Схемы на тл431 своими руками
Интегральный стабилизатор TL431 и его российский аналог К142ЕН19, является регулируемым стабилитроном, и применяется в основном в блоках питания. Но возможности микросхемы этим не ограничиваются.
На рис. 1 показана функциональная схема TL431.
Регулируемый стабилитрон на микросхеме TL431 может найти применение в схемах простых и полезных световых индикаторах и сигнализаторах. С помощью подобных устройств на микросхеме TL431 можно отслеживать много различных параметров, например: уровень воды в емкости, температуру и влажность, освещённость и др.
Схема сигнализатора превышения напряжения на микросхеме TL431 представлена на рис. 2.
Работа сигнализатора превышения напряжения основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, порядка 0,3 – 0,4 мА. Этого тока достаточно только для очень слабого свечения светодиода HL1. Для устранения этого недостатка, при необходимости, параллельно светодиоду подключить резистор сопротивлением порядка 2—3 кОм.
Напряжение на управляющем электроде, при котором загорается светодиод HL1, задается делителем R1, R2.
При достижении напряжения на выводе 1 микросхемы TL431 более 2,5 В, стабилитрон откроется и засветится светодиод HL1. Необходимое ограничение тока через светодиод HL1 и стабилитрон DA1 обеспечивает резистор R3. Сопротивление резистора R3 рассчитывается на прямой ток через светодиод в пределах 5 – 15 мА.
Для более точной настройки порога срабатывания устройства, вместо резистора R2 установить подстроечный, номиналом в полтора раза больше, расчётного. По окончании настойки, его можно заменить постоянным резистором.
Если требуется контролировать несколько уровней напряжения, например напряжение автомобильного аккумулятора, или других источников, напряжением от 4 до 36 В (36 В – предельное напряжение). В этом случае потребуются два, три или более таких сигнализаторов, каждый из которых настроен на свое напряжение. Таким способом можно создать целую линейку индикаторов линейной шкалы.
Индикатор пониженного напряжения на микросхеме TL431 показан на рис. 3.
Отличие схемы на рис. 3 от предыдущей на рис. 2, только в способе подключения светодиода HL1. Такое включение называется инверсным, т. к. светодиод зажигается в том случае, когда микросхема закрыта. Если контролируемое напряжение превышает порог, установленный делителем R1 R2, микросхема открыта, и ток протекает через резистор R3 и выводы 3-2 (катод-анод) микросхемы.
На открытом переходе 3-2 микросхемы присутствует падение напряжения порядка 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода VD1, VD2. Если напряжение зажигания светодиодов превышает 2,2 В, то установка этих диодов может не понадобиться, а вместо диодов VD1, VD2 устанавливаются перемычки.
Когда контролируемое напряжение станет меньше установленного делителем R1, R2, микросхема закроется, напряжение на ее выходе будет намного больше 2 В, светодиод HL1 будет светиться.
Объединив схемы на рис. 2 и рис. 3 можно настроить индикацию предельных режимов работы любых аккумуляторов напряжением 6, 12 или 24 вольта, или других источников постоянного напряжения.
Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рис. 4.
В этом схеме индикатора применен двухцветный светодиод HL1. Если контролируемое напряжение, заданное резистором R2 превышает пороговое значение - светится красный светодиод, а если напряжение понижено, то горит зеленый.
Когда контролируемое напряжение находится вблизи заданного порога (примерно ±0,05 - 0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет определенную крутизну.
На микросхеме TL431 возможно создать устройства, следящие за изменением какой-либо физической величины.
Для этого резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рис. 5.
Условно на одной схеме показано сразу несколько датчиков. Если подключить фототранзистор, то получится фотореле. Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит. Настройка порога срабатывания устройства производится в этом случае резистором R1, а конденсатор С1, совместно с резистором R3, служит фильтром для защиты от наводок на провода, соединяющие датчик с остальной схемой.
По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.
Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.
Эту же схему можно применить в качестве датчика влажности, например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.
Если в схеме на рис. 5 вместо цепочки со светодиодом HL1 и резистором R3 включить реле, то его контактами можно управлять мощными нагрузками, например: лампы уличного освещения, электронасосы и т.д.
На микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора представлена на рис. 6.
Для контроля уровня жидкости, например, воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.
Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.
В качестве излучателя можно применить излучатель с тремя выводами типа ЗП-З, или другой из дешёвых телефонных аппаратов китайского производства. Питание устройства производится от напряжения 5 - 12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.
Примечание:
При замене микросхемы TL431 на К142ЕН19 питающее напряжение не должно быть больше 30 вольт.
Фото кристалла интересной, но малоизвестной, микросхемы TL431, используемой в блоках питания, даёт возможность разобраться в том, как аналоговые схемы реализуются в кремнии. Несмотря на то, что схема на фото выглядит как какой-то лабиринт, сама микросхема относительно проста, и может быть исследована без большого труда. В своей статье я попытаюсь объяснить каким образом транзисторы, резисторы и другие радиодетали запакованы в кремний для выполнения своих функций.
Блок-схема TL431, взятая из даташита.
У TL431 длинная история: он был выпущен еще в 1978 [2] году и с тех пор побывал во множестве устройств. Он помогал стабилизировать напряжение в блоке питания для Apple II, а сейчас используется в большинстве ATX блоков питания [3] и даже в зарядных устройствах для iPhone и прочих девайсов. И MagSafe-коннекторы, и адаптеры для ноутбуков, и микрокомпьютеры, LED драйверы, блоки питания для аудиотехники, видеоприставки, телевизоры [4]. Во всей этой электронике присутствует TL431.
Фотографии ниже показывают TL431 внутри шести различных БП. TL431 выпускается самых разных форм и размеров. Два наиболее популярных форм-фактора показаны ниже. [5] Возможно, причина того, что TL431 не привлекает особого внимания, заключается в том, что он больше похож на обычный транзистор чем на микросхему.
Шесть примеров схем БП, использующих TL431. Верхний ряд: дешёвый 5-вольтовый БП, дешёвое ЗУ для телефона, ЗУ для Apple iPhone (на фото можно еще заметить GB9-вариацию). Нижний ряд: MagSafe адаптер, ЗУ KMS USB, Dell ATX БП (на переднем плане — оптопары)
Как же радиоэлектронные компоненты выглядят в кремнии?
TL431 очень простая микросхема, и вполне возможно понять её логику на кремниевом уровне пристальным изучением фото. Я покажу, каким же образом транзисторы, резисторы, перемычки и конденсаторы реализованы. А затем уже проведу полный реверс-инжиниринг данной микросхемы.
Реализация транзисторов различных типов
Микросхема использует как n-p-n, так и p-n-p биполярные транзисторы (в отличие от микросхем навроде 6502, в которых использовались MOSFET). Если вы изучали электронику в школе или в университете, вы возможно видели схему n-p-n транзистора (вроде той, что ниже), на которой показаны коллектор (обозначен как C), база (B) и эмиттер (E). Транзистор изображен в виде своеобразного бутерброда с P-слоем между двумя N-слоями, такое расположение слоёв характеризует транзистор как n-p-n. Однако, выясняется, что в микросхеме нет совершенно ничего схожего с этой схемой. Даже база находится не в центре!
Символьное обозначение и структура n-p-n транзистора.
На фотографии ниже можно рассмотреть один из транзисторов TL431. Цветовые различия в розовых и фиолетовых регионах вызваны разным легированием кремния, для формирования N и P областей. Светло-желтые области — металлический слой микросхемы, располагающийся поверх кремниевого. Такие области нужны для обеспечения возможности подключения проводников к коллектору, эмиттеру и базе.
В нижней части фотографии нарисовано поперечное сечение, примерно изображающее как конструируется транзистор. [6] Можно заметить, что на нём куда больше деталей, чем в n-p-n бутерброде из книг, Однако, если внимательно присмотреться, то в поперечном сечении под эмиттером (E) можно найти то самое n-p-n, которое формирует транзистор. Проводник эмиттера соединяется с N+ кремнием. Под ним располагается P-слой, подключенный к контакту базы. Еще ниже — слой N+, соединенный с коллектором (не напрямую). [7] Транзистор заключен в P+ кольцо для изоляции от соседних компонентов. Так как большинство транзисторов в TL431 принадлежат к n-p-n типу, то, после того как разобрались в первый раз, их очень просто находить на фотографии и определять нужные контакты.
n-p-n транзистор из фотографии кристалла TL431, и его структура в кремнии.
Выходной n-p-n транзистор намного больше остальных, так как ему необходимо выдерживать полную нагрузку по току. Большинство транзисторов работает с микроамперами, а этот выходной транзистор поддерживает ток до 100 миллиампер. Для работы с такими токами он и сделан более крупным (занимает 6% всего кристалла), и имеет широкие металлические коннекторы на эмиттере и коллекторе.
Транзисторы p-n-p типа имеют совершенно другое строение. Они состоят из округлого эмиттера (P), окруженного кольцом базы (N), которую, в свою очередь, обступает коллектор (P). Таким образом, получается горизонтальный бутерброд, вместо обычной вертикальной структуры n-p-n транзисторов. [8]
Схема снизу показывает один из таких p-n-p транзисторов, а поперечное сечение изображает кремниевую структуру. Стоит отметить то, что хотя металлический контакт для базы находится в углу транзистора, он электрически соединен через N и N+ области с активным кольцом, пролегающим между коллектором и эмиттером.
Структура p-n-p транзистора.
Реализация резисторов в микросхеме
Резисторы являются ключевым компонентом почти в любой аналоговой схеме. Они реализованы как длинная полоса легированного кремния. (Похоже, что в этой микросхеме использовался кремний P-типа). Различные сопротивления достигаются использованием различной площади материала — сопротивление пропорционально площади.
Снизу заметно три резистора — их формируют три длинных горизонтальных полоски кремния. Желтоватые металлические проводники проходят через них. Места соединения металлического слоя и резистора выглядят как квадраты. Расположение этих контактов и задаёт длину резистора и, соответственно, его сопротивление. К примеру, сопротивление нижнего резистора немного больше остальных потому, что контакты расположены на большем расстоянии. Верхние два резистора объединены в пару металлическим слоем сверху слева.
Резисторы.
Резисторы в микросхемах имеют очень плохой допуск — сопротивление может различаться на 20% между микросхемами из-за вариаций в производственном процессе. Очевидно, что это серьезная проблема для таких точных микросхем, как TL431. Поэтому TL431 спроектирован таким образом, что важной характеристикой является не конкретное сопротивление, а отношение сопротивлений. Конкретные значения сопротивлений не сильно важны, если сопротивления меняются в одной пропорции. Вторым методом уменьшения зависимости от эффекта изменчивости является сама топология микросхемы. Резисторы располагаются на параллельных дорожках одинаковой ширины для снижения эффекта от любой асимметрии в сопротивлении кремния. Кроме того, они размещены рядом друг с другом для минимизации отклонений в свойствах кремния между разными частями микросхемы. Помимо всего этого, в следующей главе я расскажу о том, как перед корпусированием кристалла можно настроить сопротивления для регулирования производительности микросхемы.
Кремниевые перемычки для настройки сопротивлений
Вот чего я не ожидал в TL431, так это перемычек для подстройки сопротивлений. Во время производства микросхем эти перемычки могут быть удалены для того, чтобы отрегулировать сопротивления и повысить точность микросхемы. На некоторых более дорогих микросхемах есть сопротивления, которые могут быть удалены лазером, просто выжигающим часть резистора перед корпусированием. Точность настройки таким методом куда выше чем у перемычек.
Цепь с перемычкой показана на фото снизу. Она содержит параллельных два резистора (на фото они выглядят как один элемент) и перемычку. В обычном состоянии, эта перемычка шунтирует резисторы. При изготовлении микросхемы, её характеристики могут быть замерены, и если требуется большее сопротивление, то два щупа подсоединяются к площадкам и подаётся высокий ток. Этот процесс сжигает перемычку, добавляя немного сопротивления цепи. Таким образом, сопротивление всей схемы может быть немного подкорректировано для улучшения характеристик микросхемы.
Перемычка для настройки сопротивления
Конденсаторы
TL431 содержит всего два внутренних конденсатора, но они выполнены в двух совершенно разных манерах.
Конденсатор, образованный p-n переходом. Вендорная строка написана с помощью металла, нанесенного поверх кремния.
Второй конденсатор сконструирован совершенно другим методом, и больше похож на обычный конденсатор с двумя пластинами. Даже не на что поглядеть — он состоит из большой металлической пластины с подложкой из N+ кремния в качестве второй пластины. Для того чтобы уместиться рядом с другими частями цепи, он имеет неправильную форму. Данный конденсатор занимает около 14% площади кристалла, иллюстрируя то, что конденсаторы в микросхемах очень неэффективно используют пространство. В даташите упоминается, что оба конденсатора по 20 пикоФарад, но я не знаю насколько этому можно верить.
Конденсатор.
Реверс-инжиниринг TL431
Чертеж TL431
Как работает микросхема?
Наиболее интересная часть микросхемы это источник опорного напряжения, равного ширине запрещённой зоны. [10]. Ключевые элементы видны на фото кристалла: область эмиттера транзистора Q5 в 8 раз больше чем у Q4, поэтому два транзистора по-разному реагируют на температуру. Выходные сигналы с транзисторов объединяются через резисторы R2, R3, R4 в нужной пропорции для компенсации температурных эффектов, и формируют стабильный опорный сигнал. [11] [12]
Напряжения из стабилизированного по температуре бандгапа посылаются в компаратор, входом которого являются Q6 и Q1, а Q8 и Q9 управляют им. Наконец, выход компаратара проходит через Q10 для управления выходным транзистором Q11.
Получение фотографии кристалла микросхемы обычно требует её растворения в опасных кислотах, и фотографирование самого кристалла с помощью дорогого металлографического микроскопа. (Zeptobars описывал этот процесс здесь). Мне было интересно что получится, если я просто разломаю TL431 зажимными щипцами и взгляну на него в дешёвый микроскоп. В процессе я переломил кристалл пополам, но всё равно получил интересные результаты. На изображении виден большой медный анод внутри корпуса, который еще работает и как радиатор. Рядом с ним кристалл (по крайней мере, большая его часть), который был установлен на аноде внутри белого круга. Заметили, насколько сам кристалл меньше своего корпуса?
Корпус TL431, внутренний анод и большая часть от кристалла.
Используя простой микроскоп, я получил фото снизу. Несмотря на то, что, очевидно, я не получил такого же качественного снимка как у Zeptobars, структура микросхемы видна значительно лучше чем я ожидал. Данный эксперимент показывает, что вы можете проводить снятие корпуса микросхем и фотографирование кристалла даже не касаясь разных опасных кислот. Сравнивая свой снимок дешевого TL431, заказанного на eBay, с TL431, сфотографированного Zeptobars, вижу их идентичность. Так как его микросхема не совпадает с опубликованными чертежами, то я гадаю, не прекратили ли они в определенный момент производство того странного варианта микросхемы. Но думаю, что это предположение неверно.
Кусок кристалла, сфотографированный через микроскоп.
Заключение
На самом ли деле TL431 наиболее распространенная микросхема о которой не слышали люди? Нет надежного способа проверить, но я думаю что это хороший кандидат. Похоже, никто не публиковал данные, в которых другая микросхема была бы произведена в больших количествах. Некоторые источники утверждают что таймер 555 является наиболее распространенной микросхемой с миллиардными тиражами каждый год (не очень мне верится в такое большое число). Но TL431 точно располагается достаточно высоко в списке по распространенности. Вы, скорее всего, имеете TL431 в каком-то устройстве на расстоянии вытянутой руки прямо сейчас (ЗУ для телефона, адаптер питания для ноутбука, блок питания PC или монитора). Разница между 555 или 741 и TL431 в том, что эти микросхемы настолько широко известны, что уже стали чуть ли не частью поп-культуры — книги, майки и даже кружки. Но если вы не работаете с блоками питания, достаточно высоки шансы, что вы никогда и не слышали о TL431. Таким образом, я отдаю свой голос TL431 в такой странной номинации. Если у вас есть какие-то другие варианты микросхем, которые незаслуженно обошли вниманием, оставляйте комментарии.
Признательности
Снимки кристалла сделаны Zeptobars (за исключением моего). Чертёж и анализ основываются на работе Cristophe Basso [12] Кроме того, я значительно улучшил свой анализ с помощью дискуссий с Михаилом из Zeptobars и Visual 6502 group, в частности B. Engl.
Рис. 1 TL431.
TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.
Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, "даташиту" (кстати, аналогами этой микросхемы являются - КА431, и наши микросхемы КР142ЕН19А, К1156ЕР5х).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?
Рис. 2 Устройство TL431.
Оказывается всё очень просто. Внутри находится обычный операционный усилитель ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения.
Только здесь эта схема играет немного другую роль, а именно - роль стабилитрона. Ещё его называют "Управляемый стабилитрон".
Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, ОУ имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе ОУ, коллектор (К) и эмиттер (А), которого объединены с выводами питания усилителя и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.
Рис. 3 Цоколёвка TL431.
Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы имеется встроенный источник опорного напряжения - 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 - напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит для того, чтобы открылся выходной транзистор, необходимо на вход (R) операционного усилителя, подать напряжение - чуть превышающее опорное 2,5 вольт, (приставку "чуть" можно опустить, так как разница составляет несколько милливольт и в дальнейшем будем считать, что на вход нужно подать напряжение равное опорному), тогда на выходе операционного усилителя появится напряжение и выходной транзистор откроется.
Если сказать по простому, TL431 - это что то типа полевого транзистора (или просто транзистора), который открывается при напряжении 2,5 вольта (и более), подаваемого на его вход. Порог открытия-закрытия выходного транзистора здесь очень стабильный из-за наличия встроенного стабильного источника опорного напряжения.
Рис. 4 Схема на TL431.
Из схемы (рис. 4) видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
Так как резисторы делителя одинаковые (напряжение источника питания делится пополам ), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении источника питания 5 вольт и более ( 5/2=2,5). На вход R в этом случае с делителя R2-R3 будет подаваться 2,5 вольт.
То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания - 5 вольт и более. Потухнет соответственно при напряжении источника менее 5-ти вольт.
Если увеличить сопротивление резистора R3 в плече делителя, то необходимо будет увеличить и напряжение источника питания больше 5 вольт, для того, что-бы напряжение на входе R микросхемы, подаваемое с делителя R2-R3 опять достигло 2,5 вольт и открылся выходной транзистор ТЛ-ки.
Получается, что если данный делитель напряжения (R2-R3) подключить на выход БП, а катод ТЛ-ки к базе или затвору регулирующего транзистора БП, то изменением плеч делителя, например изменяя величину R3 - можно будет изменять выходное напряжение данного БП, потому что при этом будет изменяться и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) - то есть мы получим управляемый стабилитрон.
Или если подобрать делитель не изменяя его в дальнейшем - можно сделать выходное напряжение БП строго фиксированным при определённом значении.
Вывод; - если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя R2-R3 сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 - 36 вольт (максимальное ограничение по "даташиту").
Напряжение стабилизации в 2,5 вольта - получается без делителя, если вход ТЛ-ки подключить к её катоду, то есть замкнуть выводы 1 и 3.
Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным операционником?
- Можно, только если есть желание конструировать, но необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на операционник отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство. В этом случае можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП - напряжение подаваемое на вход микросхемы было равно опорному.
Ещё один вопрос - а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?
- Можно, но так как она отличается от обычного компаратора уже наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;
Рис. 5 Терморегулятор на TL431.
Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается - называются позисторы.
В этом терморегуляторе при превышении температуры выше установленного уровня (регулируется переменным резистором), сработает реле или какое либо исполнительное устройство, и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ООС между выводами 1-3, например подстроечный резистор 1,0 - 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором - в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема TL431 в схеме мощного блока питания для трансивера, которая приведена на рисунке 6, и какую роль здесь играют резисторы R8 и R9, и как они подбираются.
Особенности работы, простота включения во многие схемы и хорошие характеристики сделали микросхему TL431 очень популярным регулируемым стабилизатором на рынке. С минимальным набором дополнительных электронных компонентов (нескольких резисторов и конденсаторов), она способна обеспечить рабочее напряжение в диапазоне от 2,5 до 36 В, при токе стабилизации от 1 до 100 мА. Для получения больших значений на выход ТЛ431 обычно добавляют мощные транзисторы.
Это устройство еще называют управляемым программируемым стабилитроном. Его впервые представила миру американская компания Texas Instruments (TI) в далеком 1977 году. С тех пор оно постоянно совершенствовалось и теперь является неотъемлемой частью многих современных импульсных блоков питания, где выполняет роль источника опорного напряжения. Оно может быть отличной заменой для диодов Зенера, в различных электронных схемах.
Цоколевка
Распиновка TL431 зависит от корпусного исполнения устройства, в котором она размещена. Всего существует пять его разновидностей: для установки в отверстия: ТО-92; для поверхностного монтажа: SOT-23, SOT-25, SOT-89 и SOP-8. У электронных схем находящихся внутри таких пластиковых упаковок всего 3 контакта, с назначением: 1 – управляющий электрод; 2 – анод; 3- катод. Металлических выводов у некоторых типов корпусов этой микросхемы больше, при этом они не используются или совмещены с соседними. Как это сделано, наглядно показано на рисунке.
Что из себя представляет микросхема TL431
Технические характеристики TL431
Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:
Максимальную рассеиваемую мощность можно рассчитать по стандартной формуле PD= (TJmax-TA)/ RθJC. В ней ТА – это температура окружающей среды.
Рекомендуемые параметры эксплуатации
В рабочих условиях рекомендуемыми значениями использования TL413 являются: входное опорное напряжение (VREF) не более 36 В; катодный ток (IKA) должен быть в диапазоне от 1 до 100 мА; соблюдение температурных режимов использования. Стоит учитывать, что при IKA
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
Iпр – прямой ток, А
Uпр – прямое напряжение, В
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
Схемы включения TL431
Разберемся как работает TL431 на примере простейшей схемы стабилизации, состоящей из самого стабилитрона и одного резистора. К катоду подключается положительный, а к аноду отрицательный полюс питания. Для включения микросхемы, на её управляющий электрод подается опорное напряжение (Vref).
Если его значение будет больше 2.5 В, то стабилитрон почти сразу откроется и начнет пропускать через себя ток (IKA), которым можно запитать соответствующую нагрузку. Его значение будет расти вместе с повышением уровня Vin . IKA можно определить по формуле IKA = (Vin— Vref)/R. При этом, выходное напряжение схемы будет стабилизировано на уровне опорного (VКА = Vref), не превышающего 2.5 В и независимо от подаваемого на входе Vin.
Максимальное значение IKA у TL431 ограничено не только 100 мА, но и мощностью рассеивания на её корпуса.
Расчет параметрической схемы стабилизации
Для получения на выходе микросхемы большего по величине напряжения (вплоть до 36 В), к её управляющему электроду дополнительно подсоединяют резистивный делитель. Он состоит из двух резисторов (R1 и R2) подключаемых между катодом и анодом. В этом случае внутреннее сопротивление стабилитрона возрастает на (1 + R1/R2) раз.
Для расчета схемы стабилизации на TL431 необходимы начальные данные о входном(VIN) и выходном (VКА) напряжениях, а также токах: стабилизации (IKA) и нагрузки (IL). Имея эти данные можно рассчитать значения других электронных компонентов, представленных на рисунке ниже.
Выходное напряжение и номиналы сопротивлений связаны между собой следующей формулой VКА= Vref *(1 + R1/R2)+ Iref *R1. Где Vref = 2495 мВ и Iref = 2 мкА -это типовые величины, они указаны в электрических параметрах из даташит на устройство.
Сопротивление R1 также можно взять из datasheet. Чаще всего берут с номиналами от 10 до 30 кОм. Значение R1 ограничено небольшим опорным током (Iref = 2 мкА), которым часто пренебрегают для расчетов схем стабилизации на TL431. Поэтому для вычисления значения R2, без учета Iref, можно использовать следующую формулу R2=R1/((VКА/Vref)-1).
Регулировка напряжения стабилизации
Для построения схем с возможностью ручной регулировки напряжения на выходе, вместо обычного R1 ставят потенциометр. Номинал ограничительного резистора R, оказывающего сопротивление току на входе (IIN), рассчитывают по формуле R=(VIN-VКА)/ IIN. Здесь IIN = IKA+ IL.
Несмотря на достоинства микросхемы TL431, есть у неё и весьма существенный недостаток– это маленький ток в нагрузке, который она способна выдержать. Для решения этой проблемы в схему включают мощные биполярные или полевые транзисторы.
Примеры различных схем на основе стабилитрона TL431 можно посмотреть в следующем видео.
Кому лень читать
Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем.
Улучшенная схема будет выглядеть так: Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.
Datasheet на русском.. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности. На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Быстрое переключение.
Схема, приведенная ниже, представляет собой мощный светильник на двух ваттных светодиодах и ваттном IRF в корпусе ТО см. В полной схеме включения к TL добавляются еще два резистора, но в этом случае можно получить произвольное выходное напряжение. Рисунок 5.
Простое зарядное устройство для литиевого аккумулятора. Но этого тока достаточно для очень слабого свечения светодиода HL1. Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения.
Вместо заключения
Но у светодиода максимально допустимый ток составляет всего 20 мА. В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, то есть зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Реле времени TL нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP
TL Ее выпуск стартовал в году. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. TL431 управляемый стабилитрон,как проверить работу.
Как проверить мультиметром
TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.
Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.
TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Производители
Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: , ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.
Реверс-инжиниринг TL431
Промаркированный кристалл TL431.
Чертеж TL431
TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники. TL431 является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью.
Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.
Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет ‘запрограммирована’ TL431 можно определить по формуле: Uвых=Vref( 1 + R1/R2 ). Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. Задавшись значением сопротивления R2 и требуемое выходное напряжение, рассчитать R1 можно по формуле: R1=R2( Uвых/Vref – 1 ). В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, т.е. зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний. В схеме с обычным стабилитроном таких проблем не возникает.
Технические характеристики TL431
- напряжение на выходе: 2,5…36 вольт;
- выходное сопротивление: 0,2 Ом;
- прямой ток: 1…100 мА;
- погрешность: 0,5%, 1%, 2%;
Электрический паяльник с регулировкой температуры
Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…
Где и как используется
Такие устройства, как правило, используются для компенсации колебаний напряжения в сети. Например, когда включена большая машина, потребность в энергии внезапно становится намного выше. Стабилизатор напряжения компенсирует изменение нагрузки. Стабилизаторы напряжения обычно работают в диапазоне напряжений, например, 150-240 В или 90-280 В.
Стабилизаторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют напряжения постоянного тока. В автомобильных генераторах и центральных электростанциях-генераторах стабилизаторы напряжения контролируют мощность установки.
Выпускать устройство TL431 начали в 1977 году. Оно применяется в качестве источника опорного напряжения в схемах различных блоков питания ТВ, DVD, тюнеров и других разновидностей видео- и аудиотехники.
Также устройство необходимо для реализации обратной связи: выходное напряжение очень большое или же очень маленькое. Эксплуатируя участок цепи, который называется бандгап (источник опорного напряжения; его величина определяется шириной запрещённой зоны), TL431 является стабильным источником опорного напряжения в широких температурных диапазонах.
Схемы включения TL431
Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.
Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.
Стабилизатор тока на TL431
Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.
Индикатор повышения напряжения
Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.
В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:
R3 = (Uпит. – Uh1 – Uda)/Ih1
где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.
Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:
R2 = 2,5 х Rl/(Uз — 2,5)
Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.
Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.
Проверка исправности TL431
Вышеприведённой схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветится , то TL431 исправен.
Индикатор низкого напряжения
Разница данной схемы от предшествующей в том, что светодиод подключен по-иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.
Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.
В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.
Индикатор изменения напряжения
Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:
В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).
Работа TL431 совместно с датчиками
Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.
Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор, то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.
Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.
Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.
Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.
TL431 в схеме со звуковой индикацией
Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.
Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.
Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.
Что это такое
Параллельный стабилизатор TL431 работает так же, как стандартный стабилизатор. Различие уровня напряжения выхода и входа компенсируется благодаря мощному транзистору биполярного типа. Стабилизация будет лучше при условии того, что обратная связь поступает с выхода самого стабилизатора.
Резистор R1 должен быть рассчитан на минимальный ток, который равен 5 мА. Резисторы R2 и R3 рассчитываются аналогично, как для стабилизатора параметрического типа. Через каждый резистор протекает ток, у которого сила обратно пропорциональна значению сопротивления резистора. Существует два типа соединений резисторов: параллельное и последовательное соединение в форме цепи.
Для автомобильных инверторов
Для автомобильных инверторов часто используются серии АС стабилитроны TL431. Схема включения в данном случае подразумевает использование двухразрядных триодов. Непосредственно фильтры применяются открытого типа. Если рассматривать схемы без расширителя, то пороговое напряжение колеблется в районе 10 Вт.
Непосредственно рабочий ток составляет 4 А. Параметр перегрузки системы допускается в 3 мА. Если рассматривать модификации с расширителями, то в данном случае устанавливаются высокоемкостные модуляторы. Резисторы используются стандартно селективного типа.
В некоторых случаях применяются разной мощности усилители. Параметр порогового напряжения, как правило, не превышает 12 Вт. Выходное сопротивление системы может колебаться от 70 до 80 Ом. Показатель точности стабилизации равняется примерно 2%. Рабочий ток у систем составляет не более 4.5 А. Непосредственно подключение стабилитронов происходит через катод.
Описание работы
Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.
Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.
Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.
Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V—) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.
Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).
Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.
Маркировка
Модели AC
Для дипольных инверторов часто используются чери АС стабилитроны TL431. Как проверить работоспособность подсоединенного элемента? Сделать это можно при помощи обычного тестера. Параметр выходного сопротивления обязан составлять не более 70 Ом
Также важно отметить, что устройства этой серии включаются через векторный преобразователь
В данном случае скалярные модификации не подходят. Во многом это связано с низким порогом проводимости тока
Также важно отметить, что показатель номинального напряжения не превышает 4 Вт. Рабочий ток в цепи поддерживается на уровне 2 А
Для понижения тепловых потерь используются различные тиристоры. На сегодняшний день выпускаются расширительные и фазовые модификации.
Какие существуют аналоги
Микросхема имеет высокую популярность в мире профессионалов и любителей электроники. Поэтому её выпускают многие изготовители. Всемирно известные фирмы Texas Instruments (как разработчик), Motorola, Fairchild Semiconductor и другие производят микросхему под оригинальным названием. Нельзя не упомянуть выпускавшийся ранее стабилизатор TL430, с Vref=2,75 В и увеличенным в полтора раза максимальным рабочим током. Но эта микросхема была менее востребована, и до начала эпохи SMD-монтажа не дожила.
Другие производители выпускают регулятор напряжения с другими буквенными индексами, но обязательно имеющими в своих названиях цифры 431 (в противном случае потребитель просто не обратит внимания на неизвестную микросхему). На рынке присутствуют:
- KA431AZ;
- KIA431;
- HA17431VP;
- IR9431N
Простое зарядное устройство для литиевого аккумулятора.
Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения: — по току; — по напряжению;
Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.
Читайте также: