Синхрофазотрон своими руками
Что такое синхротрон сила и зачем он нужен
Сама установка будет реализована в подмосковном научном городке Протвино непосредственно на базе Института физики высоких энергий имени А. А. Логунова (включен в состав Курчатовского института).
Это очень позитивная новость, так как она говорит о том, что отечественная наука развивается и на территории Российской Федерации появляются уникальные объекты, аналогов которым просто нет в мире.
Будем пристально наблюдать за реализацией этого, безусловно, важного для науки проекта. Ну а если вам понравился материал, то не забудьте его оценить, а также подписаться на канал. Спасибо за уделенное внимание!
Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.
Темы исследований
Оформление работы
Наш баннер
Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.
Код баннера:
Исследовательские работы и проекты
Применение магнитного поля в науке, технике и медицине
В исследовательском проекте по физике на тему "Применение магнитного поля в науке, технике и медицине" учащийся дает определение понятия "магнитное поле", изучает способы его образования и узнает о практическом применении магнитного поля в науке. В работе рассматривается понятие "Сила Ампера" и роль магнитного поля в создании техники.
Подробнее о работе:
В данной исследовательской работе по физике на тему "Применение магнитного поля в науке, технике и медицине" ученик 11 класса рассматривает теоретическую базу о магнитном поле, рассказывает историю его открытия и изучения, выясняет, какие силы действуют в магнитном поле. В своем проекте учащийся систематизировал материал о применении магнитного поля в практической жизни и науке, полученный из различных источников.
Автор в своем индивидуальном исследовательском проекте по физике о возможностях магнитного поля привел основные сведения, связанные с открытием данного явления и его использованием. Школьник рассказала о таких методах использования магнитного поля в медицине, как постоянная магнитотерапия, импульсная магнитотерапия, низкочастотная магнитотерапия и магнитно-резонансная томография.
Оглавление
Введение
1. Историческая справка.
2. Понятие о магнитном поле.
3. Применение магнитного поля.
4. Сила Ампера.
4.1. Амперметр.
4.2. Электродвигатель.
4.3. Электромагнит.
4.4. Маглев.
4.5. Телеграф.
4.6. Пушка Гаусса.
4.7. Динамик.
4.8. Сила Лоренца.
4.9. Кинескоп
4.10. Масс-спектограф.
4.11. Циклотрон.
4.12. Синхрофазотрон.
4.13. Магнетрон.
4.14. Магнитное поле в медицине.
4.15. Постоянная магнитотерапия.
4.16. Импульсная магнитотерапия.
4.17. Низкочастотная магнитотерапия.
4.18. Магнитно-резонансная томография.
Заключение
Источники информации.
Введение
Открытие магнитного поля – одно из самых важных научных открытий в истории человечества. Без него было бы трудно представить нашу современную жизнь: не было бы изобретено множество приборов, не были бы получены важнейшие технологии.
Данная исследовательская работа (проект) посвящается изучению применения магнитного поля в различных сферах деятельности человека.
Цель: узнать о практическом применении магнитного поля в науке, технике, медицине.
- Провести анализ литературы по данной теме;
- Изучить возникновение и действие магнитного поля;
- Выяснить, какие силы действуют в магнитном поле;
- Систематизировать материал, полученный из различных источников о применении магнитного поля в практической жизни.
Историческая справка
История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками".
И ещё 2600 лет до н.э. китайский император Хванг Ти вёл своё войско в густом тумане с помощью магнитной фигурки, что, поворачиваясь вокруг своей оси, всегда смотрела на юг. Это, как можно догадаться, и был своего рода прототип первого компаса. Уже со второго века н.э. в Китае изготавливались постоянные магниты, надолго сохраняющие магнитные свойства. А в 13 веке о магнитах и компасе узнали в Европе.
Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.
В 1820 г. датский физик Ханс Кристиан Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле.
Его опыт имел большое значения для развития учения об электромагнитных явлениях.
А узнав о работе Эрстеда, французский физик Андре Мари Ампер исследовал взаимодействие параллельных проводников с током. Он установил, что при наличии в проводниках разнонаправленных токов – проводники отталкиваются друг от друга. А если токи имеют одинаковое направление, то проводники будут притягиваться.
Это были два самых известных опыта в истории изучения магнитного поля, которые подтолкнули других учёных делать всё новые и новые исследования в этой области.
Понятие о магнитном поле
Магнитное поле - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.
Свойства магнитного поля:
- магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами;
- магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током;
- магнитное поле является вихревым, т.е. его силовые линии (линии магнитной индукции) замкнутые.
Теперь скажу о двух силах, действующих в магнитном поле:
1. Сила Ампера
Силой Ампера называется сила, которая действует на проводник с током, находящийся в магнитном поле.
Существует и специальный закон об этой силе, называемый законом Ампера: на проводник c током силой I и длиной l, помещенный в магнитное поле с индукцией B⃗ , действует сила, модуль которой равен (произведению силы тока на вектор магнитной индукции и на синус альфа):
где α – угол между проводником с током и вектором магнитной индукции B⃗ .
Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции B⊥ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.
2. Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
F = q* B * V * siin a,
где q – заряд частицы, v – скорость частицы, B – модуль вектора магнитной индукции, α – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции B⊥ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Силы Ампера и Лоренца широко применяются в науке и технике. Сейчас мы это рассмотрим.
Применение магнитного поля. Сила Ампера
Амперметр
Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля.
Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.
M – момент сил, разворачивающих виток с током.
Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре.
Электродвигатель
После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.
Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока, то при замыкании цепи рамка с током начнет вращение.
В 1957 году СССР осуществил научный и технический прорыв в нескольких областях: произвел успешный запуск искусственного спутника Земли, а за несколько месяцев до данного события в Дубне начал работать синхрофазотрон. Что это такое и для чего нужна подобная установка? Этот вопрос волновал не только граждан СССР в то время, но и весь мир. Разумеется, в научном кругу понимали, что это такое, но обычные граждане приходили в недоумение, когда слышали это слово. Даже сегодня большинство людей не понимают сути и принципа синхрофазотрона, хотя не раз слышали это слово. Давайте разберемся, что это за устройство и для чего применялось.
Для чего нужен синхрофазотрон?
Разрабатывали эту установку для изучения микромира и познания структуры элементарных частиц, законов их взаимодействия друг с другом. Сам способ познания был чрезвычайно прост: поломать частицу и посмотреть, что находится внутри. Однако как можно поломать протон? Для этого и был создан синхрофазотрон, который разгоняет частицы и ударяет их о мишень. Последняя может быть неподвижной, а в современном Большом адронном коллайдере (он является усовершенствованной версией старого доброго синхрофазотрона) мишень является подвижной. Там пучки протонов с огромной скоростью движутся друг к другу и ударяются.
Считалось, что эта установка позволит осуществить научный прорыв, открыть новые элементы и способы получения атомной энергии из дешевых источников, которые превосходили бы по эффективности обогащенный уран и являлись бы более безопасными и менее вредными для окружающей среды.
Военные цели
Конечно, военные цели также преследовались. Создание атомной энергии в мирных целях – это лишь оправдание для наивных. Не зря проект синхрофазотрона вышел с грифом "Совершенно секретно", ведь строительство этого ускорителя осуществлялось в рамках проекта создания новой атомной бомбы. С его помощью хотели получить усовершенствованную теорию ядерных сил, которая необходима для расчета и создания бомбы. Правда, оказалось все гораздо сложнее, и даже сегодня эта теория отсутствует.
Что такое синхрофазотрон простыми словами?
Если обобщить, то данная установка представляет собой ускоритель элементарных частиц, протонов в частности. Синхрофазотрон состоит из немагнитной закольцованной трубы с вакуумом внутри, а также мощных электромагнитов. Поочередно магниты включаются, направляя заряженные частицы внутри вакуумной трубы. Когда они с помощью ускорителей достигают максимальной скорости, их направляют в специальную мишень. Протоны в нее ударяются, разбивают саму мишень и разбиваются при этом сами. Осколки разлетаются в разные стороны и оставляют следы в пузырьковой камере. По этим следам группа ученых анализирует их природу.
Так было ранее, однако в современных установках (типа Большого адронного коллайдера) применяются более современные детекторы вместо пузырьковой камеры, которые дают больше информации об осколках протонов.
Сама по себе установка является достаточно сложной и высокотехнологичной. Можно сказать, что синхрофазотрон – это "дальний родственник" современного Большого адронного коллайдера. По сути, его можно назвать аналогом микроскопа. Оба эти прибора предназначаются для изучения микромира, вот только принцип изучения разный.
Подробнее об устройстве
Итак, мы уже знаем, что такое синхрофазотрон, а также то, что здесь частицы разгоняются до огромных скоростей. Как оказалось, для разгона протонов до огромной скорости необходимо создать разность потенциалов в сотни миллиардов вольт. К сожалению, сделать такое человечеству не под силу, поэтому частицы придумали разгонять постепенно.
В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию.
В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.
Разгон частиц
Подобный промежуток ускорения представляет собой конденсатор, на который подается напряжение с высокой частотой. Кстати, это основа всей работы данной установки. Пучок протонов влетает в данный конденсатор в момент, когда напряжение в нем равно нулю. По мере того как частицы пролетают по конденсатору, напряжение успевает возрасти, что подгоняет частицы. На следующем кругу это повторяется, так как частота переменного напряжения специально подбирается равной частоте обращения частицы по кольцу. Следовательно, синхронно и в фазе осуществляется ускорение протонов. Отсюда и название – синхрофазотрон.
Кстати, при таком способе ускорения есть определенный полезный эффект. Если вдруг пучок протонов летит быстрее необходимой скорости, то он влетает в разгонный промежуток при отрицательном значении напряжения, из-за чего немного притормаживает. Если скорость движения меньшая, то эффект будет обратным: частица получает ускорение и догоняет основной сгусток протонов. В результате плотный и компактный пучок частиц движется с одной скоростью.
Проблемы
В идеале частицы необходимо разогнать до максимально возможной скорости. И если протоны на каждом круге движутся быстрее и быстрее, то почему нельзя их разогнать до максимально возможной скорости? Причин несколько.
Во-первых, рост энергии предполагает увеличение массы частиц. К сожалению, релятивистские законы не позволяют ни один элемент разогнать выше скорости света. В синхрофазотроне скорость протонов практически достигает скорости движения света, что сильно увеличивает их массу. В результате их становится трудно удерживать на круговой орбите радиуса. Еще со школы известно, что радиус движения частиц в магнитном поле обратно пропорционален массе и прямо пропорционален величине поля. И так как масса частиц растет, то радиус необходимо увеличивать и делать магнитное поле сильнее. Эти условия и создают ограничения в реализации условий для исследования, так как технологии даже сегодня ограничены. Пока что не удается создать поле с индукцией выше нескольких тесла. Поэтому и делают туннели большой длины, ведь при большом радиусе тяжелые частицы на огромной скорости удается удерживать в магнитном поле.
Вторая проблема – движение с ускорением по окружности. Известно, что заряд, который движется с определенной скоростью, излучает энергию, то есть теряет ее. Следовательно, частицы при ускорении постоянно теряют часть энергии, и чем выше их скорость, тем больше энергии они расходуют. В какой-то момент наступает равновесие между получаемой энергией на участке разгона и потерей этого же количества энергии за один оборот.
Исследования, проводимые на синхрофазотроне
Теперь мы понимаем, какой принцип лежит в основе работы синхрофазотрона. Он позволил провести ряд исследований и совершить открытия. В частности ученые смогли изучить свойства ускоренных дейтронов, поведение квантовой структуры ядер, взаимодействие тяжелых ионов с мишенями, а также разработать технологию утилизации урана-238.
Применение результатов, полученных в ходе испытаний
Полученные по этим направлениям результаты применяются на сегодняшний день в строительстве космических кораблей, проектировании атомных электростанций, а также при разработке специального оборудования и робототехники. Из всего этого следует, что синхрофазотрон – такое устройство, вклад в науку которого переоценить сложно.
Заключение
В течение 50 лет подобные установки служат на благо науки и активно применяются учеными всей планеты. Ранее созданный синхрофазотрон и подобные ему установки (они создавались не только в СССР) являются всего лишь одним звеном в цепочке эволюции. Сегодня появляются более совершенные устройства – нуклотроны, обладающие огромной энергией.
Одним из самых совершенных среди подобных устройств является Большой адронный коллайдер. В отличие от действия синхрофазотрона, он встречными курсами сталкивает два пучка частиц, в результате чего выделяемая от столкновения энергия во много раз превышает энергию на синхрофазотроне. Это открывает возможности для более точного изучения элементарных частиц.
Пожалуй, теперь вы должны понимать, что такое синхрофазотрон и для чего он вообще нужен. Эта установка позволила сделать целый ряд открытий. Сегодня из него сделали ускоритель электронов, и на данный момент он работает в ФИАНе.
Весь мир знает, что в 1957 году СССР запустил первый в мире искусственный спутник Земли. Однако, мало кто знает, что в этом же году Советский Союз начал испытания синхрофазотрона, который является прародителем современного Большого Адронного Коллайдера в Женеве. В статье пойдет речь о том, что такое синхрофазотрон, и как он работает.
Синхрофазотрон простыми словами
Для чего нужно было строить синхрофазотрон СССР? В этом научном эксперименте, который проходил под категорией "совершенно секретно", советские ученые пытались найти новый источник более дешевой и более эффективной энергии, чем обогащенный уран. Также преследовались и чисто научные цели более глубокого изучения природы ядерных взаимодействий и мира субатомных частиц.
Принцип работы синхрофазотрона
Приведенное выше описание задач, которые стояли перед синхрофазотроном, может многим показаться не слишком сложным для их реализации на практике, но это не так. Несмотря на всю простоту вопроса, что такое синхрофазотрон, чтобы ускорить протоны до необходимых огромных скоростей, нужны электрические напряжения в сотни млрд вольт. Такие напряжения невозможно создать даже в настоящее время. Поэтому было решено распределить во времени вкачиваемую в протоны энергию.
Принцип работы синхрофазотрона заключался в следующем: пучок протонов начинает свое движение по кольцеобразному туннелю, в некотором месте этого туннеля стоят конденсаторы, которые создают скачек напряжения в тот момент, когда пучок протонов пролетает через них. Таким образом, на каждом витке происходит небольшое ускорение протонов. После того, как пучок частиц совершит несколько миллионов оборотов по туннелю синхрофазотрона, протоны достигнут желаемых скоростей, и будут направлены на мишень.
Стоит отметить, что используемые во время ускорения протонов электромагниты выполняли направляющую роль, то есть они определяли траекторию пучка, но не участвовали в его ускорении.
Проблемы, с которыми столкнулись ученые при проведении экспериментов
Чтобы лучше понять, что такое синхрофазотрон, и почему его создание является очень сложным и наукоемким процессом, следует рассмотреть проблемы, возникающие в процессе его работы.
Во-первых, чем больше скорость пучка протонов, тем большей массой они начинают обладать согласно знаменитому закону Эйнштейна. При скоростях близких к световым масса частиц становится настолько большой, что для их удержания на нужной траектории, необходимо иметь мощные электромагниты. Чем больше размер синхрофазотрона, тем большие магниты можно поставить.
Во-вторых, создание синхрофазотрона осложнялось еще и потерями энергии пучком протонов во время их кругового ускорения, причем, чем больше скорость пучка, тем более значительными становятся эти потери. Получается, что для разгона пучка до необходимых гигантских скоростей, необходимо иметь огромные мощности.
Какие результаты удалось получить?
Несомненно, эксперименты на советском синхрофазотроне внесли огромный вклад в развитие современных областей техники. Так, благодаря этим экспериментам ученые СССР смогли улучшить процесс переработки использованного урана-238 и получили некоторые интересные данные, сталкивая ускоренные ионы разных атомов с мишенью.
Результаты экспериментов на синхрофазотроне используются и по сей день в строительстве атомных электростанций, космических ракет и робототехники. Достижения советской научной мысли были использованы при строительстве самого мощного синхрофазотрона современности, которым является Большой Адронный Коллайдер. Сам же советский ускоритель служит науке РФ, находясь в институте ФИАН (Москва), где используется в качестве ускорителя ионов.
Все материалы добавляются пользователями. При копировании необходимо указывать ссылку на источник.
Читайте также: