Стробоскоп своими руками
Автомобильный стробоскоп – это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.
Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя. Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени. Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания.
При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.
Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов. Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.
Электрическая схема стробоскопа
Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.
Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.
Принцип работы
Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В. Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8. Индуктивный датчик момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.
Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В. Микросхема TL494 применяется практически во всех компьютерных блоках питания, выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.
С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2. С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.
Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.
Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече. В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение. Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7. Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.
Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.
Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.
Конструкция и детали
Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.
Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.
Все детали стробоскопа, кроме лампы, собраны на печатной плате, представленной на фотографии.
Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка. Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков. Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.
Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500. Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига. Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца. После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.
Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.
Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.
Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.
В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.
Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой.
Настройка стробоскопа
Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9. Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы. Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход. Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.
Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.
Таблица перевода оборотов вращения двигателя в частоту | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Обороты двигателя, оборотов в минуту | 600 | 800 | 1000 | 1200 | 1500 | 1800 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | 5500 | 6000 |
Частота вращения, Гц | 10 | 13 | 33 | 20 | 25 | 30 | 33 | 41 | 50 | 58 | 66 | 75 | 83 | 91 | 100 |
Как пользоваться стробоскопом
Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу. Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.
Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.
Ответы на вопросы посетителя сайта по настройке стробоскопа
Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверхярких светодиодов его остановила цена светодиодов. При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки. Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.
Вопрос | Ответ |
---|---|
Можно ли заменить тиристор КУ103В тиристором ВТ169G? | Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В. |
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. | Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме. Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен. |
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? | Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов. |
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 - 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость поставить? | По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать. |
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? | Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы. |
Из характеристик тиристора BT169G - отпирающее управляющее напряжение 0,5-0,8 В , т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? | Да. |
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? | Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В. |
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? | Не играет, диод для этого и стоит. |
Есть ли смысл заменить VT10 на полевой транзистор? | В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять. |
Изменения, которые внес Юрий при повторении схемы стробоскопа. | Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ. |
Представляю автомобильный стробоскоп, хотя его можно не только на автомобиле применять, но и на мотоцикле, велосипеде, в общем везде, где пожелает душа и позволит фантазия. Представлено 2 варианта исполнения: более дешевый на биполярных транзисторах и более дорогой, но мощный вариант на полевых транзисторах. Главное различие, как указано, это допустимая мощность нагрузки. В первом случае у нас будет около 10 Вт допустимой нагрузки на канал, во втором 45 Вт и более (больше 45 Вт на канал не нагружал для проверки, но при такой нагрузке теплового нагрева ключевых элементов не было совсем).
Итак 2 схемы устройства:
Первая на полевых транзисторах:
И вторая на биполярных транзисторах:
Конструкция представляет собой микроконтроллер, управляющий силовыми ключами. Микроконтроллер можно использовать как в DIP корпусе, таки в SMD, однако на печатной плате предусмотрена установка только для SMD корпуса микроконтроллера. 1024 байта памяти микроконтроллера использованы полностью, поэтому количество эффектов ограничено 10, а жаль. В качестве силовых ключей можно использовать в первом варианте любые n-канальные полевые транзисторы с логическим управлением. Что это значит? У таких полевых транзисторов открывающие напряжения связаны с логическими уровнями, т.е. им достаточно на затвор подать 5 В, чтобы канал надежно открылся (пример выбора транзистора IRFZ44 и IRLZ44n: в данном случае IRLZ44n является полевым транзистором с логическим управлением, на что указывает буква l в названии, это то, что нам нужно для замены, IRFZ44 тоже подойдет, но будет чуть-чуть хуже, т.к. ему требуется подать большее напряжение для полного открытия, хотя работать тоже будет, просто сопротивление канала будет больше значения из даташита, а это значит, при бОльших токах больше будет греться). Чтобы ограничить ток заряда затвора, ставим ограничивающие резисторы R2, R3, чтобы не рисковать выбить вывод микроконтроллера. Резисторы R4, R5 необходимы, чтобы при отсутствии логической единицы прижимать затвор полевого транзистора к земле для надежного закрытия. Кнопку можно использовать абсолютно любую. На печатной плате кнопка дублируется двумя штырьками для возможности использования выносной внешней кнопки. Биполярные транзисторы можно использовать любый N-P-N структуры с запасом по мощности. Резистор R1 необходим для предотвращения сбоев работы микроконтроллера. Если не использовать этот резистор, на выводе reset могут появляться случайные помехи, из-за которых МК может презапускаться. Стабилизатор напряжения можно использовать любой на 5 В линейный (7805 или КР142ЕН5А) или заменить на импульсный преобразователь напряжения, при этом придется изменить немного и печатную плату (например MC34063 или LM2576 (LM2596)).
Чтобы прошить микроконтроллер, необходимо либо использовать отдельную планку для прошивки перед запаеванием на печатную плату, либо временно подпаяться к контактам на печатной плате стробоскопа. Программатор можно использовать любой, поддерживающий ISP программирование (например, USBasp или USBtiny). После прошивки устройство не требует никаких настроек или калибровок, работает сразу. Для прошивки необходимо установить fuse биты, новичкам советую использовать шестнадцатиричную форму (HIGH, LOW), чтобы не напортачить с галочками:
- 10 режимов: 1) горит 1 канал, 2) горит 2 канал, 3) горят оба канала (режим для ДХО), 4) моргают оба канала, 5) моргание 1 + 1, 6) 3 + 3, 7) 5 - пауза - 5, 8 ) короткое моргание обоих каналов, 9) бегущий огонь 2 канала в обе стороны, 10) быстрое непрерывное моргание каналов, 11) ничего не горит
- сохранение последнего использовавшегося режима перед выключением питания
- защита кнопки от дребезга и случайного и короткого нажатия (нужно удерживать кнопку примерно 0,85 секунды и смена эффекта происходит только после отпускания кнопки)
- напряжение питания 7,5 - 15 В
- малый размер печатной платы - примерно 3 х 3 см для варианта на биполярных транзисторах и 3 х 4 см для варианта на полевых
- простая и функциональная конструкция
- управление одной кнопкой
Сохранение последнего использовавшегося реализовано путем сохранения переменной, отвечающей за номер эффекта, в энергонезависимую память EEPROM микроконтроллера при выборе нужного эффекта. При подачи напряжения одним из первых дел считывается память EEPROM и определяется последнее состояние переменной:
Внешний вид готового устройства:
Конструкция и прошивка проверены в работе: багов и лагов не замечено. Любители китайской продукции в данном случае курят в сторонке, т.к. сравнительная стоимость данного устройства будет меньше и, что самое главное, более функциональная по сравнению с аналогами. Собрать такую схему у среднего радиолюбителя получится быстрее, чем сходить в магазин за китайским аналогом
К статье прилагаются файлы печатной платы, HEX файл прошивки микроконтроллера и проект Proteus, а также видео работы стробоскопа.
Привет. Сегодня хотел поговорить о самодельном стробоскопе.
Во время настройки системы зажигания, на карбюраторных двигателях, используется стробоскоп. При проверке инжекторных двигателей многие обходятся без него. Возникла идея проверки меток системы зажигания на инжекторных системах, с помощью стробоскопа. Проверить можно, если только на двигателе установлены высоковольтные провода. Для проверки двигателя с индивидуальными катушками нужно дорабатывать схему стробоскопа.
На просторах инета нашел несколько схем, но некоторые так у меня и не запустились. Вот эта схема рабочая. Проверено.
Для точной установки зажигания на двигателе необходимо использовать специальные приборы – стробоскопы. Их можно приобрести в автомагазинах или изготовить своими руками. Во втором случае вы сэкономите приличную сумму и сделаете наиболее подходящее устройство для вашей модели авто.
Особенности заводских стробоскопов и принцип их работы
Точно отрегулировать зажигание без использования стробоскопа довольно сложно. Такой прибор существенно ускоряет процесс настройки, лампа сигнализирует о появлении искры, что позволяет правильно установить угол опережения зажигания. Несмотря на то, что заводские приборы работают эффективно и точно, многие автолюбители не спешат их покупать. Главным сдерживающим фактором можно назвать высокую цену стробоскопов. В большинстве моделей используется дорогостоящая газоразрядная лампа, её замена приравнивается к покупке нового прибора.
Само устройство можно сделать своими руками, используя простые и доступные материалы. Существует несколько хороших схем изготовления, которые помогут сэкономить на покупке заводских аналогов. Для примера, можно ознакомиться с ценами на самые популярные стробоскопы, которые есть в продаже:
- Multitronics C2 — 900-1000 руб.
- AstroL5 — 1300 руб.
- Focus F1 — 1700 руб.
- Focus F10 — 5600 руб.
Самодельные приборы делаются из фонариков, светодиодов или лазерной указки. При низкой себестоимости (около 500 рублей) прибор будет работать не менее надёжно и эффективно.
Инструкция по изготовлению прибора для установки зажигания
Простой способ
В сети есть много разных схем, практически все из них легко собираются и не требуют больших затрат на материалы. Рассмотрим одну из наиболее популярных схем создания стробоскопа в домашних условиях. Из деталей нам понадобится:
- транзистор КТ315;
- тиристор КУ112А, резисторы на 0,125 Вт;
- любой фонарик на диодах (диодов должно 6 или больше);
- конденсаторы C1;
- низкочастотный диод V2;
- реле с индексом RWH-SH-112D;
- шнур питания длиною 1 метр;
- специальные зажимы;
- медный провод около 10 см.
Все детали можно приобрести на радиорынке или в специализированном магазине. В качестве корпуса для прибора можно использовать старый фонарик или вспышку от фотоаппарата.
Схема сборки автомобильного стробоскопа в корпусе от старого фонарика
Чтобы собрать самодельный автомобильный стробоскоп, можно использовать недорогие радиодетали и медный провод
Использовать такое устройство можно не только для установки зажигания. Им можно проверить свечу, настроить работу регулятора.
Самодельная приблуда с использованием таймера
Стробоскоп на основе таймерных устройств имеет более сложную схему. Его главное преимущество в стабильных световых импульсах, которые не зависят от напряжения батареи. Прибор также может работать в режиме тахометра, для этого необходимо просто изменить положение регулятора.
Таймерные стробоскопы также можно использовать в качестве тахометра
Совет: В схеме лучше использовать диоды из серии КД521. Если вы не нашли таймера отечественного производства, можно взять зарубежный аналог NE555.
Схема изготовления прибора на светодиодах
В основе такого устройства лежит микросхема 155АГ1, она запускается импульсами с отрицательной полярностью. В схеме используются сопротивления R1, R2, R3, которые ограничивают амплитуду входного сигнала. Требуемая длительность импульсов устанавливается ёмкостью С4 и резистором R6. При стандартных настройках это 2 мс. В качестве источника питания будет использоваться аккумуляторная батарея автомобиля.
Светодиодные стробоскопы имеют высокую надежность и могут использоваться даже при ярком дневном освещении
Видео: как сделать стробоскоп своими руками
Как правильно настроить самоделку
Чтобы проверить устройство на практике и установить угол опережения зажигания, делаем следующее:
- Прогреваем двигатель и оставляем его работать на холостом ходу.
- Подключаем самодельный стробоскоп к источнику питания.
- Наматываем медный датчик на жилу первого цилиндра.
- Направляем источник света на специальную метку, которая нанесена на корпус.
- Находим неподвижную точку на шкиве маховика.
- Чтобы две точки сошлись, необходимо вращать корпус зажигания и после зафиксировать его в определённом положении.
На практике самодельные стробоскопы ничем не уступают заводским. Главное, правильно собрать схему и проверить работу устройства. Изготовленные стробоскопы в домашних условиях обойдутся совсем недорого и могут быть легко отремонтированы при необходимости.
С помощью стробоскопа получится красивый световой эффект для любой дискотеки. Можно использовать на танцплощадках, клубах и даже у себя дома.
Схема стробоскопа на ИФК-120 и МТХ-90
Схема стробоскопа на ИФК-120 и КН102
МТХ-90
Настройка стробоскопа
Проверить напряжение на кондесаторе. Должно быть около 300В. Если напряжение есть и тиратрон (МТХ-90) мигает, а стробоскоп не работает, то возможно следующее:
- Не работает трансформатор;
- Неисправен тиратрон;
- Неправильная сборка.
Если от лампы отключить провода от конденсатора, оставив подключенной только к трансформатору, то при включении лампа будет светится слегка синим цветом. Если не светится значит не поступает высокое напряжение или оно слишком мало. Также для стробоскопа подойдут лампы: ИСК-250 или ИФК-2000, ИФП-200, 500, 1500, 4000, 15000, ИФБ-300, ИФТ-200, ИФК-15, 20, 50, 120, 500, 2000.
Полезные советы
Некоторые особенности при сборке всё же надо учесть.
ИФК-120
ВНИМАНИЕ! Схема стробоскопа не имеет трансформаторной развязки от сети. Поэтому все детали стробоскопа находятся под опасным для жизни напряжением. Пайка, настройка и т.д. производить с отключением от сети 220В!
В интернете много статей о том, как собрать световой меч. Они в основном на одном принципе: размещение в длинной трубе разноцветных светодиодов. Тем самым имитируют лазерный луч. Но нигде не встречается имитация звука этого луча.
Способы продления срока службы стиральной машины автомат
К написанию этой статьи подтолкнул довольно банальный случай — перегорел ТЭН в стиральной машине. Мастер по ремонту определил причину поломки… использование Калгона…
Теплица — не заменимая постройка в домашнем хозяйстве. Особенно во время весеннего авитаминоза витамины можно получить с овощей, выращенных в теплице что, несомненно, лучше, чем покупать их аптеке.
Также в теплице можно вырастить рассаду, цветы, раннюю клубнику и т.д.
В статье ниже, вкратце узнаете: как и где лучше построить теплицу, как её обогреть.
Вы можете следить за комментариями к этой записи через RSS 2.0. Вы можете оставить свой комментарий, пинг пока закрыт.
Скажите , будьте добры, а можно ли сделать стробоскоп , применив лампу-вспышку от старого пленочного импортного фотоаппарата? . Ведь тогда можно будет использовать и трансформатор от туда же. Понятно ,что мощность стробоскопа будет по меньше, но все-же. Облазив весь интернет , такой схемы я не нашел.
Пытался я сделать с блочка фотоспышки от мыльницы стробоскоп, используя те же детали. Но яркость вспышки была недостаточной -конденсатор не успевал заряжаться. Чем быстрее — тем слабее яркость вспышки.
Ваш комментарий
- НАВИГАТОР -
10-ка лучших статей
-
- 216 267 просм. - 200 391 просм. - 199 573 просм. - 190 295 просм. - 173 830 просм. - 167 142 просм. - 142 707 просм. - 138 959 просм. - 132 282 просм. - 121 811 просм.
Архивы статей
Коротко о сайте:
Мастер Винтик. Всё своими руками! - это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.
Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму.
Программы, схемы и литература - всё БЕСПЛАТНО!
Читайте также: