Схемы на полевых транзисторах своими руками
На сегодняшнем мероприятии, посвящённом открытию "Культурно-досугового центра Лоховского муниципального образования", поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
- Если напряжение можно понять умом, то ток только чувством! - начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
- Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц - как суммы знаний, физических умений и врождённых навыков.
"Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?" - станет темой нашего научного коллоквиума.
Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:
Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.
Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация - это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.
Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.
Схема источника тока на биполярном транзисторе - самая плохая. В ней присутствует полный букет недостатков - и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.
Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток - практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.
Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.
Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо - источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать - максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.
Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.
Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.
Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.
Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.
И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.
РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.
Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.
Проектировать источники тока на дискретных полевых транзисторах - занятие, на мой взгляд, довольно нецелесообразное.
Другое дело - специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.
Рис.7
Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.
А на следующей странице продолжим тему - посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.
Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.
Хватит слов приступим к делу!
На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.
Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.
Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.
Как работает регулировка тока?
В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.
Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.
А, вот и печатная плата!
На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А
Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.
На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.
Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.
Печатная плата блока резисторов
Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.
Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.
Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.
Схема подключения вентилятора
Как подключить Китайский вольтметр амперметр?
При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.
А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.
На этом рисунке изображена схема подключения Китайского вольтметра амперметра.
Схема подключения китайского вольтметра амперметра к блоку питания
Испытания блока питания
Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.
Как заряжать автомобильный аккумулятор?
Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.
Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.
Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.
Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.
Радиодетали для сборки
Регулируемый блок питания с регулировкой тока и напряжения 30А
- Регулируемый стабилитрон (микросхема) TL431
- Диодный мост на 50А KBPC5010
- Конденсаторы С1, С2 4700 мкФ 50В
- Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
- Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
- Стабилизатор напряжения L7812CV
- Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
- Светодиоды LED1, LED2 на 3В зеленый и красный
Регулируемый блок питания с регулировкой тока и напряжения 15А
- Регулируемый стабилитрон (микросхема) TL431
- Диодный мост на 25А KBPC2510
- Конденсаторы С1, С2 4700 мкФ 50В
- Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
- Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
- Стабилизатор напряжения L7812CV
- Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
- Светодиоды LED1, LED2 на 3В зеленый и красный
Чем заменить микросхему TL431?
Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками
Электронный выключатель нагрузки – это устройство, не имеющее движущихся частей, которое работает как реле. Обычно два полевых МОП-транзистора действуют как переключающий элемент, один из которых является N-канальным, а другой – P-канальным.
Пусковой ток при включенном переключателе нагрузки
Когда переключатель нагрузки (транзистор Q1 на схеме) включен, временно протекает большой ток, намного превышающий установившийся. Если заряд конденсатора близок к нулю, возникает большой бросок тока, напряжение подается на выход Vo, что приводит к мгновенному и большому заряду в протекающем токе. Этот чрезмерный ток часто называют пусковым.
Пик пускового тока в значительной степени определяется входным напряжением Vi, сопротивлением Rds (on) полевого МОП-транзистора Q1, ESR емкости CL на стороне нагрузки и увеличивается вместе с входным напряжением Vi. Чрезмерно большой пусковой ток может вызвать сбои или неисправности схемы. Превышение максимального номинального тока также может привести к повреждению.
Но добавляя конденсатор C2 параллельно резистору R1, подключенному между затвором и истоком полевого МОП-транзистора Q1, можно замедлить снижение напряжения затвора, что постепенно уменьшит Rds (on) и сгладит пусковой ток.
Противодействие пусковому току (когда переключатель нагрузки Nch MOSFET включен)
Переключателем нагрузки тут выступает MOSFET RSQ020N03, Vin = 5 В, Io = 1 А.
- Переключатель Q1 включен, когда Q2 выключен (напряжение затвора Q1 будет больше, чем Vo (Q1 Vgs)).
- Переключатель нагрузки Q1 выключен, когда Q2 включен.
- В качестве контрмеры был добавлен C2 для минимизации пускового тока при включении Q1.
Эквивалентная схема переключателя нагрузки
Даже когда переключатель нагрузки Q1 переключается с ВКЛ на ВЫКЛ, напряжение на выходном выводе Vo будет всё-ещё оставаться в течение определенного периода времени в зависимости от емкости CL нагрузки на выходной стороне.
Если напряжение на Vi ниже чем Vo, обратный ток может течь с выхода Vo на вход Vin через паразитный диод, образованный между стоком и истоком полевого МОП-транзистора Q1. Необходимо убедиться, что номинальный ток полевого транзистора Q1 не превышается ни при каких обстоятельствах. Кроме того, при определении значения емкости входного шунтирующего конденсатора CIN, следует учитывать время нарастания с учетом условий нагрузки.
Вот эквивалентная принципиальная схема переключателя нагрузки:
А теперь перейдём к практике и соберём реально работающий переключатель нагрузки на силовом полевом транзисторе MOSFET. Тут обычный небольшой ползунковый переключатель будет управлять функцией включения / выключения питания.
Схема переключателя силового полевого МОП-транзистора
Эта схема является альтернативой мощным тумблерам, поскольку в ней используется небольшой ползунковый переключатель слабого тока коммутации для управления полевым МОП-транзистором, который может держать уровень рассеиваемой мощности примерно до 50 Вт. Схема также имеет встроенную оптопару, которая упрощает управление полевым МОП-транзистором с помощью гальванически изолированного внешнего сигнала или цифрового выхода микроконтроллера (Ардуино например). Более того, поскольку основной ток не проходит через механический ползунковый переключатель / оптопару, можно использовать различные, даже самые слабые компоненты.
Обратите внимание, что схема не имеет функций защиты входа от обратной полярности, поэтому напряжение постоянного тока и внешний управляющий сигнал следует вводить в схему с правильной полярностью. Кроме того, может потребоваться изменить значение резистора R3 ограничителя тока оптопары (по умолчанию 220 Ом), если планируется использовать нестандартный внешний управляющий сигнал.
Идеи по проектированию устройства
Переключатель нагрузки состоит из двух основных элементов – транзистора и механизма управления, как показано на схеме. Проходной транзистор чаще всего представляет собой полевой МОП-транзистор (N-канальный или P-канальный), который передает напряжение на заданную нагрузку, когда он открыт. Выбор P-канального или N-канального MOSFET зависит от конкретных потребностей устройства. Но P-канальный MOSFET имеет явное преимущество перед N-канальным в простоте механизма управления включением / выключением. Здесь N-канальный MOSFET требует дополнительной шины напряжения для затвора (P-канальный не требует).
Базовая схема переключателя нагрузки силового полевого МОП-транзистора
На рисунке показан пример схемы переключателя нагрузки с P-канальным силовым МОП-транзистором. Здесь внешний переключатель / управляющий сигнал включает и выключает MOSFET через слабый транзистор. Когда вход переключателя / управления имеет низкий уровень, тот транзистор выключен, а затвор полевого МОП-транзистора подтягивается до VIN. Но когда вход переключателя / управления высокий по уровню, малосигнальный транзистор включается, затвор полевого МОП-транзистора опускается, и он включается тоже. Пока входное напряжение на шине выше порогового напряжения полевого МОП-транзистора, он будет включаться, когда вход переключателя / управления находится в состоянии высоком, без необходимости в дополнительном источнике напряжения. Подтягивающий резистор выбирается таким образом, чтобы через него проходил небольшой ток, когда малосигнальный транзистор включен (стандартный диапазон сопротивления от 1 кОм до 10 кОм).
Проще говоря, полевой МОП-транзистор можно рассматривать как переменный резистор, сопротивление сток-исток которого (Rds) является функцией разности напряжений на выводах затвор-исток (Vgs). Если нет разницы потенциалов между затвором-истоком, тогда сопротивление сток-исток очень велико и ток не течет. С другой стороны, если имеется соответствующее напряжение затвор-исток, сопротивление сток-исток очень низкое и действует как замкнутый переключатель, таким образом ток течет через него в нагрузку.
Транзистор MOSFET должен иметь номинальный постоянный ток превышающий максимальный ток нагрузки предлагаемого применения.
Тестирование на макетной плате переключателя нагрузки с силовым полевым транзистором показано на фото.
В общем предлагаемое схемное решение уже много раз доказало свою ценность в различных проектах (в том числе в автомобиле), как надёжный, безопасный и долговечный коммутатор.
Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы. Передаточная характеристика полевых транзисторов близка к линейной или квадратичной, поэтому в спектре выходного сигнала практически отсутствуют четные гармоники, кроме того, происходит быстрый спад амплитуды высших гармоник (как в ламповых усилителях). Это позволяет применять в усилителях на полевых транзисторах неглубокую отрицательную обратную связь или вовсе отказаться от нее. После завоевания просторов домашнего Hi-Fi полевые транзисторы начали наступление на автозвук. Публикуемые схемы изначально предназначались для домашних систем, но может, кто-то рискнет применить заложенные в них идеи в автомобиле.
Эта схема уже считается классической. В ней выходной каскад, работающий в режиме AB, выполнен на МДП-транзисторах, а предварительные каскады - на биполярных. Усилитель обеспечивает достаточно высокие показатели, но для дальнейшего улучшения качества звучания биполярные транзисторы следует полностью исключить из схемы (следующая картинка).
После того, как исчерпаны все резервы повышения качества звучания, остается только одно - однотактный выходной каскад в чистом классе А. Ток, потребляемый предварительными каскадами от источника более высокого напряжения и в этой, и предыдущей схеме - минимален.
Выходной каскад с трансформатором - полный аналог ламповых схем. Это на закуску. Интегральный источник тока CR039 задает режим работы выходного каскада.
Однако широкополосный выходной трансформатор - достаточно сложный в изготовлении узел. Изящное решение - источник тока в цепи стока - предложено фирмой Pass Laboratories. Простота схемы потрясает. Подробные характеристики и описание конструкции здесь: усилитель Pass Zen
Впоследствии усилитель был доработан - цепи ООС по постоянному и переменному току были разделены, что позволило несколько снизить коэффициент гармоник при максимальной мощности. Достигнуто это ценой значительного снижения чувствительности усилителя. Номиналы деталей для этого варианта приведены в скобках. Однако в любом варианте для реализации потенциала этого усилителя требуется предусилитель с непривычно высоким выходным напряжением.
Успех этого усилителя побудил конструкторов к разработке однотактных усилителей класса A. Интересную схему предложил Андреа Чиффоли. Чтобы снизить напряжение питания, он заменил источник тока в цепи стока дросселем. Качественные показатели усилителя в основном определяются конструкцией этого дросселя. Его индуктивность 0,5Гн при сопротивлении постоянному току не более 0,5 Ом, выполнен он на ферромагнитном магнитопроводе. Питается усилитель от автомобильного аккумулятора.
Схемы 1. 4 приведены по справочнику Схемотехника устройств на мощных полевых транзисторах п/ред. В.П.Дьяконова М.Радио и связь 1994
Давно, еще года два назад, приобрел я старый советский динамик 35ГД-1. Несмотря на его первоначально плохое состояние, я его восстановил, покрасил в красивый синий цвет и даже сделал для него ящик из фанеры. Большая коробка с двумя фазоинверторами сильно улучшила его акустические качества. Осталось дело за хорошим усилителем, который будет качать эту колонку. Решил сделать не так, как делает большинство людей – купить готовый усилитель D–класса из Китая и установить его. Я решил сделать усилитель сам, но не какой-нибудь общепринятый на микросхеме TDA7294, да и вообще не на микросхеме, и даже не легендарный Ланзар, а очень даже редкий усилитель на полевых транзисторах. Да и в сети очень мало информации об усилителях на полевиках, вот и стало интересно, что это такое и как он звучит.
Данный усилитель имеет 4 пары выходных транзисторов. 1 пара – 100 Ватт выходной мощности, 2 пары – 200 Ватт, 3 – 300 Ватт и 4, соответственно, 400 Ватт. Мне все 400 Ватт пока не нужны, но я решил поставить все 4 пары, дабы распределить нагрев и уменьшить рассеиваемую каждым транзистором мощность.
Схема выглядит так:
На схеме подписаны именно те номиналы компонентов, которые установлены у меня, схема проверена и работает исправно. Печатную плату прилагаю. Плата в формате Lay6.
Внимание! Все силовые дорожки обязательно залудить толстым слоем припоя, так как по ним будет течь весьма большой ток. Паяем аккуратно, без соплей, флюс отмываем. Силовые транзисторы необходимо установить на теплоотвод. Плюс данной конструкции в том, что транзисторы можно не изолировать от радиатора, а лепить все на один. Согласитесь, это здорово экономит слюдяные теплопроводящие прокладки, ведь на 8 транзисторов их ушло бы 8 штук (удивительно, но факт)! Радиатор является общим стоком всех 8 транзисторов и звуковым выходом усилителя, поэтому при установке в корпус не забудьте как-нибудь изолировать его от корпуса. Несмотря на отсутствие необходимости установки между фланцами транзисторов и радиатором слюдяных прокладок, это место необходимо промазать термопастой.
Внимание! Лучше сразу всё проверить перед установкой транзисторов на радиатор. Если вы прикрутите транзисторы к радиатору, а на плате будут какие либо сопли или непропаяные контакты, будет неприятно снова откручивать транзисторы и измазываться термопастой. Так что проверяйте всё сразу.
Биполярные транзисторы: T1 – BD139, T2 – BD140. Тоже нужно прикрутить к радиатору. Они греются не сильно, но все таки греются. Их тоже можно не изолировать от теплоотводов.
Итак, приступаем непосредственно к сборке. Детали располагаются на плате следующим образом:
Теперь я прилагаю фото разных этапов сборки усилителя. Для начала вырезаем кусок текстолита по размерам платы.
Затем накладываем изображение платы на текстолит и сверлим отверстия под радиодетали. Зашкуриваем и обезжириваем. Берем перманентный маркер, запасаемся изрядным количеством терпения и рисуем дорожки (ЛУТом делать не умею, вот и мучаюсь).
Далее кидаем плату в раствор хлорного железа и ждём, пока оно сделает своё дело. Затем вынимаем, оттираем маркер щёткой для сковород и плата готова.
Вооружаемся паяльником, берём флюс, припой и лудим.
Отмываем остатки флюса, берём мультиметр и прозваниваем на предмет замыкания между дорожками там, где его быть не должно. Если всё в норме, приступаем к монтажу деталей.
Возможные замены.
Первым делом я прикреплю список деталей:
C1 = 1u
C2, C3 = 820p
C4, C5 = 470u
C6, C7 = 1u
C8, C9 = 1000u
C10, C11 = 220n
D1, D2 = 15V
D3, D4 = 1N4148
R1, R32 = 47k
R2 = 1k
R3 = 2k
R4 = 2k
R5 = 5k
R6, R7 = 33
R8, R9 = 820
R10-R17 = 39
R18, R19 = 220
R20, R21 = 22k
R22, R23 = 2.7k
R24-R31 = 0.22
T1 = BD139
T2 = BD140
T3 = IRFP9240
T4 = IRFP240
T5 = IRFP9240
T6 = IRFP240
T7 = IRFP9240
T8 = IRFP240
T9 = IRFP9240
T10 = IRFP240
Первый запуск и настройка.
Первый запуск усилителя производим через страховочную лампу в разрыв сети 220 В. Обязательно закорачиваем вход на землю и не подключаем нагрузку. В момент включения лампа должна вспыхнуть и погаснуть, причем погаснуть полностью: спираль не должна светиться вообще. Включаем, держим секунд 20, затем выключаем. Проверяем, нет ли нагрева чего-либо (хотя если лампа не горит, вряд ли что-нибудь греется). Если действительно ничего не греется, включаем снова и меряем постоянное напряжение на выходе: оно должно быть в пределах 50 – 70 мВ. У меня, к примеру, 61.5 мВ. Если всё в пределах нормы, подключаем нагрузку, подаём сигнал на вход и слушаем музыку. Не должно быть никаких помех, посторонних гулов и т. п. Если ничего этого нет, переходим к настройке.
Настраивается всё это дело крайне просто. Необходимо лишь выставить ток покоя выходных транзисторов с помощью вращения движка подстроечного резистора. Он должен быть примерно 60 – 70 мА для каждого транзистора. Делается это так же как и на Ланзаре. Ток покоя считается по формуле I = Uпад./R, где Uпад. – падение напряжения на одном из резисторов R24 – R31, а R – сопротивление этого самого резистора. Из этой формулы выводим напряжение падение на резисторе, необходимое для установки такого тока покоя. Uпад. = I*R. Например в моем случае это = 0.07*0.22 = где то 15 мВ. Ток покоя выставляется на “тёплом” усилителе, то есть радиатор должен быть тёплым, усилитель должен поиграть несколько минут. Усилитель прогрелся, отключаем нагрузку, закорачиваем вход на общий, берем мультиметр и проводим ранее описанную операцию.
Характеристики и особенности:
Напряжение питания – 30-80 В
Рабочая температура – до 100-120 град.
Сопротивление нагрузки – 2-8 Ом
Мощность усилителя – 400 Вт/4 Ом
КНИ – 0.02-0.04% при мощности 350-380 Вт
Коэффициент усиления – 30-33
Диапазон воспроизводимых частот – 5-100000 Гц
На последнем пункте стоит остановиться подробнее. Использование этого усилителя с шумящими тембрблоками, такими как TDA1524, может повлечь за собой необоснованное на первый взгляд потребление энергии усилителем. На самом деле это усилитель воспроизводит частоты помех, не слышные нашему уху. Может показаться, что это самовозбуждение, но скорее всего это именно помехи. Тут стоит отличать помехи, не слышимые ухом от реального самовозбуждения. Я сам столкнулся с этой проблемой. Изначально в качестве предварительного усилителя операционник TL071. Это очень хороший высокочастотный импортный ОУ с малошумящим выходом на полевых транзисторах. Он может работать на частотах до 4 МГц – этого с запасом хватает и для воспроизведения частот помех и для самовозбуждения. Что делать? Один хороший человек, спасибо ему огромное, посоветовал мне заменить операционник на другой, менее чувствительный и воспроизводящий меньший диапазон частот, который просто не может работать на частоте самовозбуждения. Поэтому я купил наш отечественный КР544УД1А, поставил и… ничего не поменялось. Это всё натолкнуло меня на мысль, что шумят переменные резисторы тембрблока. Движки резисторов немного “шуршат”, что и вызывает помехи. Убрал тембрблок и шум пропал. Так что это не самовозбуждение. С данным усилителем нужно ставить малошумящий пассивный тембрблок и транзисторный предусилитель дабы избежать вышеперечисленного.
В результате получается хороший усилитель, который прекрасно воспроизводит как низкие, так и высокие частоты мало греется и работает в широком диапазоне питающих напряжений. Лично мне усилитель очень нравится. Осталось только соорудить для него предварительный усилитель, нормальный тембрблок и корпус, но об этом как-нибудь в другой раз.
Ниже прилагаю несколько фото готового усилителя.
На этом в принципе всё. Если остались какие-либо вопросы, задавайте их либо на форум VIP-CXEMA, либо мне на почту Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Читайте также: