Сложи прямоугольник из 4 деталей как сделать
Просто нереально занимательная вещица! Затягивает, увлекает, ломает мозг и заставляет включать воображение.
Мой способ как выставить идеально ровную плоскость без уровня для сварки дверей, ворот, рамок, всего, для чего нужна .
Відеоурок з геометрії для 8 класу загальноосвітньої школи. Задонатити на створення нових відеоуроків: .
Сборка кубик рубик прямоугольной формы три на три.Сборка данного кубика ничем не отливается от схемы сборки кубика .
В этом видео я делаю сборку и проверяю как работает фиксатор In this video I am assembling the jig and check how it works.
Сделайте самостоятельно интересную головоломку из дерева. Прямоугольник из нескольких фрагментов на деревянной .
Прямоугольник из 4-х деталей
IQ PUZZLE
Это первая серия головоломок, которая стимулирует умственную деятельность, развивает зрительную память, логическое и пространственное мышление, воображение и аккуратность.
Идеально подходит для решения одним человеком, а также в компании с друзьями, близкими и коллегами. Она взорвёт вам мозг.
Цель игры: Собрать "Прямоугольник" из 4х деталей, один в один, как изображёно на упаковке. Время решения составляет от 5 минут до нескольких часов!
Сложность 3***
Полимино
В этой статье мы будем рассматривать полимино – фигуры, составленные из одноклеточных квадратов так, что каждый квадрат примыкает хотя бы к одному соседнему, имеющему с ним общую сторону.
Задачи с полимино очень характерны для комбинаторной геометрии – раздела математики, занимающегося вопросами взаимного расположения и комбинирования геометрических фигур. Это очень красивая, но еще почти не разработанная ветвь математики, поскольку общих методов в ней, по-видимому, очень мало, а известные ныне методы настолько примитивны, что не поддаются усовершенствованию. Многие встречающиеся в практике важные инженерные задачи – в первую очередь те, которые связаны в том или ином смысле с оптимальным расположением фигур заданной формы, – по существу относятся к комбинаторной геометрии.
В последующих комбинаторных задачах предполагается, что полимино можно вращать (то есть поворачивать на 90, 180 или 270) и зеркально отражать (переворачивать), не меняя формы самих фигур.
Домино
Тримино
Тетрамино
С тетрамино связано множество задач на составление из них разных фигур. Доказано, что сложить какой-либо прямоугольник из полного набора тетрамино невозможно. Доказательство использует раскраску в шахматном порядке. Все тетрамино, кроме Т-образного, содержат 2 чёрные и 2 белые клетки, а Т-образное тетрамино — 3 клетки одного цвета и 1 клетку другого. Поэтому любая фигура из полного набора тетрамино (см. рис.4) будет содержать клеток одного цвета на две больше, чем другого. Но любой прямоугольник, с чётным количеством клеток, содержит равное число чёрных и белых клеток.
Пентамино
Рис. 5
Полимино, покрывающее пять клеток шахматной доски, называются пентамино. Существует 12 видов пентамино, которые можно обозначить прописными латинскими буквами, как указано на рисунке (см. рис. 5). В качестве приема, позволяющего легко запомнить эти наименования, укажем, что соответствующие буквы составляют конец латинского алфавита (TUVWXYZ) и входят в имя FiLiPiNo. Поскольку всего имеется 12 разных пентамино и каждая из этих фигур покрывает пять клеток, то вместе они покрывают 60 клеток.
Самая распространённая задача о пентамино — сложить из всех фигурок, без перекрытий и зазоров, прямоугольник. Поскольку каждая из 12 фигур включает в себя 5 квадратов, то прямоугольник должен быть площадью 60 единичных квадратов. Возможны прямоугольники 6×10, 5×12, 4×15 и 3×20 (см. рис. 6).
Рис. 6
Для случая 6×10 эту задачу впервые решил в 1965 году Джон Флетчер. Существует ровно 2339 различных укладок пентамино в прямоугольник 6×10, не считая поворотов и отражений целого прямоугольника, но считая повороты и отражения его частей (иногда внутри прямоугольника образуется симметричная комбинация фигур, поворачивая которую можно получить дополнительные решения).
Для прямоугольника 5×12 существует 1010 решений, 4×15 — 368 решений, 3×20 — всего 2 решения (отличающихся вышеописанным поворотом). В частности, существует 16 способов сложить два прямоугольника 5×6, из которых можно составить как прямоугольник 6×10, так и 5×12.
Еще одна интересная задача о пентамино - задача об утроении фигур пентамино (см. рис. 7). Эта задача была предложена профессором Калифорнийского университета Р.М.Робинсоном. Выбрав одну из 12 фигур пентамино, необходимо построить из каких-либо 9 из 11 оставшихся пентамино фигуру, подобную выбранной, но в 3 раза бо́льшей длины и ширины. Решение существует для любого из 12 пентамино, причём не единственное (от 15 решений для Х до 497 для Р). Существует вариант этой задачи, в котором для построения утроенной фигуры разрешается использовать также и саму исходную фигуру. В этом случае число решений от 20 для Х до 9144 для Р-пентамино.
Рис. 7
В этой работе я предлагаю несколько заданий с использованием фигур пентамино, которые можно использовать и для самых первых занятий с этой головоломкой, и для более подготовленных ребят. Они подойдут и для начальной школы, и для учащихся 5-7 классов (в зависимости от уровня обучающихся).
Для работы нам потребуется комплект, состоящий из двенадцати деталей пентамино. Его очень легко сделать самим на уроке или дома. На листе в клетку нужно нарисовать фигуры так, чтобы каждая состояла из пяти квадратов со стороной 1см. Затем следует приклеить лист в клетку на картон и вырезать по контуру получившиеся фигурки. При желании их можно раскрасить цветными карандашами или фломастерами. Пентамино готово.
Начинается презентация с самых простых заданий. Нужно из всех двенадцати фигурок пентамино отложить только те, из которых собирается данная картинка. Фигурки в презентации появляются по щелчку по одной, чтобы было удобно их находить.
На следующем слайде представлена картинка, которую нужно собрать. А на третьем слайде предложен вариант ответа. Таких задач в презентации четыре, но их количество всегда можно увеличить по мере необходимости.
В задаче №6 ребята должны не только собрать данные картинки, но и попытаться объяснить, почему может быть представлено только единственное решение этих задач.
Начиная с задачи №9, решений становится гораздо больше. Найти все решения на уроке не получится. Эти задачи можно предложить как вариант домашнего задания или предложить найти решения, разбив класс на группы.
Очень интересный результат можно получить, предложив ребятам самим придумать различные картинки, составленные из фигур пентамино. Если это начальные классы, то нужно оговорить, что можно использовать не все фигуры сразу. В более старших классах учащиеся могут использовать весь комплект. Здесь следует напомнить, что каждая фигурка встречается ровно однажды и нельзя использовать какие-то детали более одного раза.
Но мы сейчас рассмотрим только одну из них - "Танграм".
Появление этой китайской головоломки связано с красивой легендой. Почти две с половиной тысячи лет тому назад у немолодого императора Китая родился долгожданный сын и наследник. Шли годы. Мальчик рос здоровым и сообразительным не по летам. Одно беспокоило старого императора Мальчику доставляло большое удовольствие целый день забавляться игрушками. Император призвал к себе трех мудрецов, один из которых был известен как математик, другой прославился как художник, а третий был знаменитым философом, и повелел им придумать игру, забавляясь которой, его сын постиг бы начала математики, научился смотреть на окружающий мир пристальными глазами художника, стал бы терпеливым, как истинный философ, и понял бы, что зачастую сложные вещи состоят из простых вещей. Три мудреца придумали "Ши-Чао-Тю" - квадрат, разрезаннный на семь частей.
Суть игры заключается в том, чтобы на плоскости из семи частей квадрата создавать самые разнообразные фигуры, силуэты предметов по образцу или замыслу. В коммерческих наборах обычно прилагаются карточки с заданиями.
1 вариант: Самый простой. Если ребенок маленький предложите ему составить фигуру путём наложения элементов на образец разделенными на составные части.
2 вариант: Если с первым разобрались ,то можно составлять фигуры по примеру, то есть картинка перед вами а элементы составляете уже смотря на фигуры разделённую на части.
3 вариант: Для детей постарше, можно оставлять в фигуре только контуры.
4 вариант: Собственно творческие задания - самому придумать и сложить фигуру.
Малыши тоже могут приобщаться к головоломке. Для них можно придумать совсем простенькие задания. Например, сложить из двух треугольников или из двух прямоугольников - квадратики, из треугольников - большой треугольник или параллелограмм. Таким методом можно изучить основные геометрические фигуры.
Сделать танграм можно самому. Это очень просто. Вам понадобятся шаблон головоломки. Распечатайте Танграм или нарисуйте сами по образцу. Можно использовать разноцветные элементы, если ребёнок маленький - заодно вспомните цвета, да и интереснее работать - играть с красочным
материалом.
При решении головоломки требуется соблюдать два правила: первое — необходимо использовать все семь фигур танграма, и второе — фигуры не должны перекрываться друг другом. Взяв на вооружение математическую науку – комбинаторику, было получено более 5000 возможных вариантов сложенных фигурок.
Читайте также: