Схема управления вентилятором блока питания компьютера
Когда мы задумываемся .
Схемы включения вентиляторов для охлаждения системных блоков персональных компьютеров
Когда мы задумываемся об охлаждении системного блока компьютера, возникают вопрос, почему два практически одинаковых системных блока имеют различную эффективность теплосъема? Внешне не видимые конструктивные особенности не могут дать большой разницы, но иногда, температуры воздуха в системном блоке (СБ) превышает температуру наружного воздуха на 20 ° С и выше. Вот тогда на первый план выходит эффективность вентиляции СБ. Она в первую очередь зависит от осевого вентилятора.
Расходная характеристика осевого вентилятора.
Существует взаимосвязь между производительностью вентилятора Q, измеряемый в кубических метрах в минуту (м3/мин) или в кубических футах в минуту (CFM - Cubic Feet per Minute) и статическим давлением его воздушного потока H, измеряемым в мм водяного столба или, что реже, в паскалях (Па) . Она экспериментально определяется для каждого типа вентилятора в лабораторных условиях и носит название - расходная характеристика вентилятора.
Pic1
Расходная характеристика осевого вентилятора, приводимая в справочниках производителей, имеет нелинейный характер, но при технических расчетах её можно заменить прямой проходящей из точки А с координатами на графике (H, Q=0, что эквивалентно вентилятору работающему на некоторый замкнутый объем и создающему в этом объеме давление H) в точку Б с координатами на графике (H=0, Q, что эквивалентно вентилятору работающему в открытом пространстве с расходом Q). Упрощенная расходная характеристика имеет три точки пересечения с реальной расходной характеристикой и максимальные отклонения меньше 20% для стандартных вентиляторов
Эта упрощенная характеристика может быть описана выражением:
k = Hн / Qн; Hp=Hн – k · Qн;
Для примера на рис. 1 (верхняя кривая) имеет k=2,02 и ее заменяем на прямую, описанную формулами:
где: Qн – паспортная производительность вентилятора,
Hн – паспортное статическое давление развиваемое вентилятором,
Qp – расход для данного H (например в рабочей точке P),
Hр – статическое давление развиваемое вентилятором в рабочей точке P,
k – коэффициент, который определяется как k=Hн/Qн и определяет угол наклона линеаризованной расходной характеристики вентилятора.
По всегда заданному в технических характеристиках номинальному расходу вентилятора Q и создаваемому им максимальному давлению H можно с достаточной для технических расчетов точностью оценить статическое давление, развиваемое им в любой точке расходной характеристики. При необходимости можно использовать расходные характеристики производителя вентилятора.
Давление создаваемое вентилятором и его влияние на параметры системы охлаждения.
Давление создаваемое осевым вентилятором является важнейшим его параметром, определяющим эффективность работы систем вентиляции и охлаждения.
Pic2
Все вентиляторы рассматриваемого ряда имеют одинаковые конструкции корпуса и крыльчатки. Отличаются они только мощностью электропривода и в результате скоростью вращения крыльчатки. Они имеют пропорциональное числу оборотов давление, расход, уровень шума. Для охлаждения устройств с переменным по величине тепловыделением можно рекомендовать вентилятор серии SH,VH, а для снижения уровня шума регулируемый, по температуре прокачиваемого воздуха, электропривод.
Сравнительные характеристики ряда вентиляторов AFB0812 x D, где х – модель.
Таблицу смитрите в оригинале.
Из таблицы 1 видим, что с ростом числа оборотов, вентиляторов одного типоразмера, потребляемая электроприводом мощность растет по закону близкому к квадратичному, как это было показано выше. Применение электропривода с внешней регулировкой снижает потребляемую мощность при низком тепловыделении, и позволяет снизить уровень шума вентилятора, при этом в пиках тепловыделения обеспечивается эффективное охлаждение.
Зеленым цветом, ниже основной группы, на рис.3 показана характеристика осевого вентилятора производства Yate Lion модель D80SH-12. Его характеристики несколько хуже аналогичных осевых вентиляторов фирмы Delta.
Из специальной литературы известно, что зависимость расходных характеристик вентилятора от числа оборотов описываются следующими выражениями:
Q1 = Q0 N1/N0; H1 = H0 (N1/N0)2; P1 = P0 (N1/N0)3.
Расход Q, прямо пропорционален росту числа оборотов;
Развиваемое вентилятором статическое давление H, пропорционально квадрату роста числа оборотов;
Потребляемая приводом вентилятора мощность P, пропорциональна кубу роста числа оборотов.
Соотношение величин и физический смысл импеданса.
Для перевода из одной размерности в другую можно использовать следующее соотношения:
1 м3/мин = 35,3 CFM;
1CFM = 28,3·10-3 м3/мин;
1 мм. рт. ст. = 13,59 мм. водяного столба.
1мм.вод.ст=9,8 Па
Системный блок как замкнутое устройство, через который обеспечивает прокачку охлаждающего воздуха осевой вентилятор, имеет свой импеданс (аэродинамическое сопротивление воздушному потоку). На рисунке 1, это прямая с координатами (0, С = 2,7) мм H2O/(м3•мин). Воздушный поток входящий и выходящий из системного блока через отверстия ограниченного сечения проходит через многократно большее сечение внутри системного блока имеет практически ламинарный (равномерный, без завихрений) характер. При появлении турбулентностей (завихрений) импеданс нелинейно увеличивается с ростом скорости прокачки охлаждающего воздуха. Для наглядности на Рисунке 1 на прямую характеризующую импеданс СБ с координатами (0,С) наложена кривая для импеданса при турбулентном потоке. Она показана условно, потому что это явление проявляется на скоростях прокачки более 2 м3/мин в устройствах подобных СБ.
Для практического применения при малых скоростях или ламинарных потоках, с достаточной степенью точности, можно использовать прямую характеризующую импеданс и проходящую через начало координат и точку, определяющую величину импеданса нашей системы.
Импеданс системного блока, для охлаждающего газового потока, имеет размерность миллиметр водяного столба деленную на метр кубический в минуту (ммH2O/(м3•мин)) и физически аналогичен сопротивлению резистора в цепи постоянного тока, закон Ома.
Расходной характеристики вентилятора и импеданса вентилируемого объема достаточно чтобы оценить реальный расход охлаждающего воздуха Q через системный блок с известным импедансом (рабочую точку системы вентиляции). Он определяется по точке пересечения расходной характеристики вентилятора и импеданса системного блока (На рисунке 1 это точка Р). И как видно из графика расход в рабочей точке всегда меньше полного расхода вентилятора (точка Б) и тем меньше чем больше импеданс системы.
Осевой вентилятор, работающий в реальных условиях устройств, имеет, как говорилось выше расход меньше номинального. Но даже вентилятор установленный на перфорацию уже имеет снижение расхода за счет потери на этой перфорации давления. А для вентиляторов с малыми напорами (давлениями) любое снижение давления чревато сильным снижением расхода.
Аэродинамическая схемы включения осевых вентиляторов для охлаждения системного блока.
Упрощенная расходная характеристика позволяют получить простое графическое решение задачи по определению рабочей точки для вентиляционной системы СБ с одним и более вентиляторами.
Применяемые на практике схемы вентиляции базируются на трех типовых 1-3:
Два вытяжных вентилятора,
Один вытяжной вентилятор (блока питания) и один нагнетающий вентилятор,
Два вытяжных вентилятора и один нагнетающий,
Любые другие комбинации или количество вентиляторов.
При этом для простоты принимается, что все вентиляторы имеют одинаковые расходные характеристики и установлены в отверстия. Рассматривается графическое решение для трех импедансов[1], условно названных:
высокий – более 6,9 мм.H2O / (м3/мин),
средний – около 2,7 мм.H2O / (м3/мин),
низкий – менее 0,9 мм.H2O / (м3/мин).
Суммарная расходная характеристика сложного устройства вентиляции строится по правилам параллельного и последовательного сложения сопротивлений в разветвленной цепи.
Рабочий расход системы определяется для рабочей точки полученной в пересечении расходной характеристики вентилятора и прямой характеризующей импеданс СБ проведенной из начала координат.
Схема с двумя вытяжными вентиляторами.
Эта схема предусматривает установку двух вытяжных вентиляторов (одного вентилятора блока питания и дополнительного) рядом, на задней стенке системного блока. Суммарная расходная характеристика строится исходя из правил:
1. Давление, развиваемое двумя параллельно включенными вентиляторами с одинаковыми расходными характеристиками равно давлению, развиваемому одним вентилятором, точка А на рисунке 2.
2. Расход равен суммарному расходу обоих вентиляторов, точка Б2 на рисунке2.
Относительный прирост расхода (закрашенные области) составляет: для высокого импеданса 25%, для среднего импеданса 39% и 66% для малого импеданса.
Из рисунка 4 видим, что прирост расхода охлаждающего воздуха тем больше, чем ниже импеданс системного блока. Причем применение такой схемы при высоком импедансе неэффективна.
Схема с одним вытяжным и одним нагнетающим вентилятором.
Pic5
Эта схема предусматривает установку дополнительно к вытяжному вентилятору, нагнетающего вентилятора. Дополнительный вентилятор установлен на наибольшем удалении от вытяжного.
Суммарная расходная характеристика строится исходя из правил:
1. Суммарное давление, развиваемое двумя последовательно включенными осевыми вентиляторами суммируется по оси давлений, точка А1 рисунок5.
2. Расход равен расходу одного вентилятора, точка Б рисунок 5.
Относительный прирост расхода (закрашенные области) составляет: для высокого импеданса 56%, для среднего импеданса 23% и 12% для малого импеданса.
Рабочая точка, полученная для трех принятых импедансов, показывает, наибольший относительный прирост расхода получается только в системных блоках с высоким импедансом. В абсолютном значении прирост расхода незначителен. Применение этой схемы дает незначительный эффект в абсолютных значениях.
Схема с двумя вытяжными и одним нагнетающим вентилятором.
Эта схема предусматривает установку дополнительно к вытяжному вентилятору блока питания, вытяжного вентилятора на задней стенке и нагнетающего вентилятора на наибольшем удалении от вытяжного. Суммарная характеристика строится аналогичным образом, как и в двух предыдущих случаях. Результирующая расходная характеристика параллельна расходной характеристике одного вентилятора и эквивалентна характеристике с вдвое большими значениями давления (точка А1, рисунок 6) и расхода (в точка Б2, рисунок 6).
Относительный прирост расхода составляет: для высокого импеданса 110%, для среднего импеданса 102% и 97% для малого импеданса.
Рабочая точка, полученная для трех принятых импедансов, показывает, наибольший относительный прирост расхода для первой и второй схемы получается в системных блоках с импедансами от среднего до минимального. При этом наибольший абсолютный прирост расхода на минимальных импедансах. (На малом импедансе абсолютный расход увеличивается почти в 2 раза.)
Третья схема эффективна на любом импедансе. Она имеет преимущества перед вентилятором большого диаметра, так как создает более высокий перепад давления. Однако для эффективной работы расходы через все вентиляторы должны быть согласованы.
Qвыт1 + Qвыт2 = Q нагнет
Исходя из рассмотренных схем, можно сделать следующие выводы:
1. Наилучшая эффективность систем охлаждения СБ получается при его малом импедансе, что вполне естественно.
2. Наиболее эффективной схемой для системных блоков со средним импедансом и ниже, является схема с параллельным включением двух и более вытяжных вентиляторов. Она дает наибольший прирост расхода охлаждающего воздуха при самой простой конструкции для СБ с малым и средним импедансом. Эта схема позволяет применять простое автоматическое и ручное управление расходом охлаждающего воздуха без ограничений.
3. Применение схемы с нагнетающим вентилятором дает незначительный эффект. А при регулировании расходов охлаждающего воздуха она еще и сложна в исполнении, поскольку требуется синхронная регулировка числа оборотов обоих вентиляторов.
4. Применение схемы с тремя вентиляторами дает наибольший прирост расхода на всех импедансах. Схема может быть рекомендована на системных блоках с большим заполнением, рабочих станциях, серверах. При этом, если применяется управление расходом какого либо вентилятора, надо принимать специальные меры по синхронизации скоростей вращения вентиляторов по сложному закону.
[1] Импеданс показывает, какое давление падает на охлаждаемом объекте на каждый кубический метр расхода продуваемого воздуха.
Автор: А.Сорокин
Опубликована - 20.09.2005
Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.
Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).
Схема регулятора оборотов вентилятора.
Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.
В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.
- В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
- Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
- Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.
Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.
Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:
регулятор оборотов
в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.
Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.
Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 – 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 – 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.
- Простая схема
- С датчиком температуры
- Для уменьшения шума
- Видео
Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.
Регулятор скорости вентилятора — простая схема
Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.
Список необходимых радиоэлементов:
- 2 биполярных транзистора — КТ361А и КТ814А.
- Стабилитрон — 1N4736A (6.8В).
- Диод.
- Электролитический конденсатор — 10 мкФ.
- 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
- Терморезистор — 10 кОм
- Вентилятор.
Плата регулятора скорости вентилятора:
Фото готового регулятора скорости вентилятора:
Регулятор вентилятора с датчиком температуры
Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.
- Как сделать управляемую плату регулятора на 1,2–35 В
Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.
Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.
- 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
- 4 диода (VD1-VD4) — Д9Б.
- 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
- Вентилятор (M1).
Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.
Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.
Схема регулятора скорости вентилятора для уменьшения шума
В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.
Необходимые для сборки детали:
- Биполярный транзистор (VT1) — КТ815А.
- Электролитический конденсатор (С1) — 200 мкФ/16В.
- Переменный резистор (R1) — Rt/5.
- Терморезистор (Rt) — 10–30 кОм.
- Резистор (R2) — 3–5 кОм (1 Вт).
Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).
Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.
Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).
Видео о сборке регулятора оборотов вентилятора:
Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).
Схема регулятора оборотов вентилятора.
Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.
В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.
- В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
- Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
- Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.
Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.
Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:
регулятор оборотов
в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.
Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.
Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 – 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 – 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.
Есть сразу несколько причин, чтобы задуматься, как сделать регуляторы скорости кулера своими руками. Чаще всего – это шум этого самого вентилятора и таким способом можно от него если не избавиться совсем, то сделать значительно тише это точно. Дальше расскажу, что и как я делал, чтобы добиться поставленной цели.
Сборка регуляторов вращения кулера
Сегодня мы рассмотрим три интересные схемы для регулятора скорости вентилятора – одна обычная, вторая с термодатчиком и третья для уменьшения шума.
Не будем томить и сразу приступим к делу.
Обычная схема для регулятора оборотов кулера
Эта схема обеспечивает регулировку скорости вентилятора без контроля оборотов.
Схема размещается прямо внутри блока питания и имеет дополнительные посадочные места для подключения внешних датчиков, также есть возможность добавить стабилитрон, что будет ограничивать минимальное напряжение вентилятора.
Вот все комплектующие, что вам понадобятся для сборки этой схемы:
- Биполярные транзисторы;
- Стабилитрон;
- Диод;
- Электролитический конденсатор;
- 8 резисторов;
- Терморезистор;
- Сам вентилятор;
А вот и сама схема:
Схема регулятора оборотов кулера с термодатчиков
Вентилятор в блоках питания вращается с постоянной скоростью, она не зависит от температуры высоковольтных резисторов, что вентилятор должен охлаждать.
Как правило, блок питания всегда подаёт на вентилятор мощность, необходимую для поддержания этой скорости.
Блоки питания, что ставятся в компьютеры, выбираются с запасом даже при максимуме энергопотребления. Соответственно, блок питания работает не на всю и высоковольтные резисторы не сильно нагреваются.
Поэтому кулер впустую гоняет воздух и поднимает пыль внутри компьютера.
Решить эту проблему поможет автоматический регулятор частоты оборотов вентилятора с термодатчиком, чья схема располагается ниже.
Список радиодеталей, что понадобится вам при сборке:
- Два биполярных транзистора;
- Четыре диода;
- Два резистора;
- Ну и сам вентилятор;
Датчиком в этом регуляторе служат германиевые диоды VD1-VD4.
Этот выбор обусловлен рядом плюсов германиевых диодов перед терморезисторами. Во-первых, зависимость обратного тока у них более выражена, чем у тех же терморезисторов, а во-вторых, стеклянный корпус диодов позволяет обойтись без диэлектрических прокладок.
Резистор R1 нужен для исключения возможности поломки транзисторов VT1 и VT2, в случае теплового пробоя диодов. Сопротивление резистора выбирается из максимально допустимого значения тока базы VT1.
Резистор R2 в свою очередь определяет порог, когда вентилятор должен сработать.
Устройство вставляется напрямую в блок питания.
Выводы диодов спаиваются вместе, после чего приклеиваются к теплоотводу высоковольтных транзисторов с обратной стороны. К выводам транзистора VT2 припаиваются резисторы R1 и R2, а также транзистор VT1.
При настройке регулятора, что происходит в основном в подстройке резистора R2 и выбору подходящего количества диодов.
Настраивая резистор R2, вам необходимо подобрать сопротивление введенной части, чтобы при номинальной нагрузке кулер крутился с небольшой скоростью.
Также вам нужно добиться, чтобы при подаче питания вентилятор вращался с небольшой частотой (если слишком быстро вращается – уменьшите количество диодов, если не вращается – увеличьте).
Рекомендую следующее видео, в котором автор самостоятельно изготавливает регулятор скорости вращения компьютерного вентилятора:
Что в итоге.
Сегодня мы рассмотрели то, как своими руками собрать обычный регулятор частоты оборотов компьютерного вентилятора и регулятор скорости вращения вентилятора с термодатчиком.
Для понимания того, как мы их собирали, воспользуйтесь схемами, что находятся выше.
Напишите в комментариях то, как думаете – стоит ли изготавливать и устанавливать подобные регуляторы или вентилятор и без них нормально работает?
А вот управлять его работой – другой вопрос, с которым я и столкнулся.
Можно соорудить схему управления вентилятором на микроконтроллере. Нужен датчик температуры, ШИМ и программа управления. Казалось бы: что может быть проще с точки зрения схемотехники?
Поиски в Интернете привели к использованию в этом качестве советских транзисторов серии КТ81… Эксперименты с ними дали неутешительные результаты. И тут мой взгляд упал на выпаянные из дохлых компьютерных БП сборки диодов Шоттки. Тип, оказавшийся у меня – PHOTRON PSR10C40CT. Я замерил сопротивление двух встречно включенных диодов, и оказалось, что оно крайне зависимо от температуры.
В результате, я построил такую схему:
Напряжение на входе схемы не должно превышать максимально допустимое напряжение микросхемы-стабилизатора. Настройка сводится к изменению сопротивления подстроечного резистора при выбранной температуре так, чтобы вентилятор начал вращаться. При повышении температуры, частота вращения будет увеличиваться.
Вот из этих радиоэлементов я собирал свою схему:
— диодная сборка PSR10C40CT
На макетной плате все это выглядит вот так:
А посмотрев вот это видео, можно сразу понять принцип работы собранного устройства:
Читайте также: