Счетчик гейгера из неоновой лампы своими руками
Вы когда-нибудь хотели проверить уровень радиоактивности? Или может вы хотели подготовиться к ядерному Апокалипсису? Тогда этот мастер-класс по изготовлению счетчика Гейгера именно для вас. Я покажу вам, как сделать очень простой и дешевый счетчик Гейгера из старых и ненужных деталей бывших в эксплуатации. Видео о сборке и работе счетчика смотрите в конце моей статьи. Давайте начнем!
Как работает счетчик Гейгера?
Для начала, я объясню вам основы того, как все работает. В счетчике Гейгера используется специальная трубка, наполненная инертным газом при очень низком давлении для обнаружения радиации. Внутри этой трубки имеется цилиндрический кусок металла, который выступает в качестве катода. Внутри этого цилиндра есть небольшой металлический отрезок проволоки, который выступает в качестве анода. Когда высокое напряжение присутствует на аноде трубки, ничего не происходит, но когда в трубку попадают лучевые частиц, это вызывает ионизацию инертного раза, и он начинает проводить электрический ток. Этот ток можно измерить специальными приборами, но в этой схеме будет только детектирование сигнала о наличии радиационного излучения.
Схема счетчика Гейера
Счетчик Гейгера состоит из двух частей: высоковольтного источника питания - преобразователя и детектора. В вышеприведенной схеме высоковольтная цепь состоит из таймера 555, на котором построен генератор. Таймер 555 генерирует прямоугольные импульсы, которые через резистор открывает и закрывает транзистор периодически. Этот транзистор управляет небольшим повышающим трансформатор. С выходного трансформатора напряжение подается на удвоитель напряжения, где повышается примерно до 500 Вольт. Затем, напряжение стабилизируется с помощью стабилитронов до 400 вольт, необходимых для питания трубки счетчика Гейгера.
Детектор состоит из пьезо-электрического элемента, подключенного напрямую к ануду трубки без всяких усилителей.
Инструменты и детали
- Кусачки.
- Стриппер для зачистки проводов.
- Паяльник.
- Пистолет с горячим клеем.
- Трансформатор 8:800 - это был трансформатор источника питания сломанного будильника.
- Трубка Гейгера - куплена - ТУТ.
- Таймер 555.
- Резисторы 47К (х2).
- Конденсатор 22nF.
- Конденсатор 2.2 nF.
- Резистор 1К.
- Любой N-канальный MOSFET.
- Макетная плата.
- 1n4007 диод(х2).
- Конденсатор 100 нф на 500 вольт.
- Стабилитроны - 100 вольт (х4)
- Пьезоэлектрический элемент (из старой микроволновой печи).
- Провода.
- Припой.
Сборка генератора с транзистором MOSFET
После того как вы собрали свои инструменты и материалы самое время, чтобы перейти к пайке компонентов. Первая, что вам надо спаять это генератор и транзистор. Для этого каждый компонент на макетной плате установить наиболее эффективным образом. Например, припаять MOSFET рядом, где с трансформатором. Это поможет вам использовать меньше проводов при пайке. Как все детали смаяны между собой, обрезать излишки провода.
Припаиваем трансформатор и удвоитель напряжения со стабилизацией
После сборки генератора нужно припаять обмотку трансформатора с меньшим сопротивлением между MOSFET плюсом питания. Затем припаять выход трансформатора с высоковольтной обмотки к удвоителю. Затем, припаиваем все конденсаторы и стабилитроны. После спайки высоковольтный источник питания нужно проверить его с помощью вольтметра, чтобы увидеться, что он собран правильно и выдает нужное напряжение. Если у вас другая трубка Гейгера, не как у меня, посмотреть ее технические характеристики, чтобы узнать напряжение её питания, которое может отличаться. Затем добавите соответствующие стабилитроны.
Добавление трубку Гейгера и детектор
Заключительная часть и мне осталось добавить в схему саму трубку - счетчик и детектор. Начинаем припаивать провода к каждому концу трубки. Затем, припаиваем анод к выходу регулируемого источника питания и катодом к пьезоэлемента. Наконец, припаяем пьезоэлемент на общий провод. Благородя использованию детектора состоящего всего из двух компонентов это и считается простейший счетчик Гейгера. Большинство более сложных счетчиков содержать транзисторы в детекторе. Не надо никаких токоограничивающих резисторов в этом детекторе не требуется из-за очень незначительных токов.
Испытания
Наконец, настало время, чтобы проверить счетчиком Гейгера! Для этого сначала подключите счетчик к источнику питания. Затем, возьмите радиоактивный источник для проверки. С помощью плоскогубцев, удерживайте источник радиации рядом с трубкой Гейгера. Вы должны услышать несколько заметных щелчков, которые раздаются в пьезоэлементе. Это означает, что счетчик исправно работает. Чтобы услышать и увидеть это, смотреть видео. Спасибо за чтение!
Смотрите видео работы счетчика Гейгера
Отказ от ответственности: этот проект работает с высоким напряжением, соблюдайте правила техники безопасности и работайте с осторожностью.
Быстрая навигация по обзору
Технические характеристики
Питающее напряжение — 4.5-5В
Поддерживаемые счётчики — M4011, STS-5, SBM20, J305, etc. (рабочее напряжение 330-600В)
Интерфейсы — SPI, AUX
Размеры платы — 93 х 108 х 20мм
Индикация — сигнальная линия, буззер, светодиод
Внешний вид
Набор завёрнут в пупырку и упакован в картонную коробку
Комплектация включает:
— модуль с установленным счётчиком, прикрытые акриловой крышкой на нейлоновых стойках
— холдер под 3х АА батарейки
— соединительные штыревые провода 3х
— AUX-кабель
— DC-кабель 5.5х2.5мм
Подробнее о компонентах:
1) — трубка J305 (аналог М4011), самая дорогая деталь здесь, она фиксирует гамма и бета излучение
2,4) — микросхемы 555, на которых собственно и работает данный модуль
3) — LM358P, двухканальный операционный усилитель
5) — перемычка J1 — отключает буззер, если звуковая индикация не нужна
6) — перемычка J4 — используется для калибровки
7) — контакты 5V, INT, GND, первый и последний из которых для подключения питания 4.5-5.5В. Контакт INT — сигнальный, используется для подключения к MCU (например Arduino), к разъёму, настроенному на получение внешних прерываний, и соответственно, с последующей обработкой полученных импульсов.
8) — разъём 3.5мм AudioJack, нужен для подключения к аудиоразъёму в смартфонах. Можно на смартфоне загрузить приложение и выводить подсчёты на экран.
9) — буззер, издаёт щелчок при регистрации импульса
10) — сдвижной выключатель, проще говоря ВКЛ./ВЫКЛ.
11) — DC-разъём питания 5В (5.5х2.5мм)
12) — контактная колодка для подключения питания 5В к модулю.
13) — светодиод, горит постоянно, если на модуль подаётся питание
14) — светодиод, кратко мигает при регистрации импульса.
15) — NPN-транзисторы S8050
16) — калибровочный потенциометр
17) — калибровочный контакт J2
18) — дополнительные контакты под зажим (если планируется установить СБМ20)
Установленная трубка в моём образце — J305 (аналогична М4011). Судя по маркировке изготовлена в феврале в 2019 году. Её стоимость отдельно — от 18$, деталь самая дорогая. Если во время работы наблюдаете такие вспышки, — это брак и нужно потребовать компенсацию. Трубка фиксирует гамма и мягкое бета излучение. Есть маркировка анода (+).
Монтаж элементов не очень аккуратный, многие детали припаяны криво, а флюс не отмыт
Чтобы модули заработали, достаточно подать напряжение 5В. При естественном радиационном фоне буззеры изредка начнут издавать щелчки: 1-2 раза в 2-5 секунд. Израильская версия при естественном радиационном фоне потребляет почти ничего — 45мкА тока. При возникновении разрядов в газоразрядной трубке ток повышается до 200мкА.
Китайская же плата потребляет примерно в 280 раз больше тока — 12.5-13мА (при возникновении разрядов в счётчике J305 повышается примерно на ~500мкА). Довольно много. Но часть тока расходуется также и на постоянно работающий светодиод возле контактной колодки.
— если его выпаять, то токопотребление снижается за 3мА.
Ранее было сказано про калибровку — дело касается калибровки напряжения в высоковольтной цепи. Разработчик прилагает инструкцию, как это можно проделать:
— извлечь трубку Гейгера
— повернуть ручку потенциометра R100 до величины ниже 50Ом
— установить перемычку J4
— подключить COM-щуп (чёрный) мультиметра к земле (любому минусовому контакту на плате)
— красный щуп мультиметра подключить к контакту J2 (я припаял к нему проводок и крокодилом подцепился)
— на мультиметре выставить измерение постоянного DC-напряжения
— удостовериться, что отмыт флюс и подать питание 5В на плату
— отрегулировать потенциометр R100 так, чтобы мультиметр показывал 57В
Синхронизация с различными устройствами
Вывод показаний в Radiation Logger под WINDOWS (через Arduino)
Существует возможность подключить устройство к ПК под Windows, выводить показания на интерфейс и даже выстраивать графики. Приложение называется Radiation Logger.
Распиновка подключения такая:
VIN (плата) — вывод 2 (Arduino)
5V (плата) — 5V (Arduino)
GND (плата) — GND (Arduino)
Пояснения по величинам и данным в скетче
Нормы естественного радиационного фона:
нормальный — 0.1-0.2 мкЗв/ч
допустимый — 0.2-0.6 мкЗв/ч
повышенный — 0.6-1.2 мкЗв/ч
С модуля по последовательному порту через Arduimo в компьютер будут отправляться импульсы — CPM (количество распадов в минуту), на основе которых в программе Radiation Logger будут формироваться логи и выстраиваться графики.
MAX_PERIOD 60000 — этот время в миллисекундах, актуальное для подсчёта CPM.
LOG_PERIOD 20000 — время обновления результатов подсчёта CPM, т.е. не обязательно ждать минуту, когда можно подсчитать распады/мин например за 15 секунд, а результат умножить на частное MAX_PERIOD 60000/LOG_PERIOD 15000 (60сек / 15сек). Однако, чем меньше время измерения, тем выше погрешность (ниже я это покажу). Для уменьшения погрешности замеры нужно производить дольше, желательно 1мин, а результаты сгладить, используя скользящую среднюю. В LOG_PERIOD можно задать другие промежутки вывода результатов подсчёта, например 20000 или 30000.
Закрываем Arduino IDE и запускаем Radiation Logger. На виду три табло с показаниями в мкЗв/ч (англ: uSv/h) и десятитысячными долями после точки:
Current Radiaton Level — текущий уровень радиации
Average Radiation Level — средний уровень радиации за последнюю минуту
Absorbed Value — поглощённая доза
Имеются опции и настройки:
— логирование измерений в файл (а также построение графика по логам)
— логирование измерений на сервисы в Xively и Radmon
— Alert Threshold — порог тревоги
— Коэффициент Conversion Factor для перевода CPM в мкЗв/ч (uSv/h) (для счётчика СБМ20 — коэффциент равен 0.0057, а для счётчиков J305/M4011, по информации из сети — 0.0081)
В пункте меню File -> Settings надо выбрать порт, к которому подключено Arduino с модулем, протестировать подключения, сохранить. После чего нажать на кнопку Start Log и данные будут поступать и логироваться, а табло соотвественно начнут выдавать показания.
Далее приведу скриншоты с графиками при разном времени обновления результатов измерения: 15c, 30c, 60c. Время обновления в скетче меняется в строке LOG_PERIOD. Например 15 секунд — это 15000, или 60 секунд — 60000
15 секунд
30 секунд
60 секунд
Чешские бусы сделаны из ураносодержащего стекла, которое излучает гамма+бета. Они имеют бледно-зеленоватый оттенок. В ультрафиолете начинают светится кислотно-зелёным цветом.
— упрощённый вариант вывода показаний, прямо в монитор порта ArduinoIDE. Скорость приёмо-передачи должна быть установлена на отметке 9600.
(. ) Чтобы перевести импульсы CPM в микроЗиверты, для каждого счётчика существует свой коэффициент, например для СБМ-20 это множитель 0.0057, а вот для счётчиков J305/M4011 производитель рекомендует CPM делить на число 151 — в скетчах ниже оно встречается в виде значения 151.0
Разбег (разность максимального и минимального значения) показаний на счётчике J305 оказался побольше, чем на другом наборе со счётчиком СБМ-20. У вас эти разбеги показаний на анаголичных наборах могут отличаться, так как точность измерений сильно зависит от качества изготовления самих счётчиков.
15 сек — 0.29 мкЗв/ч
30 сек — 0.18 мкЗв/ч
60 сек — 0.10 мкЗв/ч
Вывод показаний на дисплей Nokia 5110 (через Arduino)
Чтобы работать с дисплеем 5110, необходимо сперва скачать библиотеку LCD5110_Basic.h и поместить её по пути Arduino/Libraries.
Правильная распиновка подключения для этого скетча. Впрочем, при желании вы их можете изменить:
Скетч загружен, питание подано, замеры пошли.
Живое видео смотрите в конце обзора.
Вывод показаний через 3.5мм аудиоразъём
Скажу сразу своё мнение — фича откровенно слабая, но тем не менее, я покажу её реализацию.
На модуле предусмотрен разъём аудиоджек. По задумке разработчика, он необходим, чтобы посредством комплектного AUX-кабеля подключиться к микрофонному входу компьютера/ноутбука, посылать импульсы и в приложении считывать импульсы, конвертируя их потом в любые величины. Но при этом он не предоставил софт. А найти таковой мне не удалось. В таком случае, буду пытаться реализовать эту задумку при помощи смартфона.
В модуле от RHelectronix, который я обозревал в прошлом, распиновка аудиоразъёма 4-контактная и выполнена по стандарту CTIA, т.е. микрофонный (сигнальный) контакт — самый крайний.
А вот в китайском модуле разъём уже трёхконтактный. Крайний контакт — земля, средний контакт — сигнальный.
Так как в моём Android-смартфоне тоже используется 4-контактная распиновка CTIA, то пришлось паять свой переходник. После подключения кабеля в разъём смартфона, рядом с пиктограммой аккумулятора должен загореться значок наушников обязательно со значком микрофона.
Хотя приложение Radmeter 2.1 оказалось поинтереснее: здесь можно открыть вкладку с графиком и наблюдать частоту импульсов визуально. Естественный фон — щелчки редки, а как только подношу чешские бусы из ураносодержащего стекла, график сразу заштриховывается. На гиф-анимации можете это наблюдать. (в конце обзора будет видеоверсия этой гиф)
Видеоролики
Итоговая сводка
Недостатки израильского модуля:
— комплект более дорогой (в 2 раза, с учётом счётчика)
— нужно отдельно докупать счётчик
Достоинства израильского модуля:
— главное и основное — низкое энергопотребление 45мкА
— есть контакты для припаивания повышающего DC-DC-преобразователя 5В
— более современная элементная база
Недостатки китайского модуля:
— главный и основной недостаток — повышенное токопотребление 13мА (10мА с выпаянным светодиодом)
— не предусмотрены контакты для припаивания повышающего DC-DC преобразователя 5В
— общее качество монтажа радиодеталей
Достоинства китайского модуля:
— в 2 раза дешевле израильского аналога
— уже установлен какой-никакой, но счётчик
Для сильно точных измерений данный набор не годится, скорее как простой показометр. Впрочем и это вполне неплохо — для бытового применения. Можно использовать вкупе с Ардуино какой-нибудь стрелочный индикатор с условно говоря, тремя размеченными зонами: зелёная (в пределах нормы), жёлтая (повышенный фон), красная (опасный фон), либо на дисплее того же 5110 по мере учащения импульсов заполнять сегментами тревожную шкалу, например как-то так:
Что касается применения в портативно-носимом исполнении, то как всегда, всё упирается в срок автономности. Даже если использовать рекомендуемые 3хАА батарейки, то при беспрерывной работе проекта при естественном фоне, заряда батареек хватит не более, чем на 1 неделю, при условии, что светодиод выпаян, а среднее количество заряда в АА батарейке 1500мАч (бывает и 600 в новой батарейке, а бывает и 2000 — зависит от типа и бренда). Более подробно в этой таблице.
Уровень радиации можно измерить с помощью самодельного счетчика Гейгера, работающего с Arduino Shield или Arduino Nano. Он может определять ионизирующие частицы альфа-, бета- и гамма-излучения. Когда они проходят через активный объем детектора, то ускоряются электрическим полем, создавая импульс тока, который сигнализирует о прохождении излучения. Контролируемые небольшие дозы излучения используют в медицинских целях. Неконтролируемые большие дозы радиоактивного излучения очень опасны, они убивают все живое на планете.
Что такое счетчик Гейгера
Счетчик Гейгера, а если быть более точным, то Гейгера-Мюллера — это измерительное устройство, применяемое для измерения уровня радиации в окружающем пространстве. Он входит в группу детекторов излучения, подгруппу детекторов газа.
Как следует из названия, они имеют измеритель, заполненный инертным газом при низком давлении 0.1 атм. В центре камеры расположен электрод, между электродом и металлической стенкой создается электрическое напряжение.
Как работает счетчик Гейгера
Детектор, заполнен газом, к которому приложено электрическое напряжение. В тот момент, когда излучение взаимодействует с газом, оно вызывает ионизацию, и этот небольшой сигнал усиливается. Коэффициент усиления зависит от напряжения.
В то время, когда излучение проникает в газовую среду, молекулы газы в трубке под действием процесса ионизации, начинают отдавать частицы. Электрон притягивается положительным зарядом анода, а положительно заряженные ионы отбрасываются к стенке трубки. После этого электрон проходит по проводам, образующим электрическую цепь, и рекомбинируется с ионом. Измерительная часть счётчика Гейгера — это устройство, которое измеряет этот поток электронов.
Когда электрон и ион ускоряются по направлению к электроду, на стенках камеры создается энергия из-за высокого напряжения, в результате чего они сталкиваются с другими атомами и подавляют электроны в процессе вторичной ионизации, что многократно усиливают исходный сигнал до уровня, который может быть измерен.
Важно! В счетчике Гейгера напряжение настолько велико, что ионизируется весь газ в газовой камере, что обеспечивает очень высокую чувствительность к поступающему излучению.
Допустимые области измерения счетчиков Гейгера
Если счетчик Гейгера откалиброван для измерения мощности дозы радионуклида Cs-137, он будет полезен только при этом виде измерения. Но если пытаться измерить таким прибором, например, излучение кобальта 60 (Co-60), результат будет неточным. Поскольку этот измеритель сможет зафиксировать только половину фактической дозы излучения, в связи с тем,что Co-60 излучает в два раза больше энергии, чем Cs-137. В тех случаях, когда радионуклиды обладают меньшей энергией, детектор, наоборот, покажет более высокую мощность дозы, чем она есть на самом деле.
Важно! Счетчик Гейгера будет давать точное показание мощности дозы излучения только в том случае, когда он измеряет тот радиоактивный материал, по которому он был откалиброван. Следовательно, счетчики Гейгера не во всех случаях являются подходящими приборами для измерения дозы облучения.
Для более широкого диапазона измерения уровня радиации применяют счетчики Гейгера с компенсацией энергии. Они позволяют установить точные дозы излучения в широком диапазоне.
Области измерения счетчиков Гейгера в мР/ч или мкР/ч:
- Альфа-излучение — заряженные частицы, которые образуются в результате радиоактивного распада ядра. Их проникновение невелико и останавливается простым листом бумаги.
- Бета-излучение — это электроны или позитроны, заряженные частицы со средним уровнем проникновения. Их останавливает алюминиевая пластина.
- Гамма-излучение — самый опасный вид излучения, их возможно остановить слоем свинца различной толщины.
- Можно также при измерении альфа- или бета-излучения определить количество импульсов в минуту (cpm), либо количество импульсов в секунду (cps), в зависимости от типа используемого измерителя.
Самостоятельное изготовление счетчика Гейгера от А до Я
В этом варианте предлагается изготовить детектор радиации с использованием комплектующих, которые можно найти в свободном доступе в торговой сети. Для того чтобы такой детектор заработал, потребуется чувствительный элемент — трубка Гейгера, с питанием около 400 В постоянного тока и индикатор, или простой динамик. Когда ионизирующее излучение воздействует на газ в счетчике Гейгера , начинается движение электронов, газ в трубке становится проводящим, напряжение подается на динамик, и он начинает щелкать.
Для более эффективного контроля уровня радиации предлагается использовать программу Arduino Nano, которая подсчитывает импульс в трубке в течение определенного времени и ЖК-дисплей, на котором будет отражаться предупреждение об уровне радиации и заряде батареи. В качестве источника питания используется батарея 18650. Поскольку для Arduino требуется 5 В, необходимо установить преобразователь постоянного тока и литий-ионное зарядное устройство, чтобы детектор был полностью автономным.
Необходимые компоненты схемы детектора
Для того чтобы собрать представленную схему потребуются приобрести следующие детали:
Важно! Также потребуется аккумулятор, дополнительный активный пьезозуммер и сам счетчик Гейгера. Для него можно применить старую лампу, сделанную в СССР, под названием STS-5 и подобрать корпус. В данном примере он распечатан на 3D принтере.
Пошаговая инструкция изготовления счетчика Гейгера на Arduino Nano своими руками
Первое, что нужно сделать, это установить с помощью этого потенциометра напряжение на высоковольтном DC-DC, для STS-5 это примерно 410 V. Затем просто соединяют все модули по этой схеме.
Важно! Лучше использовать готовые провода, это повысит устойчивость конструкции и можно будет собрать устройство на рабочем столе, а затем просто вставить его в корпус. Потребуется также подключить минус высоковольтного преобразователя и вывести его, просто припаяв перемычку.
Поскольку Arduino Nano нельзя подключать к 400 В, выполняют простую транзисторную схему: двухточечная проводка помещается в термоусадочную трубку и прямо в разъем вставляется резистор 10 МОм от + 400 В.
Дальше подключают дисплей к подсоединяемому кабелю, тщательно изолируют, поскольку он очень близко расположен к высоковольтному модулю.
После того как сборка сделана, устройство размещают в футляр, и проверяют работоспособность. Скорее всего, он покажет допустимый уровень радиации.
Такая схема с Arduino Nano имеет большие возможности для реконструкции, например, можно добавить большой дисплей, чтобы рисовать графику, и использовать модуль Bluetooth, чтобы передавать информацию дистанционно.
Как сделать счетчик Гейгера из готового комплекта
Практически на всех крупных международных торговых онлайн-площадках можно заказать готовые наборы для изготовления счетчика Гейгера стоимостью от 2500–5000 руб. В каждом наборе проверенные детали и платы, а также подробная инструкция сборки.
Наиболее популярные модели комплектов счетчиков Гейгера:
- KKmoon для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM20, J305. Имеет звуковую и световую сигнализация, может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
- Baugger имеет модуль детектор ядерного излучения с ЖК-дисплеем, для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, Sts-5, Sbm 20, J305. Оборудован звуковой и световой сигнализацией может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
- Kshzmoto, набор деталей счетчика Гейгера с ЖК-дисплеем. Имеет блок питания 5 В или аккумулятор 3×1.5 В. Батарея 4×1.2 В, ток: 30–120 мА. Диапазон измерения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Оснащен звуком и световой сигнализацией. Может поддерживаться рабочее напряжение трубки Гейгера 330–600 В.
- YINCHIE Mukuai54 DIY — модуль детектора ядерного излучения с ЖК-дисплеем DIY. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM 20, J305. Оборудован звуковым и световым звуком, может работать с ПК.
Таким образом, сделать счетчик Гейгера своими руками на Arduino Nano несложно. Можно самому подобрать комплектующие, и собрать измеритель по проверенной работоспособной схеме, а можно просто купить готовый набор и подключить его схему. Такие дозиметры работают ничуть не хуже тех, которые собираются на промышленных площадках. В сегодняшнее время иметь такое устройство в доме не будет лишним, особенно, отправляясь в путешествие, чтобы найти безопасное место для отдыха или на рынок, чтобы купить экологически чистые продукты.
Про вред радиации рассказано много и известно это всем. Чтобы определить уровень радиации в данной местности необходим именно счетчик Гейгера. В данном материале речь пойдет о том, что такое Гейгера счетчик и как его сделать своими руками. Определить уровень ионизирующего излучения без этого прибора невозможно, так как радиация не имеет ни запаха ни цвета, ни каких-либо других признаков, по которым ее можно определить. Это газонаполненный прибор, предназначенный для автоматического подсчета числа попавших в него элементарных ионизирующих частиц.
В материале будут представлены самые популярные и надежные схемы счетчика Гейгера и какие детали для этого понадобятся. Для наглядности и лучшей понятности в статье есть несколько видеороликов, подробные электрические схемы и фотографии, а также один скачиваемый файл о том, как сделать такой измерительный прибор своими руками.
Виды счётчиков Гейгера
По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.
Классический
Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам. На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.
Плоский
Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 – название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.
Что такое дозиметр
дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик. Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение.
Я думаю, все согласятся, что щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов. Дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик.
Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение. Щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов.
Альфа, бета, гамма и конструкция счетчиков
Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.
Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.
А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы.
Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б — где-то посередине между ними.
Компон
Компоненты
Дизайн счетчика Гейгера Мюллера почти полностью состоит из этих модулей:
- Высоковольтный повышающий конвертер DC-DC)
- Зарядник (Aliexpress или Amazon) 5V повышающий преобразователь DC-DC (Aliexpress или Amazon)
- Ардуино нано (Aliexpress или Amazon) OLED—экран на этих фотографиях 128*64, но в итоге я использовал 128*32 (Aliexpress или Amazon)
Также нам нужен транзистор 2n3904 (Aliexpress или Amazon) Резисторы 10M и 210K (Aliexpress или Amazon) Конденсатор 470pf (Aliexpress или Amazon) Кнопка-переключатель (Aliexpress или Amazon) Аккумулятор, опциональную активную пьезо-трещалку и сам счетчик Гейгера я использовал старые советские. Модель STS-5 довольно дешевая и её легко найти на Ибэй или Амазоне, она также совместима с трубкой SBM-20 или любой другой, вам нужно просто задать параметры в программе, в моём случае количество микрорентген в час равно количеству импульсов трубки за 60 секунд. И да, вот модель кейса, напечатанного на 3Д-принтере.
Сборка
Первое, что нужно сделать, это настроить вольтаж на высоковольтном DC-DC с потенциометром. Для STS-5 нам нужно примерно 410V. Затем просто спаяйте все модули по схеме, я использовал однопроволочные провода, это повышает стабильность конструкции и даёт возможность собрать устройство на столе, а затем просто поместить его в кейс. Важный момент состоит в том, что нам нужно соединить минус на входе и выходе высоковольтного конвертера, я просто припаял штекер.
Так как мы не можем просто присоединить Ардуино к 400V, нам понадобится простая схема с транзистором, я просто спаял их навесным методом и обернул в термоусадочную трубку, резистор 10MΩ от +400V был закреплен прямо на коннекторе. Лучше сделать медный кронштейн для трубки, но я просто накрутил провод по кругу, всё работает нормально, не меняйте плюс и минус счетчика Гейгера. Соединяем дисплей съемным кабелем, тщательно его изолировал, так как он располагался очень близко к высоковольтному модулю.
Схема дозиметра на микроконтроллере
Прибор предназначен для измерения ионизирующих излучений, вызванных бета — и гамма-лучи и имеет следующие параметры:
- Диапазон измеряемой дозы: 0 — 250 миллирентген/час
- Напряжение питания: 2 – 3.3 В две батареи АА
- Средний потребляемый ток: 0.5 мА при отключенной звуковой индикации
- Время выхода на рабочий режим: 30 секунд
- Период обновления показаний: 1 секунда
Прибор состоит из следующих функциональных блоков: генератор высокого напряжения для питания газоразрядного счетчика, формирователь импульсов счетчика, узел управления жидкокристаллическим дисплеем, блок звуковой индикации, и стабилизаторы напряжения для питания различных цепей устройства.
Синхронное управление всеми блоками обеспечивается микроконтроллером DD2. Высокое напряжение формируется преобразователем на транзисторе VT2 и трансформаторе T1. На затвор VT2 поступают импульсы частотой 244 Гц и скважностью примерно 4-15% от микроконтроллера DD2. В момент импульса транзистор открыт и в магнитопроводе T1 накапливается магнитная энергия.
При закрывании транзистора в обмотке I трансформатора формируется ЭДС самоиндукции, приводящая к короткому импульсу положительной полярности амплитудой порядка 60 В на стоке VT2. Это напряжение повышается обмоткой II и поступает на утроитель напряжения на диодах VD3-VD5 и конденсаторах C12-C14. Использование утроителя напряжения снижает требования к трансформатору и упрощает его конструкцию. Высокое напряжение порядка 400 В поступает на счетчик Гейгера BD1 через нагрузочный резистор R10.
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
При таком напряжении счетчик работает в середине плато своего рабочего диапазона. Стабилитроны VD6-VD8 ограничивают напряжение на выходе утроителя до уровня 430 В и защищают от пробоя конденсаторы C11-C13 с номинальным рабочим напряжением 630 В. Такая защита необходима в процессе налаживания или при резком удалении дозиметра от источника радиации.
Без стабилитронов напряжение на конденсаторах может превысить 800-900 В и привести к их пробою. Средний потребляемый ток по цепи T1-VT2 не превышает 0.3 мА при сопротивлении нагрузки от 40 МОм и выше.
Счётчик на фотодиоде
Данная конструкция способна фиксировать только альфа- и бета частицы, гамма диапазон для нее невидим, однако большим плюсом для нее является доступность деталей. Схема достаточно несложная, и ее сборка при наличии нужных деталей не займет много времени.
Список деталей нужных для радиосхемы
- 1 BPW34 фотодиода
- 1 LM358 ОУ
- 1 транзистор 2N3904
- 1 транзистор 2N7000
- 2 конденсатора 100 НФ
- 1 конденсатор 100 мкФ
- 1 конденсатор 10 нФ
- 1 конденсатор 20 нФ
- 1 10 Мом резистор
- 2 1.5 Мом резистора
- 1 56 ком резистор
- 1 150 ком резистор
- 2 1 ком резистора
- 1 250 ком потенциометр
- 1 Пьезодинамик
- 1 Тумблер включения питания
Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов. После сборки убедитесь, что полярность динамика и светодиода, являются правильными. Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать. Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности.
Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам. После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались.
Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц. Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ.
Как правильно выбирать
Чтобы точно ответить на вопрос, какой счетчик Гейгера лучше выбрать, необходимо рассматривать конкретные условия его применения и основные технические параметры:
Счетчик Гейгера является достаточно полезным устройством, которое используется в работе дозиметров при оценке параметров среды. Существуют разные модели с определенными техническими характеристиками. Они предназначены для регистрации гамма-фотонов, а также альфа и бета-излучения.
Счетчик Гейгера – это деталь, датчик ионизирующего излучения в дозиметрической аппаратуре. Дозиметр – прибор, определяющий накопленную дозу ионизирующего излучения. Радиометр – прибор, показывающий мощность дозы ионизирующего излучения в данный момент времени в данной точке.
Электрические импульсы во внешней цепи, которые возникают при вспышке разряда, усиливаются. Именно их и регистрирует магнитный счетчик. Число таких импульсов зависит от уровня радиации и, соответственно, напряжения на его электродах. Чем выше радиация, тем сильнее треск.
Счетчик Гейгера способен регистрировать гамма-частицы и бетта-частицы так как остальные не могут проникнуть в счетчик и вызвать ионизации аргона. внутри счетчика.
Заключение
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
Счетчик Гейгера – это прибор, который улавливает и подсчитывает количество попавших на него частиц. Он способен улавливать альфа-, бета-, гамма частицы, реагирует на рентгеновское, нейтронное и ультрафиолетовое излучения. Основная часть этого прибора это специальная трубка, наполненная различными газами и имеющая внутри два электрода.
Читайте также: