем использование энергии вращения паровой турбины для того чтобы привести в действие электрический генератор. Турбина, представленная на изображении, может генерировать до 65 мегаватт электроэнергии.
Заключение
Тепло - это источник энергии, который превращает воду в пар. Источник топлива для обеспечения необходимого тепла может использоваться в различных формах. Из древесины, угля, нефти, природного газа, бытовых отходов или биомассы, ядерных реакторов или энергии солнца можно получить достаточное тепло.
Каждый вид топлива является источником тепла для нагрева воды. Просто каждый из них делает это по-своему. Некоторые являются экологически чистыми, а другие оказывают достаточно сильное влияние на окружающую среду.
Судовой котел предназначен для производства теплоносителя. Большая часть современных судов оборудована паровыми котлами. Судовые котлы в целом делятся на вспомогательные и главные. Последние вырабатывают пар для главного судового двигателя, то есть на паровую машину или турбину. А вспомогательные котлы подают пар на вспомогательные механизмы, отопление, паротушение, подогрев топлива, хозяйственно-бытовые нужды, а также на разогрев танкерного груза.
Виды судовых парогенераторов
Парогенераторы судовые по способу омывания поверхности нагрева можно разделить на газотрубные и водотрубные. При первом варианте горячие газы передвигаются внутри труб, вода их окружает. А в водотрубном котле вода с пароводяной смесью находятся внутри труб, при этом газы их омывают снаружи. При комбинированном отоплении обязательна промежуточная группа со свойствами как водотрубных котлов, так и газотрубных.
В качестве главных парогенераторов на судах используют только водотрубные котлы. Газоводотрубные и газотрубные котлы могут быть лишь вспомогательными на теплоходах или газотурбоходах.
При меньших массовых показателях водотрубные котлы обладают гораздо большей паропроизводительностью, чем котлы газотрубные. Вспомогательные котлы, как правило, ограничиваются температурой до 320 °С и давлением в пределах 1,8 МПа.
Примерное время для подъема пара до уровня рабочего давления у водотрубных котлов составляет порядка 1,5 – 3 часов, а для газотрубных от 4 до 24 часов. Точное время зависит от эксплуатационных условий и конструкции парогенератора судового.
Также следует отметить, в водотрубных котлах количество воды меньше часовой паропроизводительности. Именно поэтому необходимо применять сложные автоматические системы питания и регулирования судовых водогрейных котлов, напрямую связанные с авторегулированием горения топлива. Также требуется сложная система авторегулирования давления пара. В случае газотрубных котлов качество питьевой воды не имеет большого значения. В то же время появление накипи у теплонапряженных водотрубных котлов может значительно повысить опасность перегрева и разрыва металла труб.
Газотрубный котел при сравнительно небольшой паропроизводительности имеет более высокие показатели сухости пара. При этом он обладает большой аккумулирующей способностью, и поэтому менее чувствителен к колебаниям нагрузки.
Несмотря на ряд достоинств утилизационных водотрубных котлов с принудительной многократной циркуляцией, они считаются менее надежными из-за необходимости использования циркуляционных насосов.
Безопасность, эффективность и экономность, в местах где есть необходимость в быстром приготовлении водяного пара с успехом можно применить электродный парогенератор, он не доставляет проблем, по сравнению с парогенераторами на другом виде топлива где очень высокая температура нагрева поверхности на которой образуются твердые вещества в виде накипи, в процессе приготовления пара. В электродных паровых котлах, прохождение электрического напряжения через воду вырабатывает тепло и пар. Ни одна из частей генератора не горячее, чем вода или пар. Поэтому, не происходит отложение твердых веществ или отложений.
Парогенераторы и электрические котлы являются надежным решением для получения пара высокого или низкого давления для формования, тиснения, сушки, увлажнения, приготовление пищи, уборка, обезжиривания, стерилизации, вулканизации, отопление и т.д. Они обеспечивают постоянную температуру до 185 градусов, независимо от котлов, и они могут быть установлены в любом месте вашего производства в непосредственной близости от технологического оборудования, если это необходимо.
Что из себя представляет электродный парогенератор, это емкость, в которой к верхней внутренней части приварен цилиндр с открытым дном,. Этот цилиндр делит емкость на две цилиндрические камеры. Внешняя и регулирующая камера (К). Внутренняя камера (J) является камерой производящей пар. Подвесные электроды в камере генератора (N). Электрическое напряжение (P) легко подключается к трем контактам электродов.
Необходимое количество электролита растворяют в воде и выливают в генератор через наполнительную горловину (G). Электролит остается в генераторе, и при необходимости сливается с водой через дренажный клапан (М). Когда включено электрическое питание, тепло генерируется из-за сопротивления воды при прохождении тока между электродами. Пар производится в камере генерации (J) проходит через клапан выхода пара (I), и через трубку (E), соединяющую клапан регулировки давления (C) для регулировки установочного давления в камере (К). Перед включением электрического котла, уровень воды будет сбалансированным.(См. рис 1.) Регулируя винтом на клапане регулятора давления (D) задаете желаемое давление. Когда система включена, воздух автоматически выдавливается через фильтр воздуха (А), который закрывается, при нагревании пара. Если отсутствует расход пара, давление в камере генератора увеличивается, и вода переходит в регулировочную камеру, пока она не достигнет предела давления установленного регулятором (С). (См. рисунок 2).
В этот момент клапан регулятора давления частично закрывается, и уменьшая количество пара вводимого в регулирующую камеру. Этот дисбаланс системы на мгновение, что позволяет воде подниматься в регулирующей камере за счет более высокого давления, условие генерации камеры. Когда уровень воды падает в камере генерации электроды постепенно оголяться, и количество пара генерируется меньше (см. рисунок 3).
Уровень воды в обеих камерах редко бывают сбалансированными. Это состояние возникает только при полной нагрузке. Применив электронное управление, в электродных парогенераторах, баланс системы будет поддерживать автоматически подпитку воды в точном балансе с расходом пара.
Читайте также: