Схема полуавтомата своими руками на тиристорах с регулировкой тока
помоему он плавно не умеет регулировать,он или включается сразу на полную или полностью выключается.
Владимир 89 написал :
может у кого есть схема простая как подключать тиристоры
Простых схем управления тиристорами не бывает. Хотя. всё относительно. Вы собрались изготовить электронное управление сварочником?
zvezdopad написал :
Простых схем управления тиристорами не бывает.
Янек Войцеховски - против.
Владимир 89 написал :
Достал на днях тиристоры T-161
Маловато будет. По мостовой схеме и не айс.
О.. Ё- маё!(с) Надо покопаться в своих гныдныках (старые тетрадки). Когда-то была такая задумка и даже мощные тиристоры и оптимизированный транс, готовая плата. Не хватало радиаторов, да сборки, наладки. Просто подарил всё добро "кулибину" на Донбассе (чему он рад был) и купил инвертор (по весу и току первички не сравнить).
Владимир 89 написал :
А подключать тиристоры на первичку или вторичку?
Вторичку. Лучше пару тиристоров и транс со средней точкой.
ПPOPAБ написал :
Вторичку. Лучше пару тиристоров и транс со средней точкой.
Это если постоянку делать. А если регулировать переменку ,то можно на любом трансе.
Тиристоры на первичку, то с огромным запасом получится. На вторичку- смотря сколько выжать хотите.
Схему где - то в нете простую видел.
А смысл тогда в переменке?
tehsvar написал :
А если регулировать переменку ,то можно на любом трансе.
Не всё так гладко.
tehsvar написал :
Тиристоры на первичку, то с огромным запасом получится.
По току тиристоров. Но из транса печка выйдет.
tehsvar написал :
На вторичку- смотря сколько выжать хотите.
Примаерно с К=1.5 и выше.
По моему- в самоделках есть такая тема.
народ я даже в википедию глянул,насколько понял он включается на максимум и наоборот выключается до минимума,управляемый слабым сигналом.так как же в таком случае можно зделать плавную регулировку если у него только два сотояния включен и выключен.
В конце каждого полупериода синусоиды питающего напряжения он выключается сам. А вот если задерживать подачу управляющих импульсов в начале полупериода синусоиды-вот и весь метод регулировки. называется СИФУ(система импульсно-фазового управления)
bvale написал :
называется СИФУ(система импульсно-фазового управления)
оооо как сложно,подозревал что то типа шим и что то типа того,в юности лектроникой плотно занимался.да всё забыл.
но ТС явно эту СИФУ мудрить не будет.
мне так кажется
Можно поставить в первичку дроссель, кт. посадить "наездником" на основное ярмо. Ток в дросселе (первичке) регулировать встречно-параллельно включенными тиристорами. Схема управления все равно нужна. Я в 90-е годы сделал с десяток таких сварочников. Схему снял с польского промышленного. Схему можно поискать, но это не быстро. Толком даже не помню, где она.
P.S. Был еще бюджетный вариант этого способа регулирования. Дроссель делали с отпайками. Порядка десятка. Переключая витки регулировали точек в первичке. Регулировка была очень мягкая.
Если из транса выйдет печка (печку несложно организовать) то это значит, что схема управления тиристорами в цепи первички не умеет ловко и оптимально контролировать колебания магнитного потока в магнитопроводе транса без зашкаливаний за допустимые пределы.
bvale написал :
В конце каждого полупериода синусоиды питающего напряжения он выключается сам.
выключатся будет при нуле тока а не напряжения ( это в случае с трансом несколько разные кривые )
вобще считается "плохим тоном" скармливать порезанную тиристорами синусоиду трансформаторам, так что я за регулировку по выходу
либо мост 2 диода 2 тиристора + плюс нехилых размеров дорсель
либо обмотка со средней точкой 2 тиристора и 1 диод + вышеописанный дроссель.
ПС это все для "постоянки", "переменку" регулировать нецелесообразно.
Управление тиристорами в цепи первички сложнее, но такая топология силовых цепей позволяет получать самые лучшие результаты, по снижению потерь энергии в девайсе и по плавному пуску трасформатора без бросков пусковых токов в сети с вышибаниями автомата. Но "чайнику" браться за составление и отлаживание схем на вряд-ли стоит. Вот балластный дроссель поставить, это сравнительно просто и надёжно, хоть и массогабариты большие.
steppe написал :
Управление тиристорами в цепи первички сложнее, но такая топология силовых цепей позволяет получать самые лучшие результаты
только промышленных сврочников 50Гц с регулировкой по первичке не наблюдается, так что кроме сложности еще и вопрос целесообразности возникает.
johnlc написал :
только промышленных сврочников 50Гц с регулировкой по первичке не наблюдается, так что кроме сложности еще и вопрос целесообразности возникает.
Инвертор для бытовых розеток и пробок ещё целесообразней и современней, и заработать на него не так долго.
steppe написал :
Инвертор для бытовых розеток и пробок ещё целесообразней и современней, и заработать на него не так долго.
вы правы,но как-то жаль выбрасывать металолом на свалку. лично я намотал на латре(помогали еще двое)медную шинку36мм2,а чтоб вся конструкция не грелась-поместили в 6-литровый бидон из-под молока,и налили трансформаторного масла,чтоб скрыло. конструкцией доволен-варили подряд20-30электродов 4-ки,так чуть теплый был.
tehsvar написал :
Это если постоянку делать. А если регулировать переменку ,то можно на любом трансе.
Тиристоры на первичку, то с огромным запасом получится. На вторичку- смотря сколько выжать хотите.
Схему где - то в нете простую видел.
хватит и одного тиристора-лишь бы мост постоянки был,я приспособил схему для управления(радио,№11,2001год,стр35)-все прекрасно пошло.
ледокол160 написал :
хватит и одного тиристора-лишь бы мост постоянки был,я приспособил схему для управления(радио,№11,2001год,стр35)-все прекрасно пошло.
Эт точно тоже делал регулировал по первичке. Что хочу сказать иногда регулирует иногда транс начинает как бы это правильно сказать трусится что ли. Вибрация возникает нешуточная главное неожиданно все это начинается. Лечится просто чуть крутанул регулировку туда сюда и все прекращается. Варит если честно сказать очень плохо, чем меньше ток тем нестабильней дуга. Даже звук той дуги неприятный. Помогает выпрямитель и мощный дросель. Схема довольно простая откуда этот листок вырезал не помню потому что лет 20 а то и больше прошло.Короче если делать будете то только с выпрямителем и дроселем иначе хрень полная а не сварка.
Как сделать простой регулятор тока для сварочного трансформатора
Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.
Наиболее оптимальный вариант - еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.
Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело - цепь первичной обмотки, где токи в пять раз меньше.
После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы - широко известный тиристорный регулятор, схема которого изображена на рис.1.
При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе - работает не иначе, как "часы".
Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.
Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.
Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.
Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.
Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.
В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.
Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.
Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).
Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Последние посетители 0 пользователей онлайн
Топ авторов темы
colin7795 12 постов
vusa 19 постов
atlas030960 14 постов
mocart 8 постов
Популярные посты
KT117
14 октября, 2021
Это действительно так. Тема только для посвященных.
artos5
14 октября, 2021
Я разрабатывал контроллеры для трансформаторных сварочных аппаратов и полуавтоматов . Они решали проблему с регулировкой сварочного тока и напряжения.
Зарядное устройство для автомобильного аккумулятора - необходимое устройство в любом автохозяйстве. Его можно купить в магазине. А можно сделать самостоятельно.
Принцип работы и основные компоненты
Свинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.
Полностью разряженная АКБ автомобиля выдает напряжение 10,5 вольт (ниже разряжать нельзя), полностью заряженная - 12,6 вольт. В процессе уровень на выходе ЗУ остается постоянным, на клеммах батареи плавно повышается. Поэтому в начале зарядки ток будет максимальным, по окончании – минимальным. Снижение уровня тока служит признаком окончания процесса. Также для автоматического завершения зарядки можно использовать достижение напряжения на АКБ значения 12,5..12,6 вольт.
Стандартная схема построения зарядника содержит:
- Сетевой трансформатор;
- Выпрямитель;
- Регулятор тока (напряжения) - стабилизированный или нет.
Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:
- схемой ограничения тока;
- электрическими защитами;
- индикацией или автоматическим отключением по окончании зарядки.
Эти функции являются сервисными и повышают удобство работы с ЗУ.
Принципиальные схемы зарядных устройств
Зарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.
Простое зарядное устройство для АКБ автомобиля на 12В
Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.
На практике такая схема не используется по двум причинам:
- через потенциометр идет полный ток нагрузки, элемент такой мощности найти трудно;
- ток нагрузки идет через подвижный контакт движка переменного резистора, это значительно снижает надежность работы устройства.
Зато по этой схеме легко понять принцип работы простых зарядников.
На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.
Для нормальной работы такого зарядника на него надо подавать повышенное напряжение – не менее 18 вольт, чтобы обеспечить запас по регулировке. В соответствии с этим требованием надо выбирать сетевой трансформатор.
Зарядное на тиристоре ку202н
Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).
Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.
Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.
Фильтрующие конденсаторы после выпрямителя устанавливать нельзя – схема работает только с выпрямленным, но не с постоянным напряжением на входе.
Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.
Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.
Видео версия: Зарядное с десульфатацией на одном тиристоре.
ЗУ для автомобильного аккумулятора на tl494
Микросхема генерирует импульсы, частота которых задается цепью R4C3, а ширина зависит от разницы между уровнями на входах 1 и 2. Импульсы управляют транзистором VT1, который, открываясь, подпитывает энергией дроссель L1. Запасенная энергия расходуется в нагрузку. Чем больше нагрузка, тем быстрее расходуется запас, тем быстрее падает напряжение на выходе, что приводит к увеличению длительности импульсов с выхода 8 микросхемы. К этому же приводит вращение потенциометра R9 - так регулируется выходное напряжение.
Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.
Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.
Сердечник обязательно должен иметь воздушный зазор 0,15..1 мм.
При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.
Схема с автоматическим отключением
Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.
Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.
Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.
От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).
Схема мощного ЗУ с регулировкой тока
Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:
- схема управления собрана по стороне 220 вольт;
- первичная обмотка трансформатора служит одновременно индуктивностью, накапливающей энергию, а затем отдающей ее в нагрузку через вторичные обмотки.
Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.
Технология сборки
Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:
- 100 мл аптечной перекиси водорода.
- 30 г лимонной кислоты.
- Две чайные ложки поваренной соли.
Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.
Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:
- измерительные приборы;
- органы регулирования напряжения и тока;
- индикаторы включенного состояния.
Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.
Часто задаваемые вопросы
Изменением уровня напряжения изменяют зарядный ток. Если предстоит зарядка автомобильных свинцово-кислотных батарей, то можно выбрать нижний предел регулировки, равный нижнему напряжению разряженной батареи – 10,5 вольт. Верхний предел надо установить по верхнему уровню 12,5 вольт плюс 1,5..2 вольта. На практике неплохо иметь запас по лимитам регулирования. Пределы от 10 до 16 вольт обеспечиат полный диапазон практически используемых зарядных токов.
Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.
Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S 2 */14000, где:
- P – габаритная мощность, ВА.
- 0,8..0,88 – коэффициент, учитывающий материал стали (если он неизвестен, выбирается значение 0,8).
- S - площадь сечения сердечника в квадратных сантиметрах.
Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.
Площадь сечения для разных типов сердечников
Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:
- d – диаметр провода в мм;
- I – потребный ток в амперах.
Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.
Этого делать не стоит. При зарядке на аккумулятор подается напряжение, уровнем и формой отличающееся от напряжения бортсети машины. Есть риск повреждения автомобильной электроники. Клеммы от АКБ надо отключить. Сам аккумулятор при этом можно не демонтировать, но это не очень удобно, да и длины проводов от ЗУ может не хватить.
Читайте также: