Стенд для проверки ибп своими руками
Удивляет полное отсутствие информации о таких распространенных приборах, как источники бесперебойного питания. Мы прорываем информационную блокаду и приступаем к публикации материалов по их устройству и ремонту. Из статьи Вы получите общее представление о существующих типах бесперебойников и более подробное, на уровне принципиальной схемы, о наиболее распространенных моделях Smart-UPS.
Надежность работы компьютеров во многом определяется качеством электрической сети. Последствиями таких перебоев электропитания, как скачки, подъемы, спады и потеря напряжения, могут оказаться блокировка клавиатуры, потеря данных, повреждение системной платы и пр. Для защиты дорогостоящих компьютеров от неприятностей, связанных с силовой сетью, используют источники бесперебойного питания (ИБП). ИБП позволяет избавиться от проблем, связанных с плохим качеством электропитания или его временным отсутствием, но не является долговременным альтернативным источником электропитания, как генератор.
Подавляющую часть российского рынка ИБП занимает продукция шести компаний: APC, Chloride, Invensys, IMV, Liebert, Powercom. Продукция компании APC уже который год сохраняет лидирующую позицию на российском рынке ИБП.
ИБП делятся на три основных класса:
- Off-line (или stand-by),
- Line-interactive
- On-line.
Эти устройства имеют различные конструкции и характеристики.
Рис. 1. Блок-схема ИБП класса Off-line
Блок-схема ИБП класса Off-line приведена на рис. 1. При работе в нормальном режиме нагрузка питается отфильтрованным напряжением электросети. Для подавления электромагнитных и радиочастотных помех во входных цепях используются фильтры EMI/RFI Noise на металло-оксидных варисторах. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. Форма его выходного напряжения — прямоугольные импульсы положительной и отрицательной полярности с амплитудой 300 В и частотой 50 Гц. ИБП класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых фирмой АРС ИБП класса Off-line модели Back-UPS находится в диапазоне 250…1250 ВА, а модели Back-UPS Pro -в диапазоне 2S0…1400 ВА.
Рис. 2. Блок-схема ИБП класса Line-interactive
Рис. 3. Блок-схема ИБП класса On-line
Блок-схема ИБП класса On-line приведена на рис. 3. Эти ИБП преобразуют переменное входное напряжение в постоянное, которое затем с помощью ШИМ-инвертора преобразуется снова в переменное со стабильными параметрами. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения равно нулю. За счет инерционного звена постоянного тока, каким является батарея, происходит изоляция нагрузки от аномалий сети и формируется очень стабильное выходное напряжение. Даже при больших отклонениях входного напряжения ИБП продолжает питать нагрузку чистым синусоидальным напряжением с отклонением не более +5% от устанавливаемого пользователем номинального значения. ИБП класса On-line фирмы АРС имеют следующие выходные мощности: модели Matrix UPS — 3000 и 5000 ВА, модели Symmetra Power Array — 8000, 12000 и 16000 ВА.
Модели Back-UPS не используют микропроцессор, а в моделях Back-UPS Pro, Smart-UPS, Smart/VS, Matrix и Symmetna микропроцессор используется.
Наибольшее распространение получили устройства: Back-UPS, Back-UPS pro, Smart-UPS, Smart-UPS/VS.
Такие устройства, как Matrix и Symmetna, используются в основном для банковских систем.
В этой статье рассмотрим конструкцию и схему моделей Smart-UPS 450VA…700VA, применяемых для питания персональных компьютеров (ПК) и серверов. Их технические характеристики приведены в табл. 1.
Таблица 1. Технические характеристики моделей Smart-UPS фирмы АРС
* Регулируется пользователем с помощью программного обеспечения PowerChute.
ИБП Smart-UPS 450VA…700VA и Smart-UPS 1000VA…1400VA имеют одинаковую электрическую схему и отличаются емкостью батарей, количеством выходных транзисторов в инверторе, мощностью силового трансформатора и габаритами.
Рассмотрим параметры, характеризующие качество электроэнергии, а также терминологию и обозначения.
Проблемы с электропитанием могут выражаться в виде:
- полного отсутствия входного напряжения — blackout;
- временного отсутствия или сильного падения напряжения, вызванного включением в сеть мощной нагрузки (электромотора, лифта и т.п.) — sag или brownout;
- мгновенного и очень мощного повышения напряжения, как при ударе молнии — spike;
- периодического повышения напряжения, длящегося доли секунды, вызванного, как правило, изменениями нагрузки в сети — surge.
В Росси провалы, пропадания и скачки напряжения как вверх, так и вниз составляют приблизительно 95% отклонений от нормы, остальное — шумы, импульсные помехи (иголки), высокочастотные выбросы.
В качестве единиц измерения мощности используются Вольт-Амперы (ВА, VA) и Ватты (Вт, W). Они отличаются коэффициентом мощности PF (Power Factor):
Коэффициент мощности для компьютерной техники равен 0,6…0,7. Число в обозначении моделей ИБП фирмы АРС означает максимальную мощность в ВА. Например, модель Smart-UPS 600VA имеет мощность 400 Вт, а модель 900VA — 630 Вт.
Структурная схема моделей Smart-UPS и Smart-UPS/VS показана на рис. 4.
Сетевое напряжение поступает на входной фильтр EM/RFI, служащий для подавления помех электросети. При номинальном напряжении электросети включены реле RY5, RY4, RY3 (контакты 1, 3), RY2 (контакты 1, 3), RY1, и входное напряжение проходит в нагрузку. Реле RY3 и RY2 используются для режима подстройки выходного напряжения BOOST/TRIM. К примеру, если напряжение сети увеличилось и вышло за допустимый предел, реле RY3 и RY2 подключают дополнительную обмотку W1 последовательно с основной W2. Образуется автотрансформатор с коэффициентом трансформации
меньше единицы, и выходное напряжение падает. В случае уменьшения сетевого напряжения дополнительная обмотка W1 реверсируется контактами реле RY3 и RY2. Коэффициент трансформации
становится больше единицы, и выходное напряжение повышается. Диапазон регулировки составляет ±12%, величина гистерезиса выбирается программой Power Chute.
При пропадании напряжения на входе выключаются реле RY2…RY5, включается мощный ШИМ-инвертор, питающийся от батареи, и в нагрузку поступает синусоидальное напряжение 230 В, 50 Гц.
Многозвенный фильтр подавления помех электросети состоит из варисторов MV1, МV3, MV4, дросселя L1, конденсаторов С14…С16 (рис. 5).
Трансформатор СТ1 анализирует высокочастотные составляющие напряжения сети. Трансформатор СТ2 является датчиком тока нагрузки. Сигналы с этих датчиков, а также датчика температуры RTH1 поступают на аналого-цифровой преобразователь IC10 (ADC0838) (рис. 6).
Трансформатор Т1 является датчиком входного напряжения. Команда на включение устройства (АС-ОК) подается с двухуровневого компаратора IC7 на базу Q6. Трансформатор Т2 — датчик выходного напряжения для режима Smart TRIM/BOOST. С выводов 23 и 24 процессора IC1 2 (рис. 6) сигналы BOOST и TRIM подаются на базы транзисторов Q43 и Q49 для переключения реле RY3 и RY2 соответственно.
Сигнал синхронизации по фазе (PHAS-REF) с вывода 5 трансформатора Т1 поступает на базу транзистора Q41 и с его коллектора на вывод 14 процессора IC12 (рис. 6).
В модели Smart-UPS используется микропроцессор IC12 (S87C654), который:
В микросхеме памяти EEPROM IC13 хранятся заводские установки, а также калиброванные установки уровней сигналов частоты, выходного напряжения, границ перехода, напряжения зарядки батареи.
Цифро-аналоговый преобразователь IC15 (DAC-08CN) формирует на выводе 2 эталонный синусоидальный сигнал, который используется как опорный для IC17 (АРС2010).
ШИМ-сигнал формируется IC14 (АРС2020) совместно с IC17. Мощные полевые транзисторы Q9…Q14, Q19…Q24 образуют мостовой инвертор. Во время положительной полуволны ШИМ-сигнала открыты Q12…Q14 и Q22…Q24, a Q19…Q21 и Q9…Q11 закрыты. Во время отрицательной полуволны открыты Q19…Q21 и Q9…Q11, a Q12…Q14 и Q22…Q24 закрыты. Транзисторы Q27…Q30, Q32, Q33, Q35, Q36 образуют двухтактные драйверы, формирующие сигналы управления мощными полевыми транзисторами, имеющими большую входную емкость. Нагрузкой инвертора является обмотка трансформатора, она подключается проводами W5 (желтый) и W6 (черный). На вторичной обмотке трансформатора формируется синусоидальное напряжение 230 В, 50 Гц для питания подключенного оборудования.
ИБП имеет встроенный слот SNMP, который позволяет подключать дополнительные платы для расширения возможностей ИБП:
В ИБП имеется несколько напряжений, необходимых для нормальной работы устройства: 24 В, 12 В, 5 В и -8 В. Для их проверки можно воспользоваться табл. 2.
Таблица 2. Напряжения в контрольных точках
Измерять сопротивление с выводов микросхем на общий провод следует при выключенном ИБП и разряженном конденсаторе С22. Типовые неисправности ИБП Smart-Ups 450VA…700VA и способы их устранения приведены в табл. 3.
Таблица 3. Типовые неисправности ИБП Smart-Ups 450VA…700VA
Во второй части статьи будет рассмотрено устройство ИБП класса Off-line.
Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.
Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.
Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.
Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.
Импульсные блоки питания — как работают: краткий обзор схем
Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.
Принципиальную схему удобно представлять таким видом.
Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.
Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель — напомнить принципы взаимодействия составных частей блока.
Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.
Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП
На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные — выходного напряжения. Их все необходимо измерить и оценить.
Правила безопасности с электрическим током требуют не допускать необученных людей к работам под напряжением. Поэтому обязательно ознакомьтесь с ними заранее.
Я же заострю ваше внимание только на трех вопросах:
- Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте — сразу снизите риск попадания под действие электрического тока.
- Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
- Подключайте импульсный блок питания для проверок только через разделительный трансформатор.
Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.
А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.
Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.
Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.
Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.
Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.
Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.
Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.
Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.
Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих
Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.
Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками — значит работать под напряжением в действующих цепях.
Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы
Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.
Поступаем следующим образом:
- Вскрываем корпус и осматриваем электронную плату.
- Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
- Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
- Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.
На малогабаритных микросхемах полная маркировка не всегда помещается. Тогда производители делают кодовое обозначение из нескольких букв и цифр. По нему сложнее искать информацию, придется упорнее потрудиться.
Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.
Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами — тестерами, как мой Ц4324.
Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.
Сейчас намного удобнее использовать для замеров цифровой мультиметр.
Все правила обращения с ним для новичков я очень подробно объяснил в специально опубликованной статье. Надеюсь, что она будет вам полезна.
Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.
По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.
Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.
Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов
Неисправности внутри ИБП можно разделить на две категории:
- Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
- Тихая потеря работоспособности без проявления внешних повреждений.
Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем — замеряют величины электрических характеристик.
Первый этап ремонта предусматривает обязательное выполнение шагов №1 и 2 только с отключенным питанием.
Шаг №1: внешний и внутренний осмотр
Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.
Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.
Шаг №2: проверка входного напряжения
Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.
Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.
Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.
Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.
Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.
Шаг №3: проверка состояния сетевого фильтра и выпрямителя
Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.
Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.
Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.
Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.
В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.
Любое малейшее искажение, особенно вздутый конденсатор — признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.
Стрелочным тестером это можно сделать двумя способами:
- Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.
Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.
- Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. По закону Ома вычисляют емкостное сопротивление Хс. По нему рассчитывают емкость конденсатора C.
Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.
Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.
Шаг №4: проверка работы инвертора
Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.
Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.
Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.
Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.
Шаг №5: проверка выходных напряжений
Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.
Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.
Подача напряжения питания на компьютерный ИБП в режиме холостого хода вредна для электронной схемы. Сокращается ресурс его работы.
Для проверки под напряжением рекомендуется собрать простую схему из обычных резисторов. Желательно их выбирать большой мощности и ставить на радиаторы или делать принудительный обдув на время проверки.
Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.
Шаг №6: проверка работы защиты от перегрузок
Операция проводится после проверки качества выходных напряжений на всех участках схемы.
Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.
Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.
Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.
Шаг №7: проверка схемы стабилизации выходных напряжений
На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.
Алгоритм проверки состоит из следующих этапов:
- ИБП отключают от цепей входного напряжения 220 вольт.
- К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
- На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.
При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.
Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.
Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.
Если позволяют габариты блока, то его можно доработать заменой:
- выпрямительных диодов повышенной мощности;
- накопительных конденсаторов большей емкости и напряжения.
Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.
Блоки питания
Пока есть электричество в сети неисправность источника бесперебойного питания можно не заметить. Но, как только питание исчезает ИБП вдруг сам по себе отключается вместе с компьютером, вместо того, чтобы выполнять свою первостепенную задачу – держать напряжение некоторое время, чтобы пользователь успел сохранить документы и файлы, корректно завершить работу системы. Причин такого поведения ИБП может быть несколько, их следует разобрать подробно.
Основные неисправности ИПБ можно найти в инструкции
ИБП не держит нагрузку — эта, и другие неисправности бесперебойников
При любой неисправности в первую очередь следует прочитать инструкцию к прибору. В зависимости от производителя и модели, одна и та же неисправность может проявляться по-разному. Диагностика каждого ИБП и ремонт могут отличаться, в зависимости от определения типовых проблем.
Симптомы неисправностей бесперебойников могут быть разными, но основные из них:
- не держит нагрузку при отключении питания от сети;
- не включается;
- ИБП постоянно пищит;
- перегревается;
- ИБП щелкает или самостоятельно отключается.
В некоторых случаях отремонтировать прибор получится самостоятельно, при этом стоить помнить, что UPS прибор электрический и потребуются элементарные навыки в сборке и разборке.
Во время разборки прибора следует соблюдать осторожность
Наиболее частыми проблемами в работе бесперебойников являются пыль и износ аккумулятора. Обе они возникают в результате длительной эксплуатации. Техника нуждается в регулярной чистке от пыли, не стоит оставлять прибор в комнате где де идет ремонт – строительная пыль для него наиболее опасна.
Неисправности ИБП, описание
Поломка ИБП подвергает опасности все оборудование, а потому следует знать, как проверить ИБП и его аккумулятор на работоспособность. Способы устранения мелких неисправностей обязательно описаны в руководстве пользователя к прибору, потому рекомендуется в первую очередь изучить его. Если это не дало результата, следует попробовать определить проблему самостоятельно.
Пищит непрерывно
UPS начинает пищать в том случае, если отключена электроэнергия и оборудование перешло на питание от батареи. В этом случае все нормально. Именно для этих целей и создан этот прибор. Пользователю достаточно завершить работу всей системы и отключить питание устройства.
В том случае, если такой писк возникает регулярно, при этом напряжение в сети есть, возможно следует протестировать электрическую сеть и понять причины скачков напряжения. В этом случае бесперебойник не виноват, проблема в другом месте.
Следует обращать внимание на индикаторы устройства
Еще одна причина писка ИБП – перегрузка. В этом случае прибор не тянет оборудование, подключенное к нему. Вычислить источник проблем можно поочередно подключая и отключая приборы. Решением проблемы будет покупка более мощного бесперебойника или отключение части оборудования.
Не включается после подачи питания
В том случае, если электричество в сети появилось, но ИБП не включается следует проверить исправность батареи, подключение к сети и уровень напряжения. ИБП не сможет долго работать, если в сети низкое напряжение продолжительное время. В этом случае батарея разрядится, а прибор перестанет включаться.
Иногда, достаточно подключить ИБП к сети и просто подождать некоторое время, батарея зарядится и прибор начнет работать. Следует знать, как проверить ИБП на работоспособность его кнопки включения, она может быть продавлена. Обрывы проводов – частая проблема бесперебойников. При большой перегрузке некоторые марки ИБП отказываются работать, достаточно все отключить и проверить его в самостоятельном включении.
Сам отключается, сильно греется
При наличии напряжения в сети бесперебойник может выключится от перегрузки на выходе. Тут важно учитывать в какой момент отключается прибор. Если во время отсутствия электроэнергии, то скорее всего проблема в батарее, следует проверить ее работоспособность.
В том случае, когда прибор отключает нагрузку во время работы от сети, то вполне возможно, что виной всему настройки программного обеспечения. Следует проверять настройки стандартных установок, при необходимости откорректировать их.
После вскрытия корпуса можно заметить явные проблемы
Причиной нестабильной работы прибора может быть использование аксессуаров не фирменного производства. Кроме этого, вполне вероятно появятся и другие проблемы в работе ИБП. Бесперебойник может отключиться от перегрева. В этом случае следует проверить исправность охлаждающей системы и убедиться в отсутствии мусора, препятствующего свободной циркуляции воздуха, иначе прибор будет выключаться.
Если отключение происходит в тот момент, когда прибор пытается переключиться на батарею, не стоит сразу винить АКБ, возможно причина в реле, которое отвечает за процесс переключения подачи питания.
Подбирать ИБП следует внимательно, согласно напряжению подключаемых приборов. При перегрузке бесперебойник отключится, так же, как и при недостаточной нагрузке. Устройства некоторых производителей нагрузку ниже установленной мощности определяют, как отсутствие рабочих приборов и отключаются для сохранения собственного заряда.
Методы диагностики
Чтобы убедиться в работоспособности бесперебойника достаточно провести диагностику электронного блока и АКБ устройства, понадобится для этого отвертка и мультиметр. Существует несколько основных способов:
Кроме этого диагностика может быть штатной и аварийной. Во втором случае необходимо обратиться к инструкции по эксплуатации прибора. Полное отключение нагрузки от ИБП, и проверка его работоспособности в автономном режиме позволяет выявить многие дефекты в работе устройства. Заряд в АКБ получится проверить с помощью тестеров, способных измерить емкость батарей. Ремонт бесперебойного блока питания получится выполнить самостоятельно.
Как проверить работу аккумулятора ИБП своими руками
Тестирование работы бесперебойника следует начать с проверки напряжения на клеммах. У подключенного к электросети устройства напряжение составит 13-14 В при одном аккумуляторе и 26-28В, если подключено две батареи. Показатели ниже указанного уровня подскажут о необходимости срочной замены АКБ.
Иногда АКБ ремонту не подлежит
Также для проверки можно использовать лампочку мощностью 100 ватт, исправный прибор должен обеспечить ее работу на 20 минут. В случае, если лампочка не продержалась и более 14 минут, следует также позаботиться о смене АКБ.
Следует осмотреть внимательно все контакты ИБП, возможно где-то нарушено соединение или оборван провод. Для этого следует разобрать прибор и осмотреть все соединения. В разобранном состоянии также получится осмотреть прибор на наличие пыли и мусора, при необходимости все очистить.
Какие неисправности можно отремонтировать самостоятельно
Существует ряд поломок, которые вполне можно устранить в домашних условиях самостоятельно. При серьезных повреждениях, зачастую прибор приходится полностью менять или обращаться к помощи специалистов. Также следует учитывать наличие специфического запаха, повреждение оценить получится только разобрав устройство и выявив проблему.
Прибор необходимо почистить
Список поломок
У каждого устройства есть типичные проблемы работы – источники бесперебойного питания не исключение. Существует ряд проблем, которые вполне получится решить самостоятельно:
- не включается – надо проверить подключена ли батарея, емкость АКБ и соединение гибкого кабеля;
- отключился, появился запах гари – неисправен сетевой фильтр, перегрузка, неправильно подключены АКБ;
- работает только от батареи – сгорел предохранитель;
- не подключается к сети – нарушено соединение сетевого кабеля;
- батарея не заряжается – заменить батарею;
- не держит батарея – неисправность АКБ.
Как проводить ремонт или замену деталей
Самостоятельно вполне получится выполнить несложный ремонт источника бесперебойного питания. В случае с перегревом вполне достаточным окажется очищение прибора от мусора и пыли. Следует разобрать устройство и провести полное удаление всех засорений. Это самое простое и легкое в ремонте и обслуживании ИБП.
Паять следует аккуратно
Также самостоятельно можно проверить соединения всех проводов и обнаружить сгоревшие конденсаторы. Заменить их получится при наличии навыков работы с паяльником и покупке соответствующих деталей. Предохранители могут часто выходить из строя, а потому многие производители в комплект вкладывают запасные.
Замер напряжения
Для замены АКБ потребуется ее снять, как правило делать это легко, достаточно крестовой отвертки. После приобретения новой батареи важно соблюдать порядок установки:
- поставить ее в корпус устройства;
- подключить провода, учитывая полярность;
- соединить остальные части корпуса.
В том случае, если проблема кроется в другом, без помощи мастера не обойтись. Надо обратиться в сервисный центр для ремонта источника бесперебойного питания. Следует узнавать у мастера будет ли подлежать ремонту прибор.
Специалист всегда поможет решить проблему
Уход за техникой, регулярная диагностика и контроль работоспособности помогут избежать многих проблем. Бесперебойник призван защищать технику от перепадов напряжения, а потому его состояние должно быть исправным, обеспечивающим необходимое напряжение. Простой ремонт ИБП своими руками вполне получится выполнить дома.
Проверять неисправный БП компьютера, подключая его к исправному системному блоку чревато выходом материнской платы и другого оборудования из строя. Ведь неизвестно, какие напряжения выдает БП, и если они завышены, то последствия могут быть серьезные, вплоть до выхода из строя материнской платы. Поэтому проверять и ремонтировать БП безопаснее и удобнее, подключая его к Блоку нагрузок. Блок нагрузок не сложно сделать самостоятельно и это целесообразно, если приходится периодически сталкиваться c необходимостью проверки блоков питания компьютеров.
Электрическая схема Блока нагрузок
Приведенная схема Блока нагрузок и индикации наличия напряжений, несмотря на свою простоту, позволяет даже без измерительных приборов, с помощью этого простейшего испытательного стенда моментально оценить работоспособность любого БП компьютера, даже не извлекая его из системного блока.
Конструкция Блока нагрузок и индикации напряжений
Все детали Блока нагрузок собраны в корпусе блока питания от компьютера, отслуживший свой срок.
На одной из сторон установлены светодиоды, выключатель S1, розетка для подключения измерительных приборов и переключатель для коммутации.
На противоположной стороне стенда, на месте, где подключался шнур питания, закреплена печатная плата с двумя разными разъемами для возможности подключения любых моделей блоков питания. Плата вместе с разъемами выпилена из неисправной материнской платы. Снизу прикручены четыре ножки, которые улучшают отвод тепла и не дают винтам царапать поверхность стола.
Монтаж элементов стенда выполнен навесным способом. Резистор R5 мощностью 50 Вт закреплен на уголке, который привинчен к дну корпуса. Остальные мощные резисторы привинчены к алюминиевой пластине. Пластина закреплена к дну винтами на стойках. Светодиоды вклеены в отверстия корпуса клеем Момент, на их ножки напаяны токоограничительные резисторы. Так как при подключении источника питания, на нагрузочных резисторах выделяется много тепла, то в корпусе стенда оставлен родной кулер, который заодно выполняет функцию нагрузки по цепи -12 В. Резисторы R1-R5 применены переменные проволочные типа ППБ.
Проволочные переменные резисторы ППБ можно с успехом заменить постоянными типа ПЭВ, С5-35, С5-37, подключив их, как показано на схеме, подойдут и автомобильные лампочки, подобранные по мощности. Можно резисторы намотать и самостоятельно из нихромовой проволоки. Светодиоды можно применить любого типа. Для индикации напряжений положительной и отрицательной полярности лучше применить светодиоды разного цвета свечения. Для положительной полярности – красного, а для отрицательной – зеленого цвета.
Проверка БП компьютера
Проверку Блока питания компьютера проводить просто, достаточно подключить разъем блока к разъему Блока нагрузок и подать штатным шнуром на блок питания 220 В.
Когда выключатель S1 находится в разомкнутом положении, то должен светиться только один светодиод +5 B_SB. Это говорит о том, что схема формирования дежурного напряжения +5 В SB в Блоке питания работает и источник готов к запуску. После включения S1 сразу же должен заработать кулер и засветиться все светодиоды, кроме светодиода VD5, Power Good. Он должен засветиться с задержкой 0,1-0,5 секунд. Это время задержки подачи питающих напряжений на материнскую плату на время переходных процессов в Блоке питания при запуске. Отсутствие задержки может вывести материнскую плату из строя из-за подачи на нее ненормированных напряжений.
Если происходит так, как я описал, то Блок питания исправен. При размыкании S1 все светодиоды должны погаснуть, кроме, VD4 (+5 B SB). Напряжение -5 В в последних моделях Блоков питания компьютеров отсутствует и светодиод может не светиться. В Блоках питания последних моделей может также отсутствовать напряжение -12 В.
Для более детальной проверки Блока питания компьютера, необходимо подсоединить к разъему на лицевой стороне стенда-тестера вольтметр постоянного тока, мультиметр или стрелочный тестер, включенный в режим измерения постоянного напряжения и осциллограф. Устанавливая переключатель на стенде в нужные положения, проверяются все напряжения, а с помощью осциллографа измеряется размах пульсаций. Как видите, практически за минуту с помощью сделанного своими руками нагрузочного стенда, можно проверить любой Блок питания компьютера даже без приборов, не подвергая риску материнскую плату.
Отклонение питающих напряжений от номинальных значений и размах пульсаций не должны превышать значений, приведенных в таблице.
Таблица выходных напряжений и размаха пульсаций БП АТХ | |||||||
---|---|---|---|---|---|---|---|
Выходное напряжение, В | +3,3 | +5,0 | +12,0 | -12,0 | +5,0 SB | +5,0 PG | GND |
Цвет провода | оранжевый | красный | желтый | синий | фиолетовый | серый | черный |
Допустимое отклонение, % | ±5 | ±5 | ±5 | ±10 | ±5 | – | – |
Допустимое минимальное напряжение | +3,14 | +4,75 | +11,40 | -10,80 | +4,75 | +3,00 | – |
Допустимое максимальное напряжение | +3,46 | +5,25 | +12,60 | -13,20 | +5,25 | +6,00 | – |
Размах пульсации не более, мВ | 50 | 50 | 120 | 120 | 120 | 120 | – |
Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.
Читайте также: